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Abstract. In this paper the infinite sequence of non-linear partial differential
equations known as the Kadomtsev-Petviashvili equations is described in
simple terms and possible applications to a fundamental description of
interacting strings are addressed. Lines of research likely to prove useful in
formulating a description of non-perturbative string configurations are
indicated.

introduction

The state of current understanding of string physics is incomplete and far from
satisfactory. The theory of the dynamical evolution of entire strings as such,
consistent with and following from the principles of quantum mechanics, has yet to
be elucidated. Conventional wisdom would hold that, viewed as a system in
quantum mechanics, an assemblage of strings ought to be describable by a
Hamiltonian. For now, however, the true Hamiltonian of heterotic strings subject
to mutual interaction remains undiscovered. Also undiscovered is the manifestly
invariant path-integral formulation of such a system. Alternatively one might
flaunt conventional wisdom and hope that the quantum physics of interacting
heterotic strings could be deduced without ever "writing down a Lagrangian and
quantizing." After all there exist in (perhaps not coincidentally) two dimensions a
number of conformal quantum field theories characterized by an infinite number
of conserved quantities for which no Lagrangian is known. Of course in these cases
one knows what to do; for example the quantum field theory may be formulated
entirely in terms of Ward identities [1]. For string theory in the absence of a
Hamiltonian, in contrast, it is at present entirely unclear as to how to proceed in
describing the quantum theory to allow for the computation of, for instance, non-
perturbative effects. Indeed it is not at all obvious how some computations usually
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regarded as "perturbative" can be performed in lieu of a Hamiltonian either. The
foremost example is the problem of understanding a collection of strings
interacting in canonical ensemble at extremely high temperatures in the very early
Universe.

Since an underlying heterotic string Hamiltonian is not known, we cannot at
present compute the trace of exp( — βH] and thus we cannot directly investigate
string thermodynamics. (In traditional finite-temperature field theory we deduce
the proper periodicity for the quantum fields as well as the proper quantization of
the time-components of four-vectors only after evaluating Ύτe~βH first. It would
seem that existing papers devoted to the study of strings at finite temperature
employ choices of thermodynamic boundary conditions which must be regarded
for now as well-intentioned guesses.)

Actually, it is the case that there is really no true quantum theory of strings
extant at present. Instead the totality of string theory today consists of some
disconnected pieces without a central logical foundation. A coherent formulation
of interacting strings has been sought for the last few years in the form of a string-
theoretic extension of quantum (point-)field theory [2-6]. This approach has not
succeeded for the heterotic string so far and may not be successful ultimately, and
we will throughout refer to the objective of our search, therefore, as fundamental
string theory.

Apart from the need for a fundamental string theory as a matter of principle
and our interest in studying non-perturbative configurations, we are anxious to
solve a number of long-standing problems of the first-quantized approach. Up to
the present, research on the calculation of the perturbative approximation to (first-
quantized) quantum mechanical amplitudes for closed, oriented strings has
yielded a fairly clear but impracticable method [7-9]. (The clarity is somewhat
greater for the closed bosonic string than for the heterotic string owing to the
absence of supermoduli for the former; this virtue is offset by the fact that the
bosonic amplitudes don't exist.) The picture as it has developed allows one to
calculate terms in the perturbative expansion in basically two ways [10-13]. If one
chooses a real parametrization of the Teichmϋller space of conformal equivalence
classes of metrics on the world-sheet, then one must evaluate an integral the
integrand of which is a function of Selberg zeta-functions. Alternatively one may
choose to take advantage of the fact that there is a complex structure associated
with the moduli space for a compact Riemann surface. Then one must evaluate an
integral the integrand of which is a function of Riemann theta-functions.

In the former case the integral cannot be exactly evaluated when the world-
surface has at least two handles for two reasons. First, the Selberg zeta-function
depends implicitly on the real moduli through the lengths of representatives of
primitive conjugacy classes of the Fuchsian group of the surface. However, it
appears almost impossible to express the primitive lengths explicitly and usefully
in terms of the moduli. Second, the integral is to be evaluated over the fundamental
domain of the mapping class group, the "boundaries" of which (viewed as a
subspace in the Teichmϋller space) are unknown for surfaces more complicated
than the torus.

