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Abstract. For a quantum system of n identical spins of magnitude j, we
introduce an integrated density of states of definite total spin angular
momentum. The underlying sequence {K j : w = l,2,...} of probability mea-
sures satisfies Varadhan's large deviation principle, and converges to a
degenerate distribution. We use the Berezin-Lieb Inequalities to obtain upper
and lower bounds for the limiting specific free-energy of the spins interacting
with a second quantum system under specified conditions on the Hamiltonian.
The method is illustrated by applications to the BCS model and to the Dicke
maser model.

L Introduction

Large-deviation methods are proving useful in statistical mechanics [1,2], both
for reorganizing existing proofs and for obtaining new results [3-5]. The main
purpose of this paper is to prove a large deviation result which has applications to
the equilibrium statistical mechanics of spin systems; we illustrate its use by
applying it to the calculation of the specific free energy of the BCS model and of the
Dicke Maser model. In the case of the BCS model, it provides a short proof of a
known result; in the case of the Dicke Maser model, when combined with the
Berezin-Lieb inequalities, it provides a substantial improvement on existing
treatments in that it requires minimal restrictions on the interaction terms. In both
cases, the spins are not required to be of magnitude 1/2.

The Laplace method (the method of the largest term) is at the heart of
equilibrium statistical mechanics, but to make it rigorous in particular instances is
usually tedious and sometimes subtle. The large deviation principle, in Varadhan's
formulation [6], provides an efficient way of supplying the required proofs; it
reduces the tedium and exposes any latent subtleties. The abstract setting is that of
a sequence {K π :n=l,2,. . .} of probability measures on the Borel subsets of a
complete separable metric space E (in the main theorem of this paper, E is the
interval [0,1]), and a divergent sequence {Vn:n=\,2,...} of positive numbers. We
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say that {Kn} satisfies the large deviation principle with constants {Vn} and rate-
function /:£—»[(), oo] if the following conditions hold:

(LD 1) / ( - ) is lower semicontinuous on E.

(LD 2) For each m< oo, { x : I(x)^m} is compact.

(LD 3) For each closed subset C of E,

lim sup V~l logKn[C] ̂  -inf/(x).
«->• ao C

(LD 4) For each open subset G of E,

lim inf Vn"
1 logK^G] ̂  -inf I(x).

n-* oo G

The following version of Varadhan's Theorem is adapted to our requirements;
it is readily deduced from Theorem 3.4 of [6]:

Varadhan's Theorem. Suppose the sequence {K,J of probability measures on E
satisfies the large deviation principle with constants {Vn} and rate-function
I : E->[0, oo]. Let {fn} be a sequence of continuous functions f n : E—»R which are
bounded above, and suppose that {/„} converges to /:E-*R uniformly on bounded
subsets; then

lim V-ί log f exp(FJn(x))KM[dx] = sup {/(x)- I(x)}.
«->oo E E

Let π7 be an irreducible unitary representation of 5(7(2) acting on the (2/+1)-
dimensional complex Hubert space ϊ)(/). Let ΛΠ be the tensor product of D(/) with
itself n times (n = 1,2, 3,...), and define the unitary representation πn of 517(2) on ΛΠ

by πtt(g)-π7(g)(x)π7(g)® ... ®π%), g6Sί/(2). (1.1)
«times

By the theory of unitary representations of compact groups, πn is reducible
(n ̂  2) and decomposes into the direct sum

πn=@c\n,J)π\ (1.2)
.7^0

where the irreducible unitary representation π j acts on the (2J + l)-dimensional
Hubert space D(J), and has multiplicity cj(n, J). Here, J runs through {0,1,2,..., nj}
if w/ is an integer, and through (1/2,3/2,..., nj} if nj is a half-integer. In Sect. 2 we
show that if Xn is an element of 91Π, the *-subalgebra of 93(ΛΠ) - the linear operators
on ftM - generated by πn:

(1.3)

where ' denotes the commutant in 93(ftn), then

j = o

This trace formula can be re-written as follows: Let
nJ
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and define a probability measure IK^ on the interval [0, 1] by

KiOT-C^Γ1 £ cW); βg[0,l]. (1.6)
{J:JlnjeB}

Define

/π()5) = (-nj8)-1logtrΛn(e-^) (1.7)

for Hne9ln self-adjoint, and

fJ(β;J/nj) = (-nβΓllogt^(J}(πJ(e-^)}. (1.8)

Let /,/(/?; •) be any continuous function on [0, 1] satisfying (1.8). We can use (1.4) to
write

e-»*fnW = C\n) j e-wto' tK&du]. (1.9)
[0,1]

