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Abstract. We discuss the particle structure in the soliton sectors of massive
lattice field theories by means of convergent cluster expansions. In several
models we prove that the soliton field operator with lowest charge couples the
vacuum to a stable one-particle state, in a suitable region of the coupling
parameter space. Both local and stringlike solitons are analyzed. We also show
that the mass of the local soliton equals the surface tension.

1. Introduction

A procedure to construct quantum solitons in lattice field theories has been
proposed in paper I (=[1]). The basic idea is to apply an Osterwalder-Schrader
(O.S.) reconstruction theorem [2] to mixed order-disorder correlation functions.
We now shortly describe how mixed order-disorder correlation functions are
constructed and how they are related to solitons.
The expectation value of a disorder field, D(w), is given by

_ i Zalw)
(D(w)y= AITIQ%Z Z,

, (1.1)

where w is an external hyper-gauge field with values in a discrete abelian group & ;
Z 4 is the partition function of the theory in a lattice A4 C Z{ , and Z ,(w) denotes the
partition function of the model coupled to the external field w.

The prefix hyper-means that @ has a rank® higher than the ranks of the basic
fields of the theory. For example, in the models discussed here, w has rank 1 in the
scalar and fermion theories (i.e. it is a true lattice gauge field) and rank 2 in gauge
theories.

Assume that (D(w)) depends on the curvature, dw, of w and the support of
(dw)*, the dual of dw, is given by a finite set of points {x;}/-; with (dw)*(x,)=g¢,
then (D(w)) will be denoted by (D(x1,q1, .-, Xp, §p)>-

! Alattice field of rank k with values in a space W is a map from k-dimensional cells of the lattice to
w
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A function of the basic fields of the theory with support on a compact,
connected set of cells I (such as the Wilson loop in gauge theories) will be denoted
by O(I'). The correlation functions to which the reconstruction theorem applies are
then given by

Sn,m(xl’ 15 -5 Xn dn> Fl’ RS Fm) = <D(X1, 155 Xns qn)CO(Fl) . (9(1;)> (12)
for ¥ g;=0, and correlation functions with non-vanishing total charge are defined
by a limiting procedure, i.c. by sending a charge to infinity.

More precisely for Y g¢;=gq,
i=1

S X15q15 s Xy @y Ty - T) = 1im ¢S, 4y W(X1,q45 0o X0 Gy X, g, 1y ), (1.3)
where ¢, is a normalization constant needed if lim S,(0, —¢,x,q)+0 and then
given by e

= [ﬁm S,(0, —q,x,q)}‘”z-

The construction of the soliton sectors is obtained by means of the following

Theorem 1.1. [1] If the set of correlation functions {S, .} is

i) lattice translation invariant;

ii) O.S. (reflection) positive;

iii) satisfies cluster properties; H# then one can reconstruct from {S, .}

a) a separable Hilbert space, #, of physical states;

b) a vector Qe A of unit norm, the vacuum;

¢) a selfadjoint transfer matrix T with norm | T| =<1 and unitary spatial
translation operators U ,, u=1...d—1, such that

TQ=U,Q=;

d) Q is the unique vector in H# invariant under T and U.
If ‘moreover the limits (1.3) vanish, then # splits into orthogonal sectors #,,

qeZ, ie. =,
q

and the sectors #,, q+0 are (lattice) soliton sectors.

In the reconstruction theorem a set of states, |X,, g1, -, Xp> G L15 --» Lny € H#,
naturally arises, corresponding to monomials of order and disorder fields with x;
and I}, in the positive time lattice. We denote by F . the corresponding linear span.
On F, the scalar product is defined by

<X1, 15 -+ Xps dps Fh --'9Fm|y1> q/l’ oo Vao q;z’ Fl/’ AR I_l;l>
m b
=<D(rx17 g1 Xy, _qn’ybqlb oo Va q/a) 'nl 9(9(1—}) .HI (9([1‘/)>
j= i=

ESn+a,m+b(rxla 4y Vo q;a HFD ...,9[;", Fll’ LR I—I;/)a (14)

where r denotes the reflection in the time zero plane and 6 denotes the involution of
the O.S. reconstruction theorem. (The symbol < -, - ) is also sometimes used for
the scalar product in J#.)
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Field operators A(xy,qy, ..., X, 4y I3, ..., 1,,) With x; and I} contained in the
time strip [0,t], te Z,, naturally act on T(t)F , by

AX 15 G1s s Xy Gus L5 oo L) T X1, G o3 Xoo Gos T1 s I3
= |x1’ ql’ ""xn9 qm (x/l)t’ q’l’ "'J(XII)I’ q:l; 1—‘15 tre Fms (n)t’ MRS (I—I‘)/)t> b (1'5)

where (-), denotes translation by ¢ in the time direction.
In particular A(I') is called an order field operator and

A(x, q)=54x) (1.6)

is called a soliton field operator of charge gq.

To be precise, we define a sector 5#; of # to be a (lattice) soliton sector if 1) it is
invariant under the action of T, U , and of the set of field operators {A(I}...I;,)} - o;
2) it does not contain any lattice translation invariant vector, 3) the labelling
charge g is a “topological charge,” in the jargon of quantum field theory, or a
“defect charge,” in the jargon of statistical mechanics (for more details see I).

All the above considerations are made under the assumption that {D(w))
depends only on dw. However the whole structure we have discussed can be easily
generalized to the case of a full w-dependence. In particular Theorem 1.1 holds
provided a suitable definition of order-disorder correlation functions is made (see I
and, here, Sect. 2.2).

A particle analysis of the (lattice) soliton sectors constructed as above can be
obtained using the excitation expansions [3].

The correlation functions {S, ,} admit a representation in terms of line defects,
v, carrying a charge with values in the discrete abelian group Z:

Sn,m(xl’ qla ---axm qm FI Fm)

Z([{"I.,.I’m}(v)

— 11m v:00={X1,q1...Xn,qn} , (17)
A1Zy)2 ' Z ZA(U)

v:v=0

where Z![T)(1)is the statistical weight for the defect configuration v in the lattice
A in the presence of O(I,)...0(I;,), Z'$'=Z , and 0v denotes the boundary of the
charged defects.

Applied to the two-point function of the soliton field operator with minimal
charge, Eq. (1.7) expresses S,(x, —1,y,1)={5,(x)Q, 5,(»)22) in terms of a sum over
the configurations of a fluctuating line defect joining x to y.

For theories involving continuous fields, this representation in terms of
fluctuating lines can be rigorously analyzed, in the region of coupling constants
for which (massive) soliton sectors exist, by means of a combined low and high
temperature (C.L.H.T.) expansions, similar in spirit (but of course much easier) to
the G.J.S. expansion [4] for ¢3 in the broken symmetry phase.

An excitation analysis of the cluster expansion for S,(x, —1,y,1), typically
allows to prove a decay law

Y820, —1,%,1)= ¥ (510,002, TW)s,(0, )2y ~ e ™(1+e™) (1)

with x=(t, X) and m, pu strictly positive constants.
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Such behaviour shows (see [1, 3]) that the soliton field operator s,(x) couples
the vacuum to a stable massive one-particle state.

