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Abstract. We generalize the Bogomolny equations to field equations on R3 (
and describe a twistor correspondence. We consider a general hyper-Kahler
metric in dimension 4n with an action of the torus Tn compatible with the
hyper-Kahler structure. We prove that such a metric can be described in terms
of the resolution of the field equations coming from the twistor space of the
metric.

1. Introduction

Let £ be a rank k complex vector bundle on IR3 ® IR" with a connection V and n
sections of the adjoint bundle Φ1

9...9Φ
n

9 the Higgs fields. Let xj,, i = l , . . . , n ,
α = 1, 2, 3 be the coordinates on !R3 (g) Rn and consider the field equations

where F = Σ^VV dx^ Λ dxj

β is the curvature.
In each [R3 obtained by fixing a vector in the Un factor of [R3(χ)lRn the field

equations reduce to the Bogomolny equations by contracting the fields with the
vector, [5]. This is the generalization mentioned in the title. We prove that there
is a twistor correspondence between solutions to these equations and holomorphic
rank k bundles on T = (9(2)® C" trivial on real sections of Γ-+CP1.

We shall consider the field equations for the abelian torus Tn and their relation
to hyper-Kahler geometry: Let (M, g) be a 4n-dimensional Riemannian manifold
with three almost complex structures /, J and K satisfying the quaternion algebra
identities

72 = j2 = K2 = _ 1? π = _ n = κ

etc. Assume that g is Hermitian with respect to /, J and K, i.e.

), X,YeTM
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etc. Then (M, g) is called a hyper-Kahler manifold iff the complex structures are
covariant constant or equivalently iff /, J and K are integrable and the Kahler
forms ω 1 ?ω 2,ω3 are closed, where

ω!(X, Y) = g(IX, Y\ X,YεTM

etc. [1,10]. The twistor space Z of such a hyper-Kahler metric is the complex
In + 1-dimensional manifold consisting of the compatible complex structures on
M [6,15]. It is a generalization of Penrose's non-linear graviton construction [14].

Recently, [11,16], Hitchin et al described the general hyper-Kahler metric—and
its twistor space—in dimension 4n with n commuting Killing fields which preserve
/, J and K. From their description of the metric it is easily seen that

g = Σίφvdϊ drt + (ΦijΓl(dyl + Aί)(dyj + A7')], (1.2)
i.j

where dxl-dxj =

are n Higgs fields Φ1': 1R3 <g> R" -> R" and

a 1-form on [R3® R" with values in R". Moreover, (A9 Φ1) satisfy the abelian field
equations

^ xl4 = 2^ βα/?y Vχ;,
 φ )

(1.3)

The twistor space of the metric is given as a sum of line bundles L1 © © Ln over
T trivial on holomorphic sections of T-^CP1, and therefore corresponds to a
solution to (1.3). We prove that this solution coincides with the solution appearing
in the metric. Finally, we have some remarks on the sheaf cohomological aspects
of the computations.

Remarks.
i) For n = 1 the field equations have been studied extensively [5,8,16].

ii) From (1.2) it follows that the geodesic flow on Γ*M is obtained from the
hamiltonian

where (£«, σ1) are fiber coordinates on T*M and A1 = Σak

i"dxk. This may have
fc.α

some physical interpretation in the metrics which arise as asymptotic models of
the natural hyper-Kahler metric on the moduli space of k monopoles. Indeed, for
n = 1 this is the case [7].