In Sect. 3 we show that {K{:n^.l} satisfies the large deviation principle with
constants {n} and rate-function /J, where

Suppose now that the sequence {fj(β\ - ) : n ̂  1 } converges uniformly to /^β; );
then it follows from Varadhan's theorem that /(/?) = lim /„(/?) exists and is given by

«-»OC

/08)=inf {/^ M)-/?-1/^)}, (1.11)

where

/ΐ(tt) = /J'(l)-/J'(tt). (1.12)

This is the essence of the method; in order to apply it to the BCS model in Sect. 2,
we make a second application of Varadhan's theorem - this time with the trivial
rate-function - in order to prove the convergence of {/,/(/? )} in order to apply the
method to the Dicke Maser model in Sect. 4, we require a generalization of the
trace formula (see Sect. 2) and the introduction of the Berezin-Lieb inequalities (see
Sect. 4) in order to prove the convergence of the sequence {fj(β; •)}.

To prove that {IK^ n^l} satisfies the large deviation principle with rate-
function Ij given by (1.10), it is enough to prove that

l imiΓMog I g^-KM = log - log(2j + 1 ) (1.13)
(α/2/) J

the rest follows by general principles (see [2], for example). We are unable to prove
(1.13) directly, except in the case; = 1/2, where the multiplicities cj(n, J) are known
explicitly. Instead, we exploit the fact that 2 sinh(nx) behaves like enx for large n and
that j sinh(nuy}KJ

n[du] can be computed using a special case of the trace
[0,1]

formula (1.4). This is done in Sect. 3.
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2. A Trace Formula

In this section we determine the class of operators in S?(ΛM) for which a trace
formula like (1 .4) holds. We use nothing more than the theory of finite-dimensional
representations of involutive algebras (see Sect. 2.3.5 of [7], for example). The
decompositions of πn into irreducible unitary representations of S (7(2) are in one-
to-one correspondence with the decompositions of9ln into irreducible ^-algebras,
these are in turn in one-to-one correspondence with the maximal abelian
*-subalgebras (masas) of 9l'n. The masas of 9l'n are unitarily equivalent. Given a
masa 2ln of 9l'n, there exists a unitary operator U from Λn onto

© θ *>(J), (2.1)
JeJ fcεΙK(J)

where J- {J:0^ J^nj, cj(n, J)ΦO}, K(J) = {1,2, ...,c''(n, J)}, and irreducible
^-representations π j of 9ΐn on T>(J) such that for every TV e$Rn,

UNU*=® 0 πJ(N). (2.2)
JeJ keK(J)

Conversely, if

^4=0 θ A09 where X0 e 93(D(J)) ,
JeJ fceK(J)

then t/*ylt/e?ln. An ^e33(Λn) is said to be decomposable (with respect to 9In) if

l/J!fί7*=0 0 X(J,k), where X( J, k) e 93(T>( J)) . (2.3)
JeJ /ceK(J)

An operator is decomposable if and only if it belongs to 9IJ,. Now suppose that
JfeS(Λn) and there exists a unitary operator Ve^Ά'n such that F*^Fe9ΐn. Then,

U(V*XV)U*= ® 0 πJ(F*ZF)?
JeJ fceK(J)

[/* Ft/ = 0 0 F(J, k) , with F( J, k) e 93(D( J)) unitary ,
JeJ keK(J)

and thus
UXU* = 0 0 F(J, k)πJ(F*^F)F(J, k)* . (2.4)

JeJ /ceK(J)

The converse is also true; if

^4=® ® A(J,k),
JeJ keJK(J)

where for each J e J, A( J, fc) is unitarily equivalent to A( J, fc;) for all k, k' e K( J), then
there exists a unitary Fe 51̂  such that V*U*AUV£ $ln. For these operators, which
we call homogeneously decomposable, we have the trace formula

**„(*) = Σ cj("> J} tr£(J)(πJ(F*XF)) . (2.5)
JeJ

Notice that if X e9ln then (2.5) holds, with F= 1, for any decomposition.
The above admits a straightforward and useful generalization. Suppose that ϊ)n

is a second separable complex Hubert space, and let Hn be a selfadjoint operator on
the tensor product f)n®Λn such that exp{ — βHn} is trace-class. Let

(-nβΓllogZn. (2.6)
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Assume that there exists a masa 9ίπ oΐ9l'n, and a unitary operator Ve 2IJ, such that
(1 (x) V)*Hn(l (x) F) is associated with S(f)n)® 9lπ. Such operators will be henceforth
called homogeneously decomposable. Then,