In this paper we also prove that the soliton mass m in (1.8), equals the surface
tension 7, in the models in which {D(w))> depends on dw.

In a theory with & -valued line defects, the surface tension 7., g€ Z, is defined
by

t,= lim — —InZ4. (1.9)

In (1.9) A is a finite lattice centered at the origin with sides of length L+ 1 in the
space directions and T + 1 in the direction, Z ,(q) is the partition function obtained
from Z , by modifying the b.c. in such a way as to introduce a line defect of charge g
joining (T;0) to (— T,0).

The equation

T, =m (1.10)

was conjectured for ¢4 in the continuum in [5], where the inequality m<t, was
established for ¢%.

In the models we consider, we prove (1.10) using the excitation expansion, as
suggested by Frohlich [6].

The paper is organized as follows:

In Sect. 2 the lattice field theories we analyze are introduced, correlation
functions (1.2) are defined and the main results are stated.

In Sect. 3 we construct the C.L.H.T. expansion and prove clustering for the
models with {D(w)) depending on dw; via Theorem 1.1 one can then construct the
soliton sectors.

In Sect. 4 we prove the behaviour (1.8) and in Sect. 5 the equality (1.10) for such
models.

In Sect. 6 clustering and particle structure analysis are discussed for the models
with <D(w)) depending on the full .

Basic definitions and notations for lattice field theories are as in 1.

2. Lattice Field Theories, Disorder Fields and Solitons
2.1. Models with Local Soliton Sectors

As discussed in 1, lattice field theories which possess soliton sectors are:
— in d=2 scalar or fermion theories with spontaneous symmetry breaking of a
global discrete abelian group Z;
— in d=3 gauge theories with matter fields in the superconducting phase, in
which a discrete abelian subgroup, &, of the gauge group remains unbroken.
As examples we consider here
a) ¢*ind=2,
b) non compact (U(1)Higgs) model in d=3,
¢) SU(N) gauge theory coupled to a matter (Higgs) field in the adjoint
representation of SU(N) in d=3 (for examples with fermions see I).
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The action in a finite lattice 4, will be denoted by S , =S, , + S, 4, all parameters
introduced are real positive.

a) ~ ¢3 ;
Soa= o (¢x_ ¢ )2 s
M2 (afFea i’
Sia=4 ZA (¢ —1)?
with ¢, eR
— 8,4 is invariant under the (hyper)gauge transformation

qu_)exp(iﬁax)(l))w axeg:ZZQ{Oa 1} (21)

— 8, 4isinvariant under the corresponding global transformation; such symmetry
is spontaneously broken for large S and A.

b) — (U(1) Higgs)s,
B

SOA= ——2— Z (dAp)za
peA
N e
(xy>ed xed

with ¢,€C, 4,,,,€R
— a gauge fixing term such as

SfixA 2% ZA (514);2(

is added to the action and 0-b.c. on A4 are imposed on 04.
— 8,4 is invariant under the hypergauge transformation

Ay > Ay + 210y, Oy €Z =1 (22)

— the model is in the superconducting phase for g, f, 4 large enough; the group
of gauge transformations given by (2.2) with 6,y =0, —0,, 6, € Z s left unbroken.
¢) — (SU(N) Higgs),

Bs

Sos= o > (1_RCX(gap)),

peAd

Sia =ﬂa< g ) [1—Re(¢s, Un(8eay)y)1+2 ZA (¢ ) — 1),
xyye xe

where g, € SU(N), y is a faithful character of SU(N), ¢, € Vy, a vector space with

inner product (-,-) carrying a faithful representation Uy of SU(N)/Z,.

— “1”-b.c. are imposed on g

— 8,4 is invariant under the hypergauge transformations

g<xy>—*g<xy>f(0'<xy>), O’<xy>eff=ZN_—“_’{0,...,N—1}, (23)

where ¢ is the representation of Z, on SU(N)

— the model is in the superconducting phase for fi;, i, 4 large enough, with the
group of gauge transformations given by (2.3) with ¢, ,y=0,—0,, 0,€Zy left
unbroken.
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To define the disorder field we introduce a Z-valued hypergauge field @ of
compact support and we couple it to the model, so that the action of the coupled
model, S, 4(w)+ S, 4, is hypergauge invariant. Explicitly we substitute:

a) ¢x_¢y_)¢x_einw<xy>¢ya w(xy} GZZ 5
b) (dA),—~dA,+2rw,, w,eZ,
C) X(gap)—)X(gapé(wp)) > wp € ZN . (24)
The disorder field is then defined by
D(a)) e~ (So(@) = So) — lim e —(Soa(w)— Soa) (2.5)
A2,

From the invariance of S, 4(w)+ S, , under the hypergauge transformations (2.
1-3) it follows that {D(w))> depends only on dw (at least if the finite lattice A is
convex). Moreover, since dw is a field with support in d-dimensional cells, it follows
that (dw)* has support on a set of points {x;};-, in the dual lattice, as required in
(1.2).

The functions O(I') used in the mixed correlation functions (1.2) are hypergauge
invariant but in general w-dependent and in this case they are denoted more
precisely by O(w, I'). In our models we take

a) (9((,0, xy) (»bx EH emwbd)y:
b) a0)= 11 er,  OL,)=¢. A1 e,
<) uC)=% <H gb> OI,)= o e1_[ Un(g)y (2.6)

where I is a line from x to y, C a loop and 7 a faithful character of SU(N)/Zy.

The soliton field operators s,(x) reconstructed from the correlation functions
(1.2) are local and we call the corresponding superselection sectors local soliton
sectors.

We collect our results in
Theorem 2.1. The models
— a) for By large, Bu/2'* small, B> [In(By/),
= b)) for fg large, Bo/BH?, Bu/A small, B> {[In(Be/fu)l, In(By/A)}

posses soliton sectors H, labelled by the non-trivial elements q of the group %
(=a)Z,, b)Z, ¢)Zy).

Theorem 2.2. The soliton field operator s,(x) couples the vacuum to a stable one-
particle state, in particular the decay (1.8) holds with

a) m=2By+0Bu/2'?),  p=0(Inpy/Al),
b)

m=2n"Bs+0 ( ﬁlfz) p=min[O(|In B/Bul), Oln f/2))],

c)
m=fg (1 —cos ﬁ> +0 < %) p=min[O(InBg/Byl), O(Inp/A)].



Particle Structure Analysis of Soliton Sectors 507

2.2. Models with Stringlike Solitons

If we perturb the models described in the previous section by adding a new term in
the action, fzSgz, which is not invariant under the %-valued hypergauge
transformations, a different class of soliton sectors occurs, if the theory with S50
is still in the same phase in which the ;=0 theory possesses local soliton sectors.

In d=3such a situation occurs if we add to a gauge theory with matter fields in
the superconducting phase, with 2 unbroken, an interaction between the gauge
field and a matter field which transform non-trivially under Z.

As an example we consider the non-compact abelian Higgs model coupled to a
fermion of fractional charge.

The fermion is coupled to the gauge field by a term in the action given by

:BB i‘A<xy>

BsSp1 40, p, A)= ) <xZ P+ “/<xy>) Py, 2.7

where 1 <NeZ,, and we add a fermion mass term
SIA(u-)a V’) = Z @xlpx .
xeA

This model is of some interest in physics since it can be used to make an
approximate description of the interaction, in a superconductor, between photons,
electrons and the superconductor condensate, described by the Higgs field ¢.