2. The Field Equations and the Twistor Correspondence

In this section we shall describe the twistor correspondence between the bundle
T—»CP* and [R3(χ)[R". Since this is a straightforward generalization of the
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correspondence between 0(2) and [R3 given in [5] this presentation will omit details.
The space C3 ® C" parametries holomorphic sections of T-* CP1 : If ζ denotes

the affine coordinate on the complex line CP1 and ηl

9i=l,...9n are coordinates
along the fibre of Γ, then a holomorphic section of T can be written

TfW-x'C-z'C2, (2.1)
where

z^xi + ix^, z^xi-ίxίj, xί = 2x*3, (2.2)

and xj,6C. Since the real structure on T is given by

the real holomorphic sections parametrized by [R3(χ)[Rn are given by x^eR. The
sections passing through a point (C0,^o)eT are parametrized by a 2n-dimensional
affine space π = π(£0, η l

0 ) which is foliated by ^-dimensional affine spaces
N = JV(ζ0, η

l

θ9 AO) of sections passing through (ζ0, f/' 0) in a given direction Λ/0. Since
the metric on IR3 (x) R" is given by

k

we see that the leaves N of the foliation are null and given by (2.1) together with

ζ^dέ + ζodz^O. (2.3)

The space π and its conjugate π intersect in a real n-dimensional affine space
spanned by the n lines

xi = 4 + to«» (2.4)

where wα is the direction related to Co by stereographic projection

Now, let £ be a rank fe bundle on T and assume E is trivial on every section (2.1)
with x^elR. Since such a section is isomorphic to the projective line we denote it
CPX. Then E will be trivial on sufficiently close complex sections so we obtain a
rank k bundle E on a neighbourhood of [R3® Rn in C3® C" by

(2.5)

If we fix a point (ζ0>*7o) in ^ ώen we obtain a flat connection Vπ on π(C 0,fy 0) by
trivializing £

</rJ|π̂ £, (2.6)

where ^ evaluates a section on CPX in the point (C0>^o) This defines [5], by
differentiation at x, a matrix valued function ,4 = {a^} on the set V of vectors at
x which are tangent to some N. Moreover, A is homogeneous of degree 1 and
holomorphic, i.e.
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It is easily seen that a holomorphic section of (9(ϊ)\v can be uniquely extended to
a section ^etf^CP3"'1, $(!)). Thus, we obtain a connection V on E. Since, by
definition, V agrees with Vπ on π in the directions of JV, we have

df (2.7)

for some endomorphisms Φk, where from (2.3)

k

k

Again, it follows from the holomorphic description that each Φk are independent
of π and so gives a well-defined endomorphism of the bundle E. Now, since Vπ is
flat we obtain the equation

F|π - ^£VΦ j Λ dtj + ̂ £ [_Φ\ ΦjW Λ dtj

9 (2.9)

where F is the curvature of V. This equation together with the coordinate change
(2.2), and the fact that on π we have

dxi = ζ~1dzί — ζdz* (2.10)

leads directly to the field equations in (1.1).
To reverse the construction let £ -»[R3 ® IR" be a bundle with connection V and

Higgs fields Φ\ i= l , . . . ,n, satisfying the field equations. We look for a bundle
E-*T. Since we want the construction to be the inverse we have (2.5). Let π be
the 2rc-space associated to a point (ζ,ηl) in Γ. Then, from (2.6) we have

Now, since the covariant sections are given by the value at a point, it is sufficient
to know 5 along the real lines in (2.4) generating πnπ. Thus, from (2.7) we are
lead to define

(in the operator Vu-(i/2)Φ j, M is the vector with coordinates u\ = δijuΛ\ In this
way we get a C°° vector bundle of rank fe and we shall proceed to construct a
δ-operator on £: First, we paraphrase the description of T. Consider the double
fibratίon

s2 χ ( ί

where
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Also, consider the vector fields on S2 x ([R3 ® 1R"),

^l'K,4) = XX^7.
a OXΛ

Then, a section s of E corresponds to a section § of p*E which satisfies

and T is the quotient of S2 x (IR3 (x) IRW) by the n commuting vector fields X1. Now,
define vector fields F, YJ' on S2 x (R3 ® Rπ):

Then we have

, _ .

Finally define the d operator

by

π*(Ds) = Vγjsdήj + Vzsdζ.