Zn = Σ ^(n, J) tη^j^exp { - βHn(J)}) , (2.7)
JeJ

where //„(/) is the operator on I),,®Ϊ)(J) given by

Hn(J) = {Id®π'} ([1 ® F]*#n[l ® F]) . (2.8)

The trace formula (2.7) can be rewritten as follows : Define

Zi(J/nj) = tr^^exp { - βHn(J)}) , (2.9)

//(jS; J/nj) = (-nβΓl logZί(J/«/) . (2. 1 0)

Then for any function fl(β', •) on [0,1], satisfying (2.10), we can write (2.7) as,

and, accordingly,

) f exp{-^/^;^)}^[^], (2.11)
[0,1]

f exp{-^/>)}K^t/]j. (2.12)
0,1] J

We remark that if Hn is associated with S(f)J(x)9ΐn, then it is homogeneously
decomposable [with V=\ in (2.8)].

In the above, the introduction of the group 5(7(2) is convenient but irrelevant.
We may replace the irreducible representation πj of S (7(2), which we started with,
by 95(ft), where Λ is an arbitrary finite dimensional Hubert space; then define on
the tt-fold tensor product Rn of £t with itself, the algebra

SRn = {C7(8)C/(8)...®C/6»(ftJ: U a unitary in »(#)}" .

In the decomposition of SJIΛ into irreducible representations of itself, the dimension
of the carrier Hubert spaces as well as the multiplicities are determined only by n
and the dimension of Λ. The advantage of introducing the group 5(7(2) is that
polynomials in the generators 5*, SJ, Sz

n of the representation dπn of the Lie algebra
su(2) provide a convenient basis for 9ίn since

91B = {S*S;,S^}". (2.13)

The generators of dπn are given by

S"= Σ (J'%), « = x,y,z, (2.14)
fc= 1

where JS*k} is J5α acting on the fc-th component of ftw, and {J5α : α = x, y, z} are the
generators of the irreducible representation of sw(2) carried by the Hubert space
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3. Large Deviations

In this section we prove the large deviation result announced in Sect. 1. Let Cj(n) be
the normalizing factor defined by

C\n)= Σ c>(n,J). (3.1)
j = o

Applying the trace formula (2.5) to the identity operator, we have

'
). (3.2)

Hence

(2j + l)n ̂  Cj(n) ^ (2j + l)V(2n/ +1) (3.3)

so that

lim w~ 1logC J '(w) = log(2/ +1). (3.4)

Introduce the function t : [0, oo) x [0, oo)->[0, oo) defined by

/(smhl/lsΓ'sinlψ + l/^s, s>0,
ί (s'ϋ)=J2t> + l , , = 0; (15)

we have

trί(J)(πVs*)) = Σ eAm = i(l,.7). (3.6)
m — — J

Lemma 1. Let [K.j

n : n ̂  1} be the sequence of portability measures on [0, 1] defined
by (1.6); then for every s^O,

l imn" 1 log j ^'MSIKi[rfw]-logί(s,j)-logί(0,j). (3.7)
«^oo [0,1]

Proof. For 5 = 0, the result is trivially true. Assume s > 0; applying the trace formula
(2.5) to the operator exp {/£;;}, we have

t(b])n= Σ cj(n,J)t(λ,J) = Cj(n) J t(λ,nju)Kildu~]. (3.8)
J = 0 [0,1]

lim n' 1 log ' J ί(s, nju)K^du] =logi(s,;)-logi(0j') . (3.9)
n^co [0,1]

Using (3.4), we have

l
n

Now, for x ̂  0,

x(l+2x)~1e : x^sinh(x)^l/2^ (3.10)

so that [using the fact that u-*(2ι; + l)s(l +(2υ + l)s)~1 is increasing in i ^O for
every s^

2(\^s)s~1e's/2smh(s/2)t(s,nju)^enjus^2e's/2smh(s/2)t(s,nju), (3.11)

and (3.7) follows from (3.11) and (3.9). Π
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Once (3.7) has been established, the proof that {KJ

n} satisfies the large deviation
principle is routine (see [2] for an exposition of general principles); to make the
paper self-contained, we provide a proof even though it could be deduced, using
Lemma 1, from Theorem Π.6.1 of [1].

Theorem 1. The sequence [K.{ : n ̂ .j} satisfies the large deviation principle with rate-
function I j : [0, 1]->R given by (1.10).