Since the condensate has twice the charge of the electron, in this situation
N=2.

In a finite lattice 4, the disorder field is still defined by

D(CU) = ¢ Soa(®@)=Soa)

However, since S, not hypergauge invariant {D(w)), now depends on the
full hypergauge field w.

As discussed in I, one must choose the support of w in a suitable way in order to
ensure O.S. positivity of the correlation functions, which is a necessary condition
to obtain positivity of the space of states # in the reconstruction theorem.

Suppose supp(dw)* = {Xy, ..., X, V1, ..., ¥} With x? < y9 and assume free bound-
ary conditions in the time direction. Then we take as support of w*, in a finite
lattice, a set of strings yy; starting from x; and directed downward in the time
direction, and a set of strings y, starting from y; directed upward in the time
direction. The corresponding disorder field is denoted by D(y;y, Gy, .-+, Vs s Vy15
Ar+15-- 'Y;;, qr+s)'

With this choice w would have infinitely extended support in the thermody-
namic limit and all expectation values involving the disorder field would vanish
identically. Hence the correlation functions S, ,, for such models are defined as
thermodynamic limits of finite lattice correlations suitably normalized.

More precisely let O(I') denote either a Wilson loop or the scalar string variable
defined in (2.13) or the fermion string variable

i

- ~ A
@B(I;y)zq'Jx H ybeN wy' (28)

belxy
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Moreover let y, denote a straight line in the time direction connecting the top to
the bottom of the lattice and intersecting x, and denote by D(y,1, 41, - .-, Y+ q,) the
disorder field corresponding to a field w given by

Ofy=a {Xy>ey;
=0 otherwise.

We then define, for n=r+S:
Sn,m(’))x_l’qla AR} '}’;-, qr> ’}’;—15 qr+ 1> "’9')));:’ qr+s5 Flrm)

r+s
= llm |:<D(yx_13 ql’ AR ’));;, qr+s)(9(n)@(rm)G6A <Zl ql>>
= A

ATZy)2
-1/2
X <D(vx1,q1>- s Vxr 4r)Gon < 2 q>>
r+s —-1/2
X <D(yy15qr+13- >'yys>qr+s G6A< Z+ q>> il (29)

for Z q;=0, and the correlation functions of non-vanishing total charge are

deflned by sending a charge to infinity.
In(2.9) G,,(q)is a b.c. given by choosing a path y (as before) in (04)* and setting

Apy=a=24q; <xy)ey*,

setting A,,, =0 in the links in the spatial boundary of 04 ¢ y*.

If cluster properties hold and correlation functions with non-vanishing total
charge are zero, then soliton sectors can be constructed by means of Theorem 1.1
(see I). They are called stringlike soliton sectors and the reconstructed soliton field
operators s,(y,) can be considered as a lattice version of the charged fields localized

in cones studies in [7].
Our results for this model can be summarized in

Theorem 2.3. The model defined above for f, large, B/Bu, Bu/t, B small and
B> min{[In(Bs/Bp)l, In(By/A, In Bgl)} = K g

possesses stringlike soliton sectors # labelled by the non-trivial elements q of Zy.

Theorem 2.4. The soliton field operator s,(y,) couples the vacuum to a stable one-
particle state; in particular the two-point function

(5170)2, 51 (702> =S5y, — 1,74, +1)
with x =(t, X) has the following decay law:

; $51(70)2 51(7:)82)) e "(1+e™), (2.10)
where

" 2’12/3‘;”([{5”2) e KB, u=0(Ky). 2.11)
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3. The Combined Low and High Temperature Expansion

3.1. The General Structure

In this section we outline the general structure of a Combined Low and High
Temperature (C.L.H.T.) expansion for mixed order-disorder correlation functions
and prove the main convergence theorem. In Sect. 3.2 we show how such
expansion applies to the concrete models discussed in Sect. 2.1.

Let 6 denote the set of fields which represent orbits of the action of the
hypergauge transformation on the basic fields and let ¢ denote the % -valued field
parametrizing the orbit, defined in Sect. 2.

As afirst step we express the expectation value of disorder field and hypergauge
invariant observables,

(D[] 0@; 1)
in terms of the fields 6 and o.
By hypergauge invariance, o can appear only in the combination

do+w=v, (3.1)
and we obtain

Y [d,e SO0 ] 0w, 6; T,)
<D(w) 1 O(w; m}A = doZdo E

e

> fdeAe_SA(e’v)

v:dv=0

Y Zy)
_ vidv=do
RCK 2

v:dv=0

where df , denotes the measure induced on the orbit fields by the measure on the
original basic fields of the theory and I'={I}.

We now apply a low temperature expansion to treat the field v and a high
temperature expansion to treat the orbit fields both in the numerator and
denominator of (3.2) (see Sect. 3.2 and the Appendix of I for more details).

Let us assume that as result the denominator of (3.2), i.e. the partition function
Z ., is expressed as the partition function of a polymer gas with polymers of two
different types: v- and X-polymers.

A v-polymer originates in the low-temperature expansion for the field v, and it
has support on a set of cells whose dual is connected and closed.

An X-polymer originates in the high-temperature expansion for the orbit fields
and it has support on a connected set of cells.

Then

Zw:dv=0)= Y Z(;...0 X1, -.s X0,

{X1...Xn}

where {v;...v,,} =v denote a set of v-polymers having the dual of their supports
disjoint and {X,...X,} a set of X-polymers with disjoint supports.
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Besides ordinary v- and X-polymers, the polymer representation of
Z%(v: dv=dw)contains a v”-polymerand a X-polymer such thatevery connected
component of supp v (respectively supp X”) has nonvanishing intersection with
supp(dw) (respectively I') and dv” =dw.

We have
Zi(v:dv=dw)= S Zy. 0% X X XD,
(X1..Xn, XT}
where v={v,...v,,v”}, and the same disjointness condition on the supports as
before holds.

We now combine together v-, X -, v®-, X-polymers into “connected” clusters C
and C°T (see e.g. [12]).

A configuration {v,,...,0,, X, ..., X,} is said to form a cluster on

C=supp{U v; U Xj} (3.31)
i=1  j=1

iff supp { U w*y X j} is connected.
i=1 j=1

A configuration {v, ...,0,, 0% X, ..., X,, X"} is said to form a cluster on
C°T =supp {U uUX;UvY Xr} (3.3ii)
i J
iff every connected component of

supp {U ©)* U XU UX F}

i

has non-vanishing intersection with supp{(dw)uT}.
The activity of a cluster is defined by

2(C)= 5, 20y 0y X .. X,), (34
{U1y .0y Uy X1... X} clusterson C
zZ(ceh= y 2y 0 v®, X .. X, XT). (3.5)
{V1seees Uy 09, X1, .0y Xn, XT} clusterson CoT

Then one can rewrite
[1Z(C)Z(CT)
(32)= o) r

Y I12(C,)

{Cr} r

>

where {C,, C®T} denotes a set of clusters with disjoint supports.
Finally, using standard methods, the finite volume mixed correlation functions
can be expressed in terms of the cluster expansion

@(w) [10(; re))A

_ d%log [T IAC) +2{ 3 T1ZCHCN]]

Cyr =0
C, Cwl‘
=y ¢S b zozieen, (36)
c,cory  |Cl! cec
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where {C, C®"} denotes a collection of clusters in which a cluster C can occur an
arbitrary number of times and the cluster C®T occurs once; ¢@(C,CT) is a
combinatorial factor which vanishes unless the set of clusters {C, C®"} is connected
and |C|! is the number of identical permutations in {C}.
More precisely the combinatorial factor ¢ is defined as follows. Let )" denote
2

the sum over all connected graphs, ¢, having as vertices the elements of {C, C*T},
let <C,C’> denote a link in ¢ connecting the clusters C and C'.