In the latter case the integral can generally not be exactly evaluated as well. The
Riemann theta-function depends on the complex moduli through the elements of
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the period matrix of the Riemann surface. Unfortunately the computationally
useful "similarity" between the space of moduli (with complex dimension 3g — 3
where g is the genus) and a fundamental domain in the Siegel upper half-plane [14]
[with complex dimension i g(g +1)] describing inequivalent period matrices stops
abruptly at g = 4.

It is true that by examining the integrals over degenerating Riemann surfaces
we can extract certain interesting and useful limiting values [15]. Nevertheless we
are not able to directly evaluate almost all of the terms in the perturbative
expansion of these amplitudes.

It has been suggested that in order to make progress it will be necessary to
develop a method of describing string configurations which treats world-surface of
different topology (including degenerating and degenerate world-surfaces) in a
uniform manner [16]. Furthermore, in order to study non-perturbative configur-
ations it seems plausible that Riemann surfaces of "infinite genus" will play an
important role [17, 18]. Recently it has been pointed out in the physics literature
that infinite-dimensional Grassmannian manifolds may serve as the proper
framework for such a description. One approach to infinite Grassmannians is as
the space of choices of fermion boundary conditions for the free fermion field
theory on a disc. This approach has been expounded by Segal and Wilson [19],
and more recently by Witten [20]. A different approach is to describe the infinite
Grassmannian in terms of the space of solutions of an infinite sequence of non-
linear partial differential equations known as the Kadomtsev-Petviashvili (KP)
equations [21-23].

In this paper the KP equations are described in a simple and straightforward
way. This unending sequence of exactly solvable non-linear equations is extra-
ordinarily interesting in its own right.

The solutions of these equations are solitons, i.e., waves which scatter
elastically with speed directly proportional to the amplitude. A number of other
known sequences of exactly-solvable non-linear partial differential equations can
be shown to reduce to special cases of the KP equations. The original Kadomtsev-
Petviashvili equation (the first element of the KP sequence of equations) was
discovered in 1970 in an effort to understand the propagation of long, shallow
waves in plasma [24]. The rest of the sequence (gotten from the first equation in a
systematic way as described in the sequel) was quickly discovered and general
solutions worked out.

For applications to string physics there are at least three remarkable features of
interest regarding the KP equations. First, the solutions of the entire sequence
essentially furnish a representation of the Virasoro algebra [25]. Since the true
raison d'etre of the Virasoro algebra in string theory is not fully understood at
present, it is highly desirable to study new representations to gain a better
perspective. Second, the solutions of the KP equations correspond to particular
points in the infinite Grassmannian which in turn correspond to second-quantized
Hubert space state vectors for a free fermion field theory prepared on the boundary
of the disc [19, 26]. As the KP equations are exactly solvable, we can therefore
obtain explicit expressions for these second-quantized Hubert space vectors.
Third, the KP sequence begs to be examined in the infinite limit. In this limit one
analyzes an equation in an infinite number of independent variables. We will see
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later that these independent variables are in one-to-one correspondence with the
oscillator modes of the string; thus in this limit we are considering all the string
modes. Now, we will also see that different solutions of each equation in the KP
sequence can be found corresponding to different values of the genus of a closed
Riemann surface. Hence the KP sequence in the infinite limit is tailor-made to aid
the precise study of "infinite-genus" Riemann surfaces for a possible concrete
description of non-perturbative string configurations. Very little has been worked
out formally regarding infinite-genus Riemann surfaces [27, 28]. Although a great
deal more mathematical work needs to be done in this area before our
understanding of these surfaces approaches in depth that of finite-genus surfaces,
the "KP-approach" seems to be very promising.

In this paper an effort has been made to avoid an overly abstract and
mathematical approach to this subject. Further work in this area is strongly
motivated by indications that we will be rewarded with insight into a formulation
of fundamental string theory. It is likely that much more work, a substantial
fraction of which must be pure mathematical, will be carried out before a concrete
formulation can be written down.

The Kadomtsev-Petviashvili Equations

We will need to employ elements of the theory of Riemann surfaces, functions of
several complex variables and a little algebraic geometry in order to introduce and
solve the KP equations. Here we will assert the needed elements in a non-rigorous
way and refer the reader to any standard textbook on Riemann surfaces and theta-
functions for a fuller treatment.