Proof. Notice that /j(0) = 0, /J'(l) = log(ί(0j)), and Ij is increasing and convex. The
Legendre transform of a function is automatically lower semi-continuous, so
(LD 1) holds. This implies that the level sets of Ij are closed; it is easy to check that
they are bounded, so (LD 2) holds. It follows from Markov's Inequality that the
large deviation upper bound holds for a closed interval Ay = [_y, 1], y>0:

K&4y]g J ^"-'K&du]. (3.13)
[0,1]

It follows from (3.7) that

^]g -aj; + logt(a/jj)-logt(0j). (3.14)

Hence

) . (3.15)

Now let C be an arbitrary closed subset of [0, 1]; if 0 belongs to C, the bound is
trivially true; otherwise, take y — inf C, and consider Av DC. This establishes (LD 3);
to prove (LD4), we introduce the exponential family {IK£α:α^O} defined by

K£ *\_du] = e^Kfrdu] / J enΛXK}t[dx] . (3.16)
/[0,1]

For α ̂  0, let ρ(α) be given by

. (3.17)
[ds

Note that α-»ρ(α) is an increasing function with ρ(0) = 0 and lim ρ(α)=l.
α— >• oo

Lemma 2. For each α^O, the sequence {K£a : ̂ ^1} converges weakly to the Dirac
measure supported at the point ρ(a):

K«a~^^(a)

Proof. Let

pπ(s) = n- 1 log 1 ensuKi[_dul, s^O, (3.18)
[0,1]

which is convex, differentiable on (0, oo), and, by Lemma 1, converges to p(s)
= \ogt(s/jj) — logί(Oj'). p is differentiable on (0, oo) with derivative equal to ρ. Let
s>0; one has

log J esuKϊ«ίdu-]==s{pn(a + s/n)-Pn(a)}/(s/n}. (3.19)
10,1]
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By convexity, if p'n denotes the derivative of pn,

P W ̂  (Pn(* + s/n) - pn(x)}/(s/n) rg P;(α + s/n). (3.20)

Applying the generalized Griffith's lemma proved in [8], we deduce that both sides
of (3.20) converge to ρ(α). Thus (the case 5 = 0 is trivial),

limlog J esuK^\_du]=sρ((ή. (3.21)
[0,1]

The result follows from the continuity and uniqueness theorems for the Laplace
transform. Π

Returning to the proof that (LD 4) holds, let G be an open subset of [0, 1] and
let y be an arbitrary point of G. For each δ > 0 such that Bδ

y = (y — δ, y + δ) C G we
have

. (3.22)

Now choose α such that y = ρ(α), which is possible since j Φ 1 because G is open;
then

1 £ - (y + «5)α + log t(a/jj) - log t(OJ)
n—>• oo

«-» oo

By Lemma 2, for n sufficiently large we have IK£α[#J] > 1/2 so that

«—> oo

and (LD 4) holds since δ > 0 was arbitrary subject to the condition (y — δ, y + δ) C G
and y was an arbitrary point of G. Π

We can now apply Varadhan's theorem to (2.12) using (3.4) to obtain the
following result:

Theorem 2. Suppose that the self-adjoint operator Hn on f) n ®Λ w is homogeneously
decomposable and Qxp{ — βHn} is trace-class for every n^l . Let /,/(/?,•) be
continuous on [0,1], and satisfy (2.10) for all n^\ and JeJί. Suppose that the

sequence {/,/(/?, •) : n ̂  1} converges uniformly to fj(β, •), ί/ien, /(/?) = lim /„(/?) exists
-

y (1.12).

Remark. The function /,/(/?, •) is some continuous interpolation of the free-energy
(2.10); at first sight, it might be thought that a different choice of continuous
interpolation could yield a different limit function. This is not the case under the
continuity and convergence hypotheses of Theorem 2.
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An Application: The BCS Model. For j = 1/2, the following Hamiltonian appears in
the strong-coupling-limit theory of the BCS model [9-11].

Hn acts on ΛΛ and jS^ = jS^k}±ijSy

(ky Hn can be rewritten as

Ha = nεΛ 1 Λn + (λn - εa)S*n + λ^)2 - λn(Sz

n)
2 .

By (2.13), Hπ is homogeneously decomposable with

Hn(J) = (nεn + λnJ(J + 1)) W + (4 - fiJ'S2 - λΛ(JS*)2 .