Define
o CnC'*¢

neo= {0 CnC'=¢

then

PrC.CN=3 [ (7).
9 (C,C'He¥9

To state the convergence theorem let us introduce some notations.

In the following K will denote a generic constant and K a large constant (both
can have different values in different formulas) both independent on the coupling
parameters.

y=suppv, Xnv=suppXnsuppv,

v(X)=v restricted to Xnwv.

If F is a field of rankk we set
|F|,= gIF(ck)I", p=0.

Moreover given a field F of rank k and f a function on sets of cells Y, we define
|Fl,= %IF(ck)I”, p=0,

[ f(Y)|x= sup Y Lf(Y)]|eXIY,

xeA Y is connected to x
The convergence theorem can then stated as follows:
Theorem 3.1. Suppose that there exist finite constants
K, K, Ky, K,
with
K,>K;>1, K,>|K,|,

1Z0={01. Uy V0 }; X={X]... X, X"} S ] K& Keltlr g~ KalX\ X0l Kalo(,
e

with p=0, and p=1 if & is non-compact. (3.7
Then:
1) the expansion (3.6) converges with a bound
1
D(w) [] O(w; I))| <K ——— | Z(C®T 3.8
(D) I1 05 T | <K 75 1ACe (38)
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for some k>1,
2) the thermodynamic limit exists,
3) clustering holds for all correlation functions,
4) all the limits (1.3) vanish.

From Theorem 1.1 it follows that the models to which the C.L.H.T. expansion
applies posses soliton sectors labelled by the non-trivial elements of Z, in the
parameter region where the bound (3.7) hold.

The cluster expansion outlined above is somehow similar to the “mean field
expansion” in the lattice approximation [8]. The main difference is that we use a
true high temperature expansion for the orbit fields instead of an expansion
around the gaussian as in [8]. Although the C.L.H.T. expansion does not easily
generalize to the continuum, it has the advantage, for lattice field theories, of nicer
decoupling properties between the clusters which strongly simplify the particle
analysis (see Sect. 4).

A similar expansion for the non-compact abelian Higgs model has been
discussed in [9] and for gauge theories with discrete finite center has been sketched
in [10].

Proof of Theorem 3.1. We first prove that, if the bound (3.7) holds with K, Ky
sufficiently large, then there exist K, < K, such that

1Z(C) =exp—(K, —K/)|C], (3.91)

Z(COSK ] Koem KNI Z (03, )] - Kbl (3.91)
e
where v, is a configuration of v with the highest value of |Z(v®)| ¢ * K2+ K17l jp
the family of the clusters on C*’, and ymm_suppumln
We first sum in (3.4) over Z\{0} in all the cells in the support of the
configurations of v in C.
For K, sufficiently large

Z exp_(Kv_KZ)|Z|p§Ke_(KU——K2)a
ze F\{0}

so that using |y|=|X nv| one obtains

|Z(C)|<£K 5 ﬁ o K=Ky =Kol H oKX, |
1o Vm X1 X i=1 j=1
{v1...Um, X1...Xy} clusters on C

(3.10)

We now observe that U [l U [X|=|C]| since X; can overlap 7.

Hence we can extract an overall exponential factor proportional to |C|. We
then substitute

{yo X} :{v, X} clusters on C
with
{v,X}:each X, each y is connected to C,
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where {y, X} denotes families of p, X in which 7, X can occur an arbitrary number of
times, and divide by the number of identical permutations, |y|! |X|!.
Hence for some K, <K still large,

|Z(C)| ée—(Kl_ Ko)|C|

1
X y [Te” K"“]—[e Kelrl (3.11)
1 X): Jyl! IXI'

each y, each X is connected in C

It is a standard result [8] that, for K. sufficiently large

K |Y|< —lle” KC""II0|Cl
; |Y|' vgve ¢

each y is connected to C

and a similar bound holds for the X-polymers.
From these bounds and Eq. (3.11), Eq. (3.91) follows. Analogously

IZ(er)l < l—[ Ke . z . |Z(Dw)| K1t K2t Ke) |yl . e (Ki—Ko) |CeT| )

v@CCw

We observe that
{21 O S yiial} S8Rl

where K may now depend on the charges of dw, and for |y*|> |yl

, Z(v®) K1t Kt Koy |

OK 7] = 788inl]
|Z(w® )e<K1+Kz+Kc>|/mm||fe
min

Therefore,
IZ(Uw)l oK1~ Kot Ko) 7] < IZ(U:(r)lin)l oK1+ Ka+ Ko) [y8iun] ,

pwcCol’

and we obtain (3.9ii).
Using Eq. (3.9) the convergence of the expansion (3.6) and the estimate (3.8) are
straightforward modifications of the Appendix in [8] and are omitted.

Remark 3.2. It follows from the proof, that one can easily weaken some of the
assumptions of Theorem 3.1.

We can admit several type of v- and X-polymers and we can also consider on
the support of polymers more general constrains than connectedness constraints
in Eq. (3.3), provided the following condition is satisfied.

Let us denote by “connectedness” this weaker constraint and by P a generic
polymer, occurring in the expansion, then for any polymer P’, for K, sufficiently
large, there must exist a constant K such that

e  KIPI<K|P.

P:P *“‘connected’ to P’

As an example in d =3 let the support of the polymer be given by closed curves,
then we can consider “connected” =“linked”.

3.2. The Models (proof of Theorem 2.1)

In this section we identify the v- and X-polymers in the models described in
Sect. 2.1 and prove the bound (3.7) on their activity (v°-, X" -polymers can be
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treated in a similar way), hence establishing the existence of soliton sectors, thanks
to Theorems 1.1, 3.1.

As one can see from the explicit discussion, such a procedure can be easily
generalized to a large variety of models (satisfying condition A of I).

a) ¢3

The proof of Theorem 1a is sketched in Appendix 1 of I and the missing details
are easily filled following the method used here for the model b).

In particular we obtain

K =0(lnpg/al), K,=—0(npy/2'?)), K,=2By. (3.12)
b) Non-compact (U(1) Higgs)s.
To rewrite the partition function of the model in terms of defects some care is
needed for the gauge fixing term. Proceeding as in [8] we finally obtain

Zy= Y (Il dre TI dO exp{—[ﬁc Y (d0,+2nv,)?
(xy>ed peA

v:dv=0 xed

+ B_H Z (rx_ew(xy)ry)z_‘_i Z (ri—l)z:l} l_l 5(0xy)5

2 {(xyyeA xeA {(xyyeoA

where r,=|¢,JeR,, 0,,,,eU(1)=(—n,n) and the unessential term logr, was
omitted.

