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In this brief addendum we correct an error in our paper and report a solution to
some open questions.

Unfortunately, Proposition 7.6 is incorrect. The mistake comes in our definition
of the map φR. Although it is well-defined, it is not a homomorphism, hence not a
representation. Thus we cannot see the characteristic classes of representations of
the space group G as preimages of characteristic classes of representations of the
point group P.

A simple example illustrates the problem. Let G be the infinite dihedral group.
It is an extension of Z/2Z by the integers, with the nontrivial element in Z/2Z
acting by reflection x \—> — x. Now construct a 2 dimensional complex represen-

tation by letting the generator of the integers act by the matrix
\ 0 exp(-iί)

and the reflection act by ( 1. Then if ί is irrational this representation does not

factor through any finite group.
On the other hand, in any specific example it is usually easy to reduce the

calculation of w2 and λ to a representation of a finite group, in view of
Proposition 7.8.

The representation "φp" in Corollary 7.7 should be changed to "0".
We also warn the reader that although Proposition 7.3 is correct, it is possible

for v(ρp) to be nonzero and v(ρ)=7*v(ρp) to vanish.
Similarly, the argument in Sect. 6, which also purports to reduce space group

anomalies to point group anomalies, is correct only when the Wilson lines can be
continuously turned off. This does not happen in general, as the previous example
illustrates. However, if we can continuously change the gauge group imbedding of
the space group to an imbedding in a finite group, then again the vanishing of the
first Pontrjagin class in the group cohomology of the finite group will be sufficient
to guarantee the absence of anomalies to all loops. In all the examples we know this
can be done, and is equivalent to level matching condition for each element of the
space group in the case of an abelian point group. Examples of this type can be
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found in L. E. Ibanez, H. P. Nilles, and F, Quevedo: Phys. Lett. 187B, 25 (1987).
(We would like to thank L. Dixon for bringing these examples to our attention.)

S, Morita has kindly written us a letter answering some questions in Sect. 8 of
our paper. (He credits T, Mizutam with the mam argument.) We summarize his
arguments in

Proposition. Let M be a smooth manifold. Then any element of H3(M) can be
represented by a smooth map e:K-*M, where K is a closed oriented 3-manifold K
which fibers over the circle.

Proof, It is a standard fact that any 3-dimensional homology class is represented
by some closed oriented manifold. Hence we may as well replace M by a closed
oriented 3-manifold, and we are left to construct a degree 1 map K-+M. By a
theorem of Alexander [A, R] we can find a link L (i.e., a disjoint union of
embedded circles) in M such that M\L fibers over a circle. The typical fiber F is a
Riemann surface with boundary L. Note that all of the fibers share a common
boundary. This presents M as an "open book" [W]. (in fact, a refinement due to
Harer [H] states that L can be chosen to a knot, i.e., a single circle embedded in
M.) Let N be a tubular neighborhood of L in M. Then d(M\N) = Sl xL is a
product. Thus we can glue the trivial bundle S1 x F to M\N along their common
boundary. The result is a closed oriented 3-manifold K which fibers over S1 with
typical fiber the double of F, Now construct a map K-^M as follows. Over M\N
use the given embedding. Collapse the S1 in the remaining S1 x F to a point,
thereby stretching the given embedding over N\L = (D2\pt)xL. it remains to
map in the collapsed S1 x F, which is simply a copy of F. But since F bounds L
inside M, this is possible-simply map F to a fiber of M\L^SL. It is clear that the
resulting map K-+M has degree 1, since it is surjective and 1:1 almost
everywhere.

It follows that any anomaly in the setup of Sect, 5 can be detected by some
Riemann surface bundle over a circle. This applies to any spacetime. Hence the
sufficient conditions for anomaly cancellation set out in [W',F] are also
necessary conditions. (Remark 2 on p. 508 of [F] should be appropriately
modified, as should the last paragraph in Sect. 8 of our paper. Also, we implicitly
assume that all manifolds and bundles are spin, so that the anomaly involves only
the integral characteristic λ.) Our example of the quatermonic group in Sect. 8
shows that some anomalies are not detected at 1-loop (by a torus), but are
detected at higher loops.
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