In order for this to be well defined we need to show that Vγks and VZ5 are pull
back of sections, i.e. we need to prove

or since (Vχj — (ί/2)Φj)s = 0, we need to prove that

-j
χ,-^ΦJ',Vy, ί = 0,

This, however, follows directly from the generalized Bogomolny equations (and
the fact that the connection on p*E is p*V). Furthermore it is a straightforward
computation to see that D2 = 0 and D(fs) = dfs + fDs, so £ is a holomorphίc
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bundle. Finally, to show that E is trivial on every real section we consider the
point xl

a = 0 and the corresponding curve P0 given by all the real n-spaces π n π
passing through 0. Fix a basis (e± , . . . , ek) of the fibre E0. Take the unique solution
satisfying

Then (Sl5 . . . , sk) defines sections st of E over P0, and it is easily seen by uniqueness
of solutions to the system of partial differential equations that Vzs, = 0. Also,
VYj§i = 0, so the trivialization is holomorphic. This ends the description of the
twistor correspondence.

Remark. In the rest of this paper we shall only consider the abelian case where
the term [Φ1, Φj) disappears. We hope to consider the non-abelian equations in
a later paper, in particular their possible relation to the moduli space of monopoles
in [R3.

3. The Metric and the Twistor Space

We shall review briefly the work of Hitchin et al. [1 1, 6]: Let M be a 4n-dimensional
hyper-Kahler manifold with a free action of ίRn on it. It is assumed that this action
extends to a free holomorphic action of C" on the twistor space Z. Then Z becomes
a principal C" bundle over T.

Remark. Strictly, Z is a C" bundle only over some open subset of T. For example
for n = 1 we seek solutions on [R3 to the equations

a A = *dΦ,

and since Φ is contained in the metric

g = Φdx-dx + Φ~1(dτ + A)2,

we need Φ to be positive (or negative). But if Φ is positive and harmonic then Φ
must be constant. This is easily seen using Poisson's integral formula and Gauss'
law of the arithmetic mean. Thus, global non-trivial solutions do not exist.

The projection of the twistor lines in Z to T gives the 3n-parameter family of
sections (2.1) of T-^CP1. To find the full Φi-parameter family of twistor lines we
describe Z in terms of transition functions: Let [/, U be the usual cover of T. Then
we have coordinates (ξ\ ηl, ζ) on Cn x U and (ξl

9 ή
l, () on C" x U related by

? = ̂  + ~(>/U), tf' = Γy, C^Γ 1 (3.1)
dηl

on C" x C/n U. Here H is a holomorphic function defined on £/n U = C" x C*.
It is the Hamiltonian function for a symplectic vector field with respect to a
symplectic form ω on the fibres of Z-^T-^CP1. Now, we seek holomorphic
functions ξl of ζ and functions ξl of ζ which satisfy

? ί(C"1) = ̂ (0 + (^(0,0, (3-2)
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where ηl(ζ) is given in (2.1), i.e. we seek curves in Z which project to a fixed section
of T under the projection Z -> T. Expanding in power series

oo oo PΓJΓ oo
pΊ γ-ι i f — n ti Y"1 Li rn V1 i rn C\ ^\

n = 0 ' » = 0 " ' dηl

 n=-oo

we obtain from (3.2) and the residue theorem

«=-4=i^+1)f^' n=1'2'- (14)

(and similarly with aj

n)

Thus, from (3.5) we see that the coefficients a^ bl

0 are not uniquely determined and
this 1-dimensional ambiguity gives the remaining n parameters of twistor lines (in
order for the lines to be real we must demand that al

Q = — bl

0).
The manifold M which parametrizes the twistor lines is diffeomorphic to the

fibres of Z-^CP1 and the twistor lines intersect the fibre at ζ = 0 at a point with
/-complex coordinates,

To find xl as a function of uj and zj we consider the solution to the equations in

= 0, (3.7)
defined by [9]