Define the unnormalized measures

di(ry) =dre 2371 g0, ) =0, e P TS0 (3.13)
The corresponding normalized measures are denoted by dv(r,), dv(9,,,,) and
are strongly peaked around r=1, =0 for A, i large.
Define the functions

Rixys =exp{— 132_;1 [(rx_ei9<xy>ry)2_(1 —eioo‘”)z]} -1,
R,=exp {— %9 [(d6,+2mv,)? —(vap)z:l} ~1. (3.14)

These functions are small with high probability, with respect to the measures dv(r,),
dv(0,,,s), in large regions and can be treated with high temperature techniques.

Defining
ZO(A) = xl;IA ~fdf)(gx) (x)l;[eA Idﬁ(9<xy>) >

one can rewrite
ﬂTG(znup)Z

Z,;=Zo(4) ¥ le [ 1T1 dv(ry)
v:dv=0 ped xeAd
dv(o,., R,+1 Ry +1 50,
(x)I’;[eA ( ¢ y)) ple—[A( P ) (x)lz:[eA ( o )<xy1>_[eaA ( ¢ y))

An X-polymer has support on a set of links, X', and plaquettes, X2, such that
X1UX? is connected and we define its activity by
Z(X)=I H dv(rx) H dv(0<xy>) ].—[ 5(9<xy>)
xeX (xyyeX {(x oA

yyeXn

I1, Rew I1 Ry (3.15)

(xyyeX?
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A v-polymer has support on a set of plaquettes whose dual is closed and we define
its activity by
Zv)=e" 2n2BGlelz

With such definitions one can easily show that the representation (3.4) holds with
Z(X{.. X 0q...0,)= ﬂl Z(X,) _Hl Z(v)).
i= ji=

The bound (3.7) can be obtained as follows.
We substitute dv(r,) in Z(X;) with a gaussian measure with mean 1 and

covariance 1/47, using the inequality
i1 z2r,—1)*.

Similarly we substitute dv(0,,,,) with a gaussian measure with mean 0 and
covariance 4/f using the inequality

ﬁH(1 _cose(xw)é%ﬂHO%xy}a 0(xy>€(_na TC)'

We denote by dfig(r,)(dug(r,)) the unnormalized (normalized) gaussian

measure for r,.
The ratio [d¥(r,)/[ dfis(r,) is evaluated by means of a Jensen inequality:

[di(ry)

fdiig(ry) = fdpg(r) (1 —y(—r,))e A== 72=17)

<o MOR=12=20x- D6 _o=0) = (1)

for A large.
Similar estimates hold for 6.
Then by Holder’s inequalities and gaussian estimates one easily obtains:

20| 0 <ﬁ/1_H>lxx|(9 <§_G>lxz\x2nvl e‘”(t%i)lvlz, (3.16)

Hence one can identify:

Ky =min[@(|In f/Al), O(Iln g/Bul)],
K,=0B%/Br), K,=2mfg. (3.17)
Remark 3.3. If v(X) has charge +1 on X?nwv, one obtains a stronger bound where
K, can be substituted by
R, = —0(inBo/Bi). (3.18)

¢) (SU(N) Higgs)s.
For simplicity we discuss the limiting 4= co model. To analyze the model we
first go in the unitary gauge, i.c. we make the substitution

(0 UH(g<xy>)¢y)_)(¢09 Un(8 (xy5)90)

for some fixed ¢, € V.
Then one can write the partition function in terms of defects as:

— R yUrp(h¢x -1
ZA_ z .‘” H dh<xy> H eﬁH[ e(¢o, Un(h(xpy)bo)— 1]
vidv=0 <(xy)ed {xy>eAa

[T ePetRenttorxivp) =11
b
ped
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where h,, is a gauge field taking values in SU(N)/ZyCSU(N) and dh,,, is the
Haar measure on SU(N)/Zy.
We define

d‘j(h<xy>) — dh<xy> ePaRe(0, Un(hixy))do)— 1]
and
Rp = gPalRex(hop)x(vp) —Rex(wp)l _1{
The polymer X is a connected set of plaquettes and its activity is defined by
Z(X)=| I dvlh,y) Il R,. (3.19)
(xy>eX peX
By Holder’s inequality
1Z(X)| = pﬂ [j I1 N dv(h<xy>)] RPIZrJI/Zr’

eX | <(xy>e
where

r=4 {plaquettes sharing a link}.

We now split the integration of /,,, in a neighbourhood /" of the identity of
SU(N)/Zy and its complement 4. Let g=N*—1 and let {r"}¢_, denote the
generators of the Lie algebra of SU(N).

If 4" is sufficiently small, the exponential map

exp: R-SU(N)
Agxy> _)e?xw =exp <; A‘gxwr") = h<xy>
exists. For our purposes we define

1
N = {h<xy>1(A‘2xy>)2§ —}
Be

which is well defined for f; large enough.
The following inequalities occur for f; sufficiently large:

[1—Re(¢g, Unlepo)IlN Z3(do, AZo)» (3.201)

[1—Re(po, Uhpo)]l A= OB "), (3.20ii)
where
AH= Z ‘E?iAa’
a=1
and {t§} are the generators of the Lie algebra of the representation Uy of
SU(N)/Zy on V.

The terms in A" are evaluated by:
1. substituting the measure

di(A)|exp™ ' N =d'A expBy[Re(do, Unle)po)—1Tlexp ™' A"
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with the (unnormalized) gaussian measure dfi;(A4) with mean zero and covariance
[Buldo, Thted)] ", using the fact that

exp*[dv(h)| AT = [] (1 + O(Tr A2)dF(A)lexp ™' A",

2. expanding the exponential in R, in terms of cos 4, sin A4, then

3. expanding cos 4 and sin 4 in terms of 4 and performing gaussian estimates.
The terms in A" are estimated using (3.20ii).

The main bounds are

J )

Sy = e A) (4 O(Tr AT ¢ puton et
G

. {1 +[1:[X(1—(Aa)2ﬂ6)—1]} 1)+ 0 <ﬁH> —e_@G%I),

{11 dugA)(1+0O(TrA%)|R (e, v)?

{xy)edp

o) oo

C(;ﬁz) ’ vp4=0’

) dﬁ(h)lRp]Z’ge@(ﬁ—g)MaXRpM/cé o()e <G> v,=0

- .

POBe) o~ ”(;T;) v,+0

Hence for B/B4* <1 all contributions coming from .4 are negligible. Therefore
G/ FH

Z(v)=exp—fig |1 =),

3.21
2] <0 (ﬁG>IX\Xﬁv|(9 <ﬁ1—(/;2>lv(X)lo. ( )
ﬁH H
Hence we can identity
Z(X . X, 0y 0,) = i[jl ,f[ Z(X)[1 Z(0).
and
Ky =0(Infs/Bul), K,=—0nBe/B?), K,=0(Bg). (3.22)

4. Particle Structure Analysis for Local Solitons

Proof of Theorem 2.2. In this section we consider the two point function of the
soliton field operator s,(x), i.e. S,(x, — 1, y, 1). We study its long distance behaviour
by means of the excitation expansion proposed in [3] to analyze the particle
structure of lattice field theories.
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Equation (3.6) expresses the two point function in terms of the convergent
cluster expansion:

MZ(ny) 1 Z(C), (4.1)

(51092 5,()D= ¥ Tef cec

JCay)
where we set C*=C,,,

A cell in {C,C,,} is called regular if:

1. it is orthogonal to the time axis;

2. it occurs only in C,;

3. there are no other cells having the same projection on the time axis;

4. it is not connected to other cells.