Since the eigenvalues of JSZ are { — J, — J + 1 , . . . , J — 1 , J} == §, we have

Zi(J/π; ) = exp{-/?[nεn + ;.nJ(J + l)]} £ exp {-flμ,,- εn)fe - An/c2]
fce§

Let μ be the probability measure on the interval [-1,1] defined by

Then,

Thus,

where we have defined φj

n( ,-) on [0, 1] x [— 1, 1] by

φ{(u, x) =j2nλnu
2x2 +j(εn - λn)ux .

Suppose now that

lim εn = ε , and lim nλn = λ
n~> oo n—> oc

both exist. The sum of the first three summands in the formula for /,/(/?;•)
converges uniformly to ε+j2λu2. Moreover,

lim φj

n(u, - ) = φ\u, - ) uniformly ,
n-+ oo

where

φj(u, x) =j£ux +J2λu2x2 .

Applying Varadhan's theorem to the constant sequence {μn = μ:n^l}, we have

lim (nβΓ1 log ί J enβφ*(u'x)μ[dx]\ - sup{φj'(w, x) : x e [- 1, 1]} .
\[-ι,u
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We conclude from Theorem 2 (using compactness of [0, 1]), that /(/?) exists, and

f(β) = ε + inf { -jεux +J2λu2(\ - x2) - β ~ Ίj

0(u) : w:we[0, l] ,xe[-l , l ]} .

Large deviation methods are used in [5] to discuss the general BCS model (see
[12]).

4. The Berezin-Lieb Inequalities for Z{

In this section we use the Berezin-Lieb inequalities to obtain upper and lower
bounds on the partition functions ZJ

n(J/nj). This then gives us bounds on Zn which
can be treated by Large Deviations.

Consider a fixed J in {0, 1/2, 1, 3/2, 2, . . .}, and let (| J,e} : e e S2} be the family of
Bloch-coherent unit vectors in X>(J) parametrized by the unit sphere S2 in R3 (we
use the conventions of [13]). We let m be the probability measure on S2 given by
m[de']=(4π)~ίdxdydz. Consider P(J, e\ the orthogonal projection of D(J) onto the
subspace spanned by |J, e>; then

l1>(J). (4.1)
<?2

Given any self adjoint .4 e 93(X)(J)), let

Al(J,e) = i^(J}(AP(J,e)). (4.2)

There exists a function AU(J, •) on S2 (see [13, 14]), such that (in the sense of matrix
elements)

AU(J, έ)P(J, e)m\_de] . (4.3)

The Berezin-Lieb inequalities [13-15] state that

(2 J + 1 ) J eAl( J> *}m[_de] ^ tτW)e
A ^ (2 J + 1 ) J eAU( J> *]m[_de] . (4.4)

s2 s2

More generally, if f) is a separable complex Hubert space and H is a selfadjoint
operator on 1)®£>(J) such that exp{ — βH} is trace-class, then ([13]; see
Appendix 2 for a proof)

(2J + l)f 2 tr b £Γ' H '< J M^

(4.5)

where #Z(J> •) is the fy-operator valued function on S2 defined by

H\J, e) = trw)(//(l (g)P(J, ^A))) , (4.6)

and HU(J, •) is any I)-operator valued function S2 such that, in the weak sense on
domains,

) f Hu(J,e)(\®P(J,e))mίde]. (4.7)
s2

We now apply the inequality (4.5) to the situation described in Sect. 2. Let Hn

acting on ί)n®ftπ be homogeneously decomposable and exp{ — βHn] trace-class.
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Let Zπ, and Z{(J/nj) be defined as in Sect. 2. Let

ββ J/nj, e) = ( - nβ) ~ ' log tr^exp { - βHl

n(J, e)}); (4.8)

ft(β;Jlnj,t>) = (-nβ)-1 log tr Jexp{ - «./, έ)}) . (4.9)

Then, by (2.11), and (4.5) applied to ZJ

n(J/nj),

Σ efo J) (2J + 1 ) j exp { - n0#(fc -//«/, *)}m[dg] ^ Zn
J^O S2

)}m[<fe] . (4.10)
S2

Define a probability measure P^ on [0, 1] by [see (3.2)]

Vj

n[.E]=(2j+ίΓn Σ (2J + lHn,J), (4.11)
JeJ

μ/«je£}

and consider the product measure !M^ = P ^ x m on T=[0, l]xS 2 . Let the
functions fj(β\ , έ) and /^(jδ; , e) on [0, 1] satisfy (4.8), respectively (4.9), for every
n^ 1, and Je J; we can rewrite (4.10) as

+ 1 )" J exp { - nββ(β;

^ C^)(2/ + 1)" j exp{ -nβ?j(β 9 ί)}M[Λ] , (4.12)
T

where ί = (u, e).
Recalling the definition (1.6) of K ,̂ and the inequality 0^ J^nj for Je J, we

have

C\n)(2j+ IJ-TKίCB] ̂ Pi[5] ̂ (2nj+ l)C^(n)(2/ + 1)-TK^[B] , (4.13)

for every Eg [0, 1], and every π^ 1. The following result is then a consequence of
Theorem 1.