We will be concerned primarily with compact, oriented Riemann surfaces with
a finite number of handles in most of this paper. On such a manifold, differential
one-forms which are holomorphic are said to be abelian of the first kind. It is a
theorem that for a compact surface of genus g there are precisely g linearly
independent abelian differentials of the first kind. If position on the surface is
parametrized by a local coordinate z, then a holomorphic one-form ω(z) is defined

by

(o(z) = f ( z ) d z , (1)

where /(z) is an analytic function of its argument, and thus

cF/ = 0, (2)

so we see that holomorphic one-forms are necessarily closed (but not exact).
Associated with each of the g independent abelian differentials of the first kind

are a pair of contour integrals. These 2g integrals, the periods of the differentials,
are evaluated about 2g closed contours which serve as the (arbitrarily chosen) basis
for the (first) homology group H^ of the Riemann surface. (For a compact
n-dimensional manifold there are n +1 types of homology H0, ...,//„; for now we
will consider only the first homology group.) For our immediate purposes the role
of the first homology group is that the generators of that group, which we choose
as the 2g contours ahbί(i = l, . . . , g ] indicated in Fig. 1, "construct" all possible
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Fig. 1. This figure depicts a choice of basis for homology on a compact Riemann surface

closed contours on the Riemann surface. This means that for any meromorphic
function h(z) we may always write

$ h(z) dz = X \mt § h(z) dz + n{ § h(z] d z ] , (3)
C i = l | _ α t fc t j

where the mt and the nί are collections of integers and C is an arbitrary closed
contour which is chosen to avoid the poles of h(z).

We separate the 2g homology basis contours (cycles) into two non-intersecting
types a and b; then the periods of the holomorphic differentials associated with one
set (we choose a) can be represented as a matrix M. If we denote the holomorphic
differentials by vt (assumed non-zero), then

$Vj = Mij9 (4)
aι

and we will have detM^ φO, since otherwise there would exist a non-trivial
g

differential form v= V Ktv^ (κt a set of constants) with zero α-periods. However
i= 1

this would contradict an easy theorem which states that if all the α-periods of a
holomorphic differential vanish then the form itself vanishes identically. In virtue
of the non-vanishing of the determinant of M we may define a new set of g linearly
independent holomorphic differentials

9

j =Ί ll r

so that now

§ωj = δίj. (6)
aι

The g by g matrix of b-periods is then defined to be the period matrix of the surface,
denoted by Ω:

£ -̂\ CΊ\

We know that & = (ωl,...,ωg) is holomorphic and therefore closed; thus we
have ω/\ω' = 0 and so

4

)t § a)j — I ωi I cύj\, (8)
bk

which implies Ωij = Ωji. It is equally easy to show that ImΩ>0.
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We now introduce the standard Riemann theta-functions as generalizations to
genus g of the familiar Jacobi theta-functions of the torus. We write the g-fold
infinite series

Σ eχp<

Ns = - oo
πi

Ω,.

°Λyj I" + ̂
\' + T/

Γa
= ΘU

(9)

which defines the theta-function (in particular of a Riemann surface). Here the
a

b
thet a- character is composed of zeroes and integers and is called even or odd

according as a b = 0 or 1 (modulo 2). It is clear that there are 22q distinct choices
possible for the theta-characters. We have z = (zj , . . . , zg) e (C9 (i.e., not (C9u oc9). Ω is
a matrix with positive-definite imaginary part. We may take Ω to be symmetric
since an antisymmetric part contributes nothing to the sum. Such a matrix is called
a Riemann matrix; for now we will assume Ω is actually a period matrix. The series
in Eq. (9) converges both uniformly and absolutely and has a host of interesting
properties. In particular the theta-function is quasi-periodic, i.e.,

where

m and n are vectors of integers, and

- y n (Ξ + 2z)| θ(z), (10)

(11)

(12)

We shall now introduce a useful function which is called the Baker-Akhiezer
function. We will see that as a consequence of the properties that define it this
function satisfies a number of linear partial differential equations. For consistency
to obtain, these equations must be solvable simultaneously. Upon imposing this
condition on the equations solved by the Baker-Akhiezer function we discover
that certain other functions (in terms of which the Baker-Akhiezer function is itself
written) automatically satisfy a sequence of non-linear partial differential equa-
tions. The first and simplest (i.e., involving the smallest number of independent
variables) equation of the sequence is the original Kadomtsev-Petviashvili
equation. The full set of equations so described constitute the entire KP sequence.