The connected complements of the regular cells in {C,C,,} are called
excitations and denoted by . Denote by 7 the projection on the time axis, by /(¢) the
cardinality of ¢, and set

le|=1(e)—n(e).
Two excitations ¢, ¢, are called compatible if
ey )N7(ey) = (4.2)

and an excitation ¢ is said to be allowed in [x°, y°] if there exists a configuration
{C,C,,}, with x, y having time coordinates x°, y°, such that ¢ is an excitation of
such a configuration.

There is a one-to-one correspondence between the configurations {C,C, },
occurringin the cluster expansion for ) {s,(0)Q, s,(x)Q) with x =(t, X), and the sets

{e,...&,} of excitations compatible, allowed in [0,¢] (see [3]).

Since the configuration with no excitations is the dual of a straight line, all the
cells which contribute to it are disjoint. Denote by Z, the contribution of one such
cell and define C(e) = Cng, Cy () = Cy,Ne. One easily realizes that, for {¢,...¢,} as
above, the following factorization occurs:

n

or(C, Coy)= [1 @1(Cle;), Coxle) (4.3)

i=

Defining the activity of an excitation by:

()= 1 ZCEZCole) (M> LY
C(e)eCle) |Cle)l!
one has the representation
2}) {5102, 5,(x)Q2>=Z, { > ) .If[l {(e;) =11, (4.5)

where P(0,t) is the pressure of the gas of excitations constrained in the interval
[0, ], obtained by formal exponentation and given by

tPo y=tnZ,+ ¥ [T () (”sz(f) (4.6)
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Theorem 4.1. Assume that for vtaking value 1 on X nv bounds (3.7) hold even if K , is
replaced by a K, <0.

Then, under the assumptions of Theorem 3.1 and for |K,| large enough, the
activity of the excitation is bounded by

,C(8)|§e~(K1—IKzI~Kc)I£I 4.7
and the expansion (4.6) converges.

Proof. From estimate (4.7) convergence of the expansion (4.6) is a standard fact for
K, large enough. To obtain (4.7) we bound separately each term in (4.4). Let c a cell
contributing to a configuration with no excitations and set Z,=Z (c). Then Z (c)
has two contributions: one corresponds to the configurations in which c is only in
the support of v and one to the configurations in which c is also the support of
a X-polymer, i.e.

Z,(0)=Zv*(c))+ Z(v*(c), X =c).

From the assumptions of the theorem it follows:
Z(e)=Z(v"(c)) (1 +0(eX),
and for |K,| large enough there exists a constant K such that
Z,(=KZ((c)™".
By a standard polymer estimate [3]

@1(C(e), Co,le))

< oKle|
IC(e)! e

and from Eq. (3.9),
[Z(CE) se xR,
|Z(C0x(8))| <|Zwe,. ()l oK1+ K2t Ko) 7Rin(@)] , ~ (K1~ Ko) [Cox(e)]
Since v=1 at least on the cells corresponding to n(s),
‘Z(vxin(gmzu—) [7e)l < o~ O(Ko) ymun(e)| — In@) g ln(@)] ,

so that

IZ(v;’in(s))I K1 T K2+ Ko) Iv.‘%m(s)lza—) |m(e)] < oK1t K2+ Ko [m(@)] 4.9)

From the definition of I(¢) we also have

e~ K1~ KJICE)| o= (K1~ Ko) [Cox(e)l — o= (K1~ K el +mie)] (4.10)
C(e)eC(e)

Using |n(e)| = |e|, Egs. (4.4) and (4.8-10) yield
'€(8)| ge_(K‘ Ko {In(e)| + lel] oK1 + Ko+ Ke) (o)l
= K2+ Ko [n(e)]| o= (K1~ Ko) el
<o~ (Ki—Ke=[Ka])ls|

From Egs. (4.6), (4.7) the proof of Theorem 2.2 easily follows using the techniques
of [3] and the estimates of Sect. 3.2.
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5. Surface Tension and Mass of the Local Soliton

In this section we define the surface tension for the models discussed in Sect. 2.1.
It is a standard generalization of the surface tension of the (Ising), model to
scalar and fermion theories in d =2 and gauge theories in d=3. Let A=T x [* !
denote the d-dimensional lattice centered at the origin, with sides of length T+ 1 in
the time direction, and L+ 1 in the space directions. Consider 04 as a d—1
dimensional lattice and let I" be a curve in the dual lattice (04)* joining

T+1 - T+1 %
(-7 ne(TE)

The dual of I' in 04 is a set of d—2 dimensional cells, hence sites in d =2 and
links in d=3; the dual of I" in 04 are two d—1 dimensional cells in 4.

The % -valued field o, introduced in Sect. 2.2, has support on sites in d =2 and
on links in d =3, hence we can define the g-boundary conditions, g€ %, setting
=0 on 0A\I'*, 6=q on I'*.

The partition function with g-b.c. in the lattice A=T x /"' is denoted by
Z'9, La-1. Using the hypergauge invariance of the action one can see that Z@ does
not depend on the choice of I'.

The surface tension 7, is defined by

. . Z(q) d-1
7,= lim lim — —p 2Lt
Ttoo Ltoo T ZTde—l

(5.1)

The g-b.c. introduce an open line defect in the representation of Z@ in terms of
defects. In fact in the interior of 4, v=do, i.e. dv=0 and in the boundary

q y=X4
0 )=1—-q y=x_ ,
0 otherwise

where the dual is taken considering v(dA) as a field of the lattice 9.

Therefore there must exist a connected component of the defect configurations
with total charge g joining x _ to x , . In general it will be given by ¢ lines of charge 1.
For g=1 the surface tension is the specific free energy of such a defect.

The configurations of defects appearing in Z? are therefore quite similar to
those appearing in the numerator of the representation (1.7) or (3.2) for the two
point disorder correlation {s,(x)2, s,(y)2>. This similarity can be made more
precise as follows.

Lemma 5.1. Let { )7, , denote the vacuum functional with 0-b.c. in the lattice

A=TxI* ' and x* = <§, 6), X = (— g,()). Then

Z(’Iq)x Ld-1

ZTde—l

<D(x_:_qsx+aq)>Tde‘1= (52)

Proof. To prove this equality, let @ be the hypergauge field with support in the
dual of asingle line of charge qjoining x * to x ~,so that D(w)=D(x ", —q,x*,q),and
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let S denote a surface in the dual lattice satisfying (4 =symmetric difference):
0S=T4suppw*,

then apply the transformation ¢ —o+¢ to all the cells dual to S in the modified
partition function Z ,(w) defined in (1.1).