Corollary. TTze sequence {JPj

n : w ̂  1 } satisfies the large deviation principle with rate-
function P.

Using the proposition in Appendix 1, we can apply Varadhan's theorem to
both sides of (4.12) to get the following result:

Theorem 3. Suppose that the self-adjoint operator Hn on ί)n®Λn is homogeneously
decomposable and Qxp{ — βHn} is trace-class for every n^l . Let the sequences
{/,/(/?;•): rc §:!}, and {^(βι ):n^l} of continuous functions on T satisfy (4.8),
respectively (4.9), for all π^l, and Je Jί, and converge uniformly on T to f*(β\ -\
respectively Jj(βi •); then

First Application: A General Quadratic Spin-Hamiltonian. On Άn, let

μ,ve{x,y,z}
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where cn e IR, rn e 1R3, and Qn = (Qn(μ, v)) is a complex hermitian (3 x 3) matrix. Then
Hn is homogeneously decomposable and

Using Lieb's table (reproduced in Appendix 3) we have

H'n(J, έ) = cn + Jr_n e + J(J - 1/2) (e\Qne) + 1/2J tr(βπ) + Jkn e

where kn = Im(Qn(z, 3;), β,,(x, z), Qn(y, x)).
Now, β(β; u,έ) = n' lH"n(nju, e), and fj(β; u,έ) = n~ lHl

n(nju, e}. Thus,

fj(β; H, έ) = n - ' cn +jurn e +J2nu(u - i/2nj) (e\Q,,έ)

+ \/2jutr(Qn)+jukn e,

and similarly for Jj. Suppose that

lim n ~ ί cn = c , lim rn = r, and lim nQn = Q (elementwise) ,

then fcΛ-^0, and tr(QJ->0, so that {/^; ):π^l}, and {#(β.) :w^l} both
converge uniformly on T to

fj(β; u,έ) = c +jur - e +j2u2(e\Qe) .

Hence, by Theorem 3,

Second Application: The Spin-Boson Model Consider n (2/+l)-level atoms or
7-spins interacting with a quantal radiation field in a region ,o/nClR/ of finite
"volume" Vn. The one-particle Hamiltonian ί)Λ is assumed to be a positive injective
self-adjoint operator on L2(j/J such that exp {—/?!)„} is trace-class. It follows that
[)n has a bounded inverse. Let $n be the symmetric Fock space over the Hubert
space L2(j/J. The Hamiltonian for the full system is taken to be (see [16])

k = l k = l

acting on 3f«®^n, where ε is real, λn eL2(j3/J, rfΓ denotes second quantization, and
α(/), /GL2(j/n), denotes the usual annihilation operator (see e.g. [17]). Let

We consider the limit Vn^> oo as n-> oo, with ρ = n/1^,, the density of particles, fixed.
Hn is homogeneously decomposable since

A glance at Lieb's table (see Appendix 3) shows that

H\μ, e) = dΓOg + εJz l b + (ρ/n)1/2 Jx{α*μ,,) + α(An)} ,
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If W[f] =exp {<?(/) — α*(/)}, feL2(An), denotes the unitary Weyl operator on $n,
then [18],

Hl

n(J, β) =

and similarly for //"• The traces in (4.8) and (4.9) can be done easily, to obtain

fj(β w, e) = εjuz - ρ(jux)2Λn + ρ ~ lf,?(β) ,

ft(β , u, S) = εj(u + (\/nj)}z - ρ(j(u + (\/nj)}x}2Λn + ρ ' lfπ°(β) ,

where /B°(j8) is the specific free energy of the free field:

f°(β) = (~βVnΓ
! log trsj

Suppose that f0(β} =

«-> oo

both exist; then both fj(β; •), and /^'(jff; •) converge uniformly to

f*(β; u, e] = εjuz - ρΛ(jux}2 + ρ ~ lf(β] .