F(x>, z', z') = - J C " 2 ίί(zj' - xJ'C - zJ'C2, ζ)C (3-8)
2πι r

Then, it follows from (3.5), (3.6), (3.8), and the reality condition, that

Fχt = ul + a1, (3.9)

which determines xi implicitly as a function of uj and z3.
To determine the metric we use the fact that the symplectic form ω on the

fibres of Z is given in terms of the symplectic forms ω1,ω2,ω3:

ω = (ω2 + z'ω3) + 2ω1C — (ω2 — z'ω3)C2. (3.10)

From this it is shown that

ω, = i(d(FzJ) A dzj + duj A dxj). (3.11)

By implicit differentiation of (3.9) we find that

4- + FA-, = 0, (3.12)
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Then from (3.7), (3.11), and (3.12) we get the metric

g =

- Σ F^F^Γ ' dzl <g> d& - Σ(*WΓ l F^du1 ® dz*
k

(3.13)

This ends the summary of [11,6].
Now let us prove that the metric has the form in (1.2): Introduce real coordinates

yj = i(ΰj-uj), (3.14)

then from (3.9) we obtain

duj = ̂ (dFχj + idyj). (3.15)

Let Φij, ί, j = 1, . . . , n be the functions on Rn ® [R3 given by

The matrix Φ represents n-Higgs fields for the group R",

Φί = (Φ ί l,...,Φ i"). (3.17)

Let θ - (θ1, . . . , 0") be the connection in the principal ^"-bundle M given by

dyl + Al, (3.18)

where A = (Aί,...,A")isa 1-form on R" ® IR3 with values in R". Then we easily get

(<py XO = (2FχiχJ, X i(Fx,2,rfz' - F^dz')). (3.19)
/

Furthermore, we compute the quotient metric

ττ'u y \dyj u u
Hence, the metric has the form in (1.2) and it is easily seen that (Φl,A) satisfy the
field equations in (1.3). Thus the metric contains a solution to the equations in (1.3).

Remark. In dimension 4 the metric has the form Φdx-dx + Φ~1(dτ + A)2, where
(Φ, A) is a monopole in [R3. The metrics of Gibbons and Hawking are all of this
form. Indeed, in dimension 4, a hyper-Kahler metric is just a self-dual Einstein
metric with vanishing cosmological constant.

4. The Solution Induced by the Twistor Space

We have described a hyper-Kahler manifold with Un acting on it. If we exponentiate
our description from before we get the set-up with a torus action. Thus the twistor
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space becomes a principal (C*)" bundle and we let E = Ll®-"®Ln be the
associated vector bundle on T trivial on sections and with transition matrix

,. / dH dH\
0oι=dιag^exp^,...,exp—J. (4.1)

From Chapter 2 we know that such a vector bundle determines a resolution
(Φ^A) to the field equations: We get a flat connection Vπ on all of the special
2n-spaces π. To describe Vπ we seek a trivialization of £ on CPX: From (3.2) and
(4.1) we see that ((0,...,0,expξ ί,0,...,0)JO,...,0,exp|' ί,0,...,0)), i = l , . . . , n give
such a trivialization. Also, we trivialize E on [R3 ® [Rn by the n sections

sl:U3®Un^E, (4.2)

where sl at x is the section of E on CPX given by ((0,...,0,exp^,0,...,0),
(0,..., 0, exp ξ l

9 0,..., 0)). Now, suppose we had functions / on R3 <g) [RΠ such that
/V satisfied ^(/^O - (0,0,1,0,..., 0)

then Vπ(/ ίs ί) - 0. We have

ιA(/ V) - (0, . . . , /'(x) exp e(Co), 0, . . . , 0), (4.3)
so

Then, from (3.3) we get

0 = V n ( f l s l ) = - rfe(C0) exp( - ?)•** + exp( - ξ^s*,

i=l,...,n, where θπ = (Θ]l,...,θ
n

π) is the connection form of Vπ in the frame
(s1,..., 5"). Thus

θi

π = dξi(ζ0)=Σdbί

nζ"0. (4.4)
n = 0

Consider the connection form of V with respect to the frame (s1, . . . , 5")