This transformation affects only (8S)* and precisely reads Z(w)—Z"%, ie.
annihilates the w-field and insert g-boundary conditions.

ZTde~i((l)) _ Z(]l!)x La-1

ZTde—l ZTde—l

<D(x7> _qsx+>q)>TXLd’1=
The mass of the soliton s,(x) is defined by

. 1
m(s;)= lim — —<(D(x~, —1,x", 1))
Ttw 1

1
= lim — = lim Ind{D(x", =1, x", 1)) xpa-1. (5.3)

Tto L.T'too

Theorem 5.2. For the models with local soliton sectors to which the C.L.T.H. cluster
expansion applies, in the parameter region where the excitation expansion converges,
the soliton mass equals the surface tension 14, i.e.

m(s)=1,. (5.4

Remark 5.3. Since the mass m(s,) is analytic in the coupling parameters, equality
(5.4) extends to the whole domain of analyticity.

Proof of Theorem 5.2. From (5.1) and (5.3) with @ as above one obtains

m(s;)—t,= lim — 1 i 10 PO (5.5)
LTto T 110 {D(@))7xpa
Now we apply the excitation expansion to the numerator and denominator.
However, since the end points of the fluctuating line are fixed, this introduce
some constraints in the excitations. More precisely, let i(e) be a vector going from
the point where the excitation ¢ attaches to regular cells in the negative time
direction, to the point where the excitation ¢ attaches to regular cells in the positive
time direction.
Then all the sets of excitations {¢,...¢,} appearing in the excitation expansion
for (5.5) must obey the constraint (see [3]):

—

(e)= 0

M=

1
-k

>:-x ”

Therefore, defining C,;(s)=i_,’(a)e © we have:

L S N RO

D(w)>T'de‘1 _ (27T)d ! {e1...en}CT X LA~ 1 j=1

<
<D(w)>T><Ld‘1 H Ck(s)

I d 1
(2”)d ! 61,60} CTXLA-1 j=1
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We denote by € a collection of excitations in which an excitation can occur an
arbitrary number of times, and we define the unnormalized measure

Lk
diii.5)=° xp{ » wT@)I]de}-

e
(P2 scTxre-t [gll e

We denote by du(k,€) the corresponding normalized measure, and by
exponentiation we obtain

<D(w)>T x[Ld-1
{D(@))7xpa-1

gCcT/ xLd-1 |8|' cee
ge¢ TxLd—1

- (e)
= (du(k ) exp{ v 2 e
The clusters of excitations contributing to the exponential must touch x*
and/or x~ and the plane t=T and/or t=—T.
Therefore the exponential is easily bounded uniformly in L by

&
216 11 )| <K+ Ke T,
eCT' xLd-1 |8" T
e¢ TxLd-1

so that

1
Im(s,)—7,|< In — —In(K4+Ke *T)=0.
L Tt T

6. Particle Structure Analysis of Stringlike Soliton Sectors

The construction of the stringlike soliton sectors and the analysis of their particle
structure are based essentially on the same methods used in the discussion of the
local soliton sectors.

The proof of the existence of the correlation functions S, ,, defined in (2.19), is
slightly more difficult since explicit cancellations between numerator and denomi-
nator are needed in order to show the existence of the thermodynamic limit.

To exhibit the desired cancellations in the correlation functions

<D(y;1: ql: cery y;;a Qr+s)(9(rl)' . '@(Fm)GaA>A (6 1)
<D(yx1’ qis -5 Vxm qr)G6A>ii/2 <D('yy1’ 9r+15-> yys’ qr+s)G6A>/11/2

of the model taken as example in Sect. 2.2, we proceed as follows:
1. we integrate out the fermion fields,
2. we apply to the expression obtained for the numerator and the denominator
a kind of C.L.H.T. cluster expansion,
3. we (partially) exponentiate the C.L.H.T. cluster expansion by means of an
excitation expansion.

Proof of Theorem 2.3. For simplicity we consider expectation values involving a
single order variable

i
OI,)=vp, I ¥ vp,.

belxy
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By integrating out the fermion fields in the numerator of (6.1) we obtain (see e.g.

[10]):
<D(yx—1aq1>‘ s})ysaqr+s)(9( y)G6A>A

- olirl SALD pr o e (ALD) 0
= [{L ZL Lr}<D(yXD qis-- "))yss qr+s) H VL .B!L leN L BIL leN G&A> ]
1 Is

A

! AT B!
x [ y < I ?”ﬁ'BL"eN(A’L’> } , 6.2)
{Li,...,Li} \r=1 A

where: L, denotes a set of linked loops, L™ a line with boundary {x,y} and
{Ly,...,L, L'} a set of L’s whose supports are disjoint.
Moreover given a line L we set:
A L= T 4,, 7=Tr[] 2 ””
belL beL

Finally (> denotes the expectation value with respect to the vacuum
functional of the non-compact U(1) Higgs model (fz=0) in the lattice 4.

Similar formulas hold also for the terms in the denominator. Next we rewrite
{>Y in terms of the orbit fields and the v-field of the Higgs model.

We now apply to (6.2) the C.L.H.T. of Sect. 3.1.

In the expansion for the denominator of (6.2) three types of polymers appear: v-
and X-polymers, as in Sect. 3.1, and L-polymers, i.e. the sets of linked loops
originated by the integration of the fermion fields (these are still of X-type in the
terminology of Remark 3.2).

In the expansion for the numerator two other types of polymers appear: the

v”®-polymer, as in Sect. 3.1, and the L" polymer, i.e. the line with boundary {x, y},
orlgmated by the 1ntegrat10n of the fermion fields on O(I,). A configuration
(V15 s U}y {X 15, X} {Ly, ..., L} is said to form a cluster on

m n 1
C=supp< Uo U X; U Lr)
i=1  j=1 r=1
if
supp (U v U XU Sr>
. i J r
is connected for every choice of the surface {S,:0S,=L,}, i.e. L, is either connected
so some X or linked to some (v;)*.
A configuration {v,, ..., 0,, v} {X{,..., X,}, {Ly, ..., L;, L'} is said to form a
cluster on
C*" =supp (U v UX; U v‘*’uLF>
i Jj r
if every connected component of
supp (U vFUX; U S,u(v‘”—w)*uSr>
i J r

has non-vanishing intersection with supp(dw)*UT for every choice of the surfaces
S, and S":08"=L"AT,,.
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With the same notations of Sect. 3.2b, the activity of a cluster C*T is given by

I
Z(C*) = y Z(Uy ey 0y 02, X (5o, X Ly, oo Ly ID)
{U1y.eey U, VPHX 1, ey X} {Ly, ..., LT}
clusterson Cw T’

(6.3)
with
Z(0gy o Uy 0, X4, ooy X Ly, .., Ly IF)
= I] Zw)Z(v,) | T1  dv(0iy) 1 dv(ry)
i=1 (xyyeCel xeCol’
! i
- 11 Rp [1 R<xy> Il VLrﬁlBLrleN(g,Lr)
peX {xyyeX r=1
eﬁ(sr,u~w)yergLrleﬁ(o,LrArxy)eﬁ(sr,u—w) (6.4)

and a similar definition for Z(C). Assuming the conditions for the coupling
constants stated in Theorem 2.3, one can prove, that the C.L.H.T. expansion

6= y #1GC

ccery |C)! CI;[C 202(C) (6.5)

converges, using the techniques of Sect. 3.
In particular, with the notation of Sect. 2.2 one can prove the bounds,

|Z(C)|<e — (K= Ko)|C| , |Z(wa)[ <e (Kv=Ko (€T, o= (Ku—Kp—K2)|oRin| (6.6)

Step 2 is then accomplished by applying the same expansion also to the term in
the denominator of (6.1).