It follows from Theorem 3, that

f(β) =f°(β) + Q inf {εjux - ρΛ(ju)2(l - x2)

A more complete discussion of the statistical thermodynamics of this model
will be given in [19]. We note that our result seems to be optimal in the sense that
the conditions imposed on the coupling constants are minimal. The full details of
the steepest-descent argument of Hepp and Lieb [1 6] were given in [20] for) = 1/2,
where cj(n, J) is known explicitly. The best previous result appears to be that of
Zagrebnov [21], who also gives a very detailed bibliography.

Appendix 1

The following is a double application of Theorem 3.1 of [6].

Lemma. Let X and Y be complete separable metric spaces. Suppose [Kn : n g: 1 } is a
sequence of Borel probability measures on X satisfying the large deviation principle
with constants {Vn} and rate-function H:X-+[Q, oo], and that {JLn:n^l} is a Borel
probability measure on Y satisfying the large deviation principle with the same
constants {Vn} and rate-function / : Y-»[0, oo]. Let F be an extended real valued
upper semicontίnuous function on X x Y which is bounded above; then

limsupF^log f

X X Y

Proof. Define the function Gn:X-»lR by

Gπ(x) = V- 1 log j
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by using Fubini's theorem. It follows that Gn is bounded above with the same
bound as F. Let {x κ :n^l} be a sequence in X converging to xeX. Define
Fn: 7->R by Fn(y) = F(xn,y). Then Fn is bounded above, and if {yn:n^l} is a

sequence in 7 converging to y e Y, we have lim sup Fn(yn) ^ F(x, y) by upper
«-> oo

semicontinuity. Thus, the hypothesis of Theorem 3.1 of [6] is met (see the remark
on p. 278 of [6]), and we conclude that

lim sup Gn(xn) = lim sup V~ ί log f exp( 7^
M-* oo n~+ oo Y

(Al.l)
Y

By Fubini's theorem,

J exp(FnF(x,.y)) {Kπ x 1LJ [φc, j,)] = Jexp(7,GB(x))K,[^ . (A 1.2)
* χ y

Again, (Al.l) says that the conditions of Theorem 3.1 of [6] are satisfied, so that

lim sup Vn

 l log J exp(FwGM(x))]Kπ[dx] ̂  sup ίsup {F(x, y) — I(y)} — H(x)\,
x x \ Y j

and the claim follows from (A 1.2). Π

The following result is heuristically obvious.

Proposition. Take the assumptions and notation of the lemma. The sequence
{M^: n ̂  1} of Borel probability measures IV^ = IKn x ILn on X x Y satisfies the large
deviation principle with the same constants {Vn} and rate-function J: X x 7—»[0, oo]
given by

Proof. J satisfies (LD 1) and (LD 2). A rectangle is a subset of X x Y of the form
AxB, where AgX and BQY For rectangles, logM^ x 5]-logKπ[y4]
+ log!Lw[β]. Thus (LD3) and (LD4) follow directly from the assumptions.

To prove (LD4), let z be a point in an arbitrary open subset G of Z = X x Y.
There exist open subsets Gl of X, and G2 of 7 such that z e G1 x G2 £ G. It follows
that MW[G] ̂  M^G! x G2]; dividing this inequality by Vn, taking logarithms, the
inferior limit, and invoking (LD4) for rectangles, we obtain:

liminfF^MoglHIG]^- inf {J(x,y)}^ - J(z); (A 1.3)
«->oo GI x G2

the right inequality is obvious since z e G1 x G2. Since z was arbitrary in G, (LD 4)
follows from (A 1.3) by taking the supremum with respect to G.

Let C be closed in Z and define Fc on Z by Fc(x, y) = 0 if (x, y) e C, and
Fc — — oo otherwise. Fc is upper semicontinuous and

H[C] = I exp(KnFc(x, }>))1M», y)3. (A 1.4)
Z

Dividing (A 1.4) by Fπ, taking logarithms and the superior limit, (LD3) follows
from the lemma. This completes the proof. Π
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Appendix 2

Let (X, S, μ) be a measure space; a family of coherent projections on (X, ®, μ) is a
weakly measurable map x->P(x) from Jf to proj(ft), the set of orthogonal
projections on a separable Hubert space ft, satisfying:

tr(P(x)) = l , (CP1)

l f t . (CP2)

It follows [14] from (CP 1) and (CP2) that μ[JQ = dim (ft).