A1 = Σ(fiJdzJ + 9iJdχJ + h ί j d z j ) . (4.5)
j

From (2.1) and (2.3) we see that on a null space we have

A1 = Σ(hij - 2gijζ0 - fijζ2

0)dzJ, (4.6)
j

which coincide with

Thus, we get

fty = (fc|,)f,, 2^ = 2(&{,)χJ-(hi);J, /y = (&i,L + 2(fei) J c J-(fe I

2) f/, (4.8
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and from (3.4), (3.6), (3.8), and (3.15) it follows that

(b\)χJ = ~ FX,ZJ, (b(),j = - F^9 (b\\> = - FχlzJ.

(For example: 6'2 = - l/2πi $ ζ~3(dH/dηί)dζ,so(bί

2)z-j= l/2πί$ζ-1(d2H/dηjdηi)dζ =

-Fχίzj). This gives

^ - FxydzJ}. (4.10)

Next, to find the Higgs fields Φj we note that on the null planes we have (2.7).
Thus from (2.8) we get

CoW + ίo^ (4.11)
j

and this gives
Φίj = ίFχiχJ. (4.12)

Compare (4.10) and (4.12) with (3.19), and we have proved that the solution coming
from the twistor space is equal to the solution contained in the metric (up to a
scalar multiple).

Remark. The situation in dimension 4 of having an Einstein metric given in terms
of a monopole has been considered earlier in a different setting [8, 13].

5. Sheaf Theoretical Considerations

The cohomology group H 1 (T, &( — 2)) corresponds to solutions to the linear system
of differential equations in (3.7): If [/(ζ^VQeH^Γ, G(- 2)), then the function

2nι r

satisfy FxiχJ + Fzt^ = 0 [2,4, 8, 12]. These equations become the Laplacian on the
3-space obtained by choosing a vector in the 1R" factor of [R3 ® U". Furthermore
the group H^(T, Θ] corresponds to the holomorphic line bundles trivial on sections
of T-^CP1: We have a short exact sequence,

and we know that Hl(T,(9*} consists of the isomorphism classes of holomorphic
line bundles on T. Also, H2(T9Z)^H2(CP1

9Z)^Z. Then, from the long exact
sequence on cohomology we get

Since the coboundary map δ is the Chern class we see that the image
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consists of the line bundles with vanishing Chern class. Thus if LeexpfTf^T, 0))
and CP1 is a section of T we get

degree(L|cpι)= f Cl(L) = 0.
CP1

Hence from a class [dH/dηi(ζ9η
s)'] in Hl(T,(9) we obtain the line bundle Lt

with transition function exp[_dH/δηl^\ — trivial on sections — and the bundle
E = Lί ® ••• ®Ln gives the monopole as described above.

Next we shall describe an isomorphism

Consider "differentiation along fibres," dF, defined by the composite map

where Ω1

M is the sheaf of germs of holomorphic 1 -forms on M and F is the fibre
of the projection

Now, it is obvious that ΩF ^ /?*$( — 2) (x) C". We then have the short exact sequence

and from the long exact sequence on cohomology we get

Hence, since #1(CP1,fiO = 0 = #2(CP1,0) we obtain the isomorphism

Now, the hyper-Kahler metric is given in terms of the solution to the equations
in (3.7),

represented by Hζ~2dζEH1 (T, Φ( - 2)). But the solution (A, Φ1, . . . , Φ") to the field
equations in (2.7), represented by dH/dη^H1^®), / = ! , . . . , « , also gives
solutions Φkl to the equations in (3.7), and we have seen that

Hence the solutions (Φk\...,Φkn) are represented by dF[_dH/dηk~\eHl(T,(9(-2)®Cn\
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