To exponentiate the cluster expansions (Step 3) we define the string excitations.
A string excitation &’ relative to w[ is given by a set of cells in a configuration
{C,C*T} having maximally connected projection on the time axis and satisfying

n(e) Cn(w), wle)n(n(dw)un(I))=0.
Let {&} be the set of string excitations in {C, C®"}; we define (see Fig. 1):
Ce)=Cne, C°T(&)=C"Tne,
Cor=CoN{CN(e)}, C=C\{C@)}.
A string excitation &* is said to be allowed for {C,C®T} iff there exists a
configuration {C, C®"} such that ¢ is a string excitation of this configuration.
Compatibility of excitations is defined as in Sect. 4.
We now outline the idea used to obtain cancellations between numerator and
denominator of (6.1) which allows us to take the thermodynamic limit. Let us call

', w?, o> the hypergauge field respectively in the numerator and in the two-term
in the denominator of (6.1), so that

6.1)= <D(w1)(9(rxy)GaA>A
' <D(w2)G6A>i1/2 <D(w3)G6A>}1/2 .
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X4

éwl‘

Fig. 1. A configuration C*" with: suppdw* ={x, x,}, x{<0, x§>0and I'=T,

In the cluster expansions (6.5) for the numerator we first sum over the string
excitations compatible, allowed for a fixed {C,C®"} and then sum over all
possible {C, C*}. In the denominator, since C=0= C22, we have only the sum
over the string excitations.

In this way both in the numerator and denominator the contributions of the
string excitations get exponentiated and the contributions due to the denominator
cancel all the contributions in the numerator coming from clusters of excitations
which do not touch the clusters {C, C*'T}. Hence everything is reduced to a cluster
expansion in terms of {C, C**T} which can be treated as in Sect. 3.

To implement this idea we first notice the factorization property

er(C,C*") _ I or(CleD), C°' (&) @#(C,CT)
ICl! i ICe! i

Defining the activity of a string excitation relative to wl” by

and setting

z77e)= “100 11 170,

SSI! eSegs
one can rewrite
Sy I .
(6.1>=[ 5 ?_(_lcClc'_) [ 2©02CNen| ¥ zwlf(sf)}]

{C,C@1T} CeC €5 allowed for {C,C®1T}
: [exp Y Z“’Z(ss)]‘ 12 [exp D Z“’3(ss)]‘ vz,
&5 &5

We now separate the sum over the string excitations in three terms: excitations
¢ with support completely contained in the positive time lattice, 4, in the
negative time lattice, 4 _, intersecting the time zero plane, A,.
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Define
E%(C, CoT) = {¢° relative to ®?:&°C A, n(e)nn(CUC )£},
E3(C,CT)={¢° relative to 03 :&°CA _, n(g’)nm(CUC* ) %0},
E§ 3 ={¢* relative to w*?:e5nA4,+0},
EY (C,C*T)={¢* allowed for {C,C}:e5CA, _},
ELC, CoT)={¢° allowed for {C,C*T} &8N A, + 0} .

(For shortness we omit the explicit reference to C, C®', in the following.)
Using also the symmetry for reflection in the time zero plane we have:
by 2Ue)= T Z70= 3 2+ Y 27,

esndg=0 £SCA+ eSeEY eSeE2
and a similar equality holds for Z2.
We finally rewrite

¢, cont .
o=l 2, " Z(C)Z(C“)} W[, 2O 5, 27

escE? eSeE=

+Y Z7E)-3 ¥ Z7)—7 Y ZO( )J
seEo zse o zSeEg
The theorem is now proved by using the same methods of Sect. 3 together with
the bounds:
2 127 =K,

eseEp

1Z9(e) S e P CUCOT) S e KD CU ],
eSeEY | -
since only clusters of excitations & such that 7(e®) touches n(4,) or (CuC)
contribute to (6.9).

Proof of Theorem 2.4. To prove (2.10), (2.11) we need to analyze in terms of
excitations the fluctuating line (v*)* joining 0 to x. Our previous expansion was
organized in such a way to evidentiate only string excitations, without analyzing
the fluctuations of (v”)*, hence it has to be slightly modified.

We start from the expansion (6.5):

Dyo, 1,75, +1)Goa0 4= {D(@)Goy) 4

= 3 2 Cod 7c,0 11 2100,
o |C|! cec
where we set C°'=C,,.

If we omit from a configuration {C, C,,} all regular cells (defined as in Sect. 4)
we are left with a set of cells with disjoint projection on the time axis: the
excitations. We divide the excitations into two classes: the string excitations, &°,
previously defined, with 7n(ef)C n(w¥)\n(dw¥) and the complementary class of
particle excitations denoted by ¢ (see Fig. 2). The activity of a particle excitation is
denoted by {(¢) and it is defined as in (4.5); the definition of excitations allowed in
[0, ] and the notion of compatibility between excitations are as in Sect. 4. There is
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7|
— _'i -,f____l__ 0
2 x
g | 2

Fig. 2. A configuration C®* with suppdw? ={0,x}

a one-to-one correspondence between the sets of excitations compatible, allowed
in [0,t] and the configurations occurring in the cluster expansion for

Z<D(y(;a _1’ ')):a +1)>A’
with x =(t, X). Using
_ . Dy, — 1,75, +1)Go ) 4
S(yo, — 1,75, +1)= lim *
0 4123, {D(0)Go ) > {D(y1)Goa> 4
- lim (Do, —1,7, + )G 4
ANZ3); {D(o)Gs4) 4

. (D(@,)Gs4) 4
lim —————224,
11z, {D(@2)Gs4 4

we obtain

N e T2
;S(YO s T 1: Vx> + 1)= AlTlgj;’l’z . Z l_[ Cw;@;)

{eficd j

) (6.7)

where {¢;, ¢}} in the numerator denotes a set of excitation compatible allowed in
[0, ], {¢}} in the denominator denotes a set of excitations compatible relative to ,
and

Z,=e Fo27
= .

Exponentiating we obtain:

(6.7)= 1in31 Z: exp

ATZ1)2

< cwzw]. (63)

{es}cA |£sl! eSegs

y [1¢76) J1 £

{e.e5}c A IS!‘ |SSI! tee

[ 4 T(Sa Ss)




528

P. A. Marchetti

All the excitations ¢* satisfying n(¢)n[0, ] =0 appear both in the numerator

and denominator in (6.7) with (®!(¢%)={®*(¢"), therefore all clusters of string
excitations €° having vanishing projection on [0, t] cancel in the exponential of Eq.
(6.8).

The proof of Theorem 2.4 is now an easy consequence of (6.7) and bounds (6.6).
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