Theorem. (Berezin-Lieb Inequalities). Lei f), ft fre separable Hubert spaces; let A be
a self-adjoint operator on ί)(x)ft swc/z that tr^^ty4) z's finite. Let P : X-+proj(R) be a
family of coherent projections on the measure space (X, ®, μ) and define the map A1

from X to the self-adjoint operators on I) by

Al(x) = tτΛ(A(l®P(x)). (All)

Then

}. (BL1)

Suppose, in addition, that there exists a map Au from X to the self-adjoint operators
on \) such that

J Au(x) ® P(x)μ(dx) = A, (A 2.2)
x

in a weak sense; then

. (EL 2)

Proof. (Adapted from [14] where it is proved for the case f) = C). Since A is self-
adjoint and eA is trace class, the spectrum of A consists entirely of isolated
eigenvalues of finite multiplicity; let {£(/) :j e JΓ} be an orthonormal basis for ϊ)® ft
consisting of eigenvectors of A:

Aξ(j} = λ(j)ξ(j), (A2.3)

where the eigenvalues {!(/) :je J} are labelled according to their multiplicities. Let
Q: J->ρroj(h(g)ίl) be the map defined by

(A2.4)

for each vector η in h(χ)ft, then the operator

satisfies

O^Qd,*)^ f o r a l l j . x . (A 2.5)

By (CP 1),

Σβ(/,*) = lι, for all x; (A2.6)
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by (A2.3),

Al(x)=ΣWQ(J,x) for all x, (A2.7)
7'eJΓ

and by (CP 2),

) = l for all j . (A2.8)

Let φ be a unit vector in ί); thenj-^Qt/;(/5χ) = <(VjβO'j :)C)1P)^ defines a probability
measure on the countable set Jί by (A2.5) and (A2.6). Using Jensen's Inequality and
(A 2.7), we have

exp{<iψ9A
l(x)ψ\}^ Σ eλ^Qψ(J9x) for all x. (A2.9)

JeJ

Choosing an orthonormal basis for f) consisting of eigenvectors of ^(x), we have
by (A2.9):

t^(eAl(x)}^ Σ eλo'X(β(/>*)) for all x. (A 2. 10)
jeJΓ

Integrating (A2.10) with respect to μ and using (A2.8) we get (BL1).
For each x, let {φ(x, m) : m e M} be an orthonormal basis for f) consisting of

eigenvalues of Au(x}\

Au(x)ιp(x, m) = α(x, m)ψ(x, m) , ( A 2. 1 1 )

where the eigenvalues {α(x,ra):meM} are labelled according to their multiplic-
ities. Let R\ X x M->proj(I)) be the map defined by

R(x, m)φ = <v(x, m), φ>^(x, w) , (All 2)

for each vector φ in I); then, by (A 2. 11), we have

A"(x)= Σ α(x,m)Λ(x,m) for each x, (A 2. 13)
meM

and

X Λ(x,m) = lι) for each x. (A2.14)
meM

For each Borel subset E of X and each m in M, put

σ/E, m) - j tr^(K(x, m)Q(j, x))μ(dx) (A2.1 5)

then, by (CP2) and (A 2. 14), E x {m}->σ7 (E, m) determines a probability measure
on the Borel subsets of X x M By Jensen's Inequality, we have

expί Σ Jα(x,m)σ/dx,m)l ^ Σ ί βfl(x'm)σ;.(dx,m) (A2.16)
[meM X j meM x X

but, by (A 2.4) and (A 2.14),

?̂

Summing up (A2.16) over) and using (A2.8), we get (BL2).

Σ fα(x,m)σ/dx,m) = λ(/). (A 2.17)
eM X
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Appendix 3

The following is a completion of Lieb's table (p. 330 of [13]) computed by the
method expounded in Appendix A of [13].

Sα, α = x, y, z, are the components of JS, where J is fixed in {0,1/2,1,3/2,2,...}.

Lower symbol { }'(J, e) Upper symbol { }%/, e)

S Je
(V)2 J(J - l/2)x2 + 1/2J (j +1) (j + 3/2)x2 - 1/2(J 4-1)
(S*)2 J(J-l/2)>;2 + l/2J
(Sz)2 /(J- l/2)z2H- 1/2J (J + l)(J + 3/2)z2-
S*̂  J(J - l/2)xj> 4- /l/2Jz (J +1) (J + 3/2)x>; +
SZS* J(J- l/2)xz + il/2Jy (J+ 1)(J + 3/2)xz + il/2(J + 1)3;

The complex conjugate of an upper symbol (respectively the lower symbol) oϊSβSa

is an upper (respectively the lower symbol) ofSaSβ. We remark that in Lieb's table
(p. 330 of [13]) "cosφ" should be replaced by "sinφ" in the row corresponding to
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