Kadomtsev-Petviashvili Equations and Fundamental String Theory 337

Now consider a compact Riemann surface M of genus g. Select a general point
B as the origin of a local coordinate system with parameter z : z(θ) = 0. We specify a
polynomial in z"1:

/ ( - ) = Σ V", (13)

where (for now) / is finite positive, and the xn are real commuting variables. Finally
we specify a positive non-special1 divisor D:D = {P1,...,Pg} such that degD

9 ί Λ\ 1= Σ Pi = 8- Thedata set $)— <M,θ,z, / - ,D>has(of course) acquired aname;
i = l I \Z/ J

^ is known to mathematicians as the Krichever map. Having formed the
Krichever map we now define the Baker-Akhiezer function as follows. We
construct a scalar function B(z) of position on the Riemann surface which is
meromorphic everywhere except at the point θ, the poles of B(z) occurring
precisely at the points of the specified divisor D = {P1? ...,Pg}. In addition the

function B(z) is to be constructed such that B(z) exp — /1 - I is analytic in a

neighborhood of z(S) = 0. Thus, we require that B(z) possess an essential singularity

at $ of the form B(z) — const exp / ί - I .
L \ Z /J

We will be able to show that for a non-special divisor D and a general

polynomial /( - j , the function B(z) is unique up to multiplication by an overall

constant. That unique function is the Baker-Akhiezer function

Λ \ #(φr(z) — φr(D) + Y — K)
B(z) = exp I j η j —-——— . (14)

The quantities appearing on the right-hand side are as follows. The symbol η
denotes a normalized abelian differential form of the second kind:

φ W = = 0 [ Φ ? 7 Ξ Ξ / φ f 7 . . . < ί ) / ' 7 \ \ (15)

a ya \QI (ίg JJ

^ Ξ Ξ ¥ . (16)
b

φ denotes the Abel-Jacobi function defined as

φζ(z)= f ω , (17)

φ:(D)= X J ω ; (18)
i= I ζ

for the integrals §η and jω in Eq. (14) the paths of integration connecting ζ and z

are chosen the same. The point ζ =f= B is at an arbitrary location on the Riemann

1 A non-special divisor is here basically a divisor such that the associated Abel-Jacobi function is
non-singular and invertible
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surface, fixed once and for all. Finally, K is the vector of Riemann constants for the
world-surface:

9 r * η
K-^I+QK)- Σ f ω/zJfωJ, (19a)

7^'fl L C J

i.e., since ωj = /z(z)dz for a holomorphic function /J(z),

Ί
(*W Uz. (19b)

Φ i α ,

Note that the Riemann constants depend trivially on the particular basis
chosen for the homology group of the world-surface as well as on the point ζ,

The uniqueness oϊB(z) may be demonstrated by considering a different path of
integration from C to z in which case we have:

Sη*->5η+$η, (20)
ζ ζ C

and

f ω ι - > f ω + f ω , (21)
ζ ζ C

where C is a closed contour. If we decompose the contour C with respect to the
chosen homology basis (a, b) we have

C" = " X (mjcii + njb,). (22)
7 = 1

Using the above relation in Eqs. (20) and (21) yields

Σ n,y, = J » / + n Y, (23)
7=1 ζ

where we have used Eqs. (15) and (16): also

ίω ί κ>jω f + m ί+ Σ nfί^ (24)
ζ ζ 7=1

and thus

[ωi— > J ω - f m + Ξ, (25)
ζ s

where as before

Ξ= Σ w j f ω . (26)
7 = 1 b,

If we recall that Riemann's theta-function has the following property:

- ~ n - ( E + 2z) θ(z), (27)
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and employ Eqs. (23) and (25) in Eq. (1 4). we find that B(z) is indeed invariant under
a change of integration path from ς to z:

+ n - v
/ exp [ - i n ώ' - n (φc(z) - φζ(D) - κ)J

x ^r^j! ^—L—JL-.^Ϊ = B(z) (28)

Now if we choose for the abelian differential η(z) --= df(z~ l ) + 0(dz\ where f ( z ~ l ) is
given in Eq. (13), then

$rl==f + (regular terms), (29)

Writh this choice, B(z) as defined in Eq. (14) satisfies B(z) ~~ const exp /ι - 1 j in a
neighborhood of 9 and all the necessary criteria are met, L \z / -1

Given the Baker-Akhiezer function we now deduce the linear equations it
satisfies and then infer the sequence of KP equations. To do this we will eventually
let the upper limit of summation / in Eq, (13) tend to infinity, but for simplicity we
first set / = 3. Thus we have

f ( z ~ 1 ) = x1z~1 + x2z~2 + XτZ~~3. (30)

if we now employ Eq. (20) in Eq. (14) we may express the Baker-Akhiezer function
as the infinite series

Here x = (x1? x2,
 xι) an<^ the gt (z' = 0, 1, . . . ) are calculated subject to the normal-

ization condition gQ(x) = 1. If we now define

and

3 2

(33)

it is straightforward to verify that the right-hand side of Eq. (31) satisfies the
following two equations:

Γl2 Λ "1
4~, - — - + v*x)

LCXI ox2 j
= exp / - 0(z),

L \ z/j

β(z) = exp
" /ΛΊ
/( JJ OW-

(34a)

(34 b)

Upon defining the ordinary differential operators

d2

H2~-~^+ψ(x), (35 a)



340 G. Gilbert

and

tr ^ 3 ^ d , Ύ - n ,ocMH 3 = —~ H— t/;(x) h ς(x) (35b)
ίbq 2 ϋXi

(the motivation for the subscripts will appear in the sequel) we discover that the
Baker-Akhiezer function [with /(z^1) as in Eq. (30)] satisfies the following two
differential equations known as the Lax pair:

^=D,B, (36)
dx2

To prove that Eqs. (36) and (37) may be consistently solved we first note that B2

ΞΞ I H2 — -— j B and B3 = 1 H3 — -— 1 B are both Baker-Akhiezer functions since

they satisfy the defining criteria. However, from Eq. (34) we find that

Iim<β 2 exp — / ( - ) > and Iim<β 3 exp — / ( - ] > both vanish. Since
z-O I {_ V Z / J J > Z - 0 ( [_ \ZJ]}

Baker-Akhiezer functions are unique, we therefore have B2 = B3 = 0 everywhere on
the world-surface M.

In view of this result we impose the consistency of Eqs. (36) and (37) by
demanding that the commutator of B2 and B3 vanishes identically

= 0. (38)

If we explicitly calculate this commutator and invoke the uniqueness of the Baker-
Akhiezer function, we derive the following partial differential equations:

i ~2 - — — υ,— - ~2 - —
ox2 ox\ 3 cxl

dξ(Z) d^(x) 3 dψ(x)
--- - ---- -— --- - ψ(χ) — - --- 1 -- ^̂ — — vJ . (Jy Ό)

0X3 ox2 όx\ 2 oxγ ox\

Upon eliminating ξ(x) from Eqs. (39) we obtain the first equation of the KP
sequence, the original Kadomtsev-Petviashvili equation in three real variables:

O. ,40,

In fact (as mentioned in the introduction), this non-linear fourth-order partial
differential equation (actually a very slightly different equation) was first
constructed by Kadomtsev and Petviashvili to study the propagation of long,
shallow waves in a plasma.

To generate the full sequence of KP equations we now abandon Eq. (30) and let
the upper limit of summation in Eq. (13) tend to infinity, yielding

/ - = Σ V, (41)
n=l
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so we now have

* = (*!,...), (42)

and the series expansion of the Baker-Akhiezer function in Eq. (31) depends on an
infinite number of real variables. We now generalize the Lax pair of equations
[Eqs. (36) and (37)] by requiring B(x, z) to satisfy

), (43)
dxn

where

(44)

where n^2. For example, with n = 2, 3 we find

d2

(45)~3 p V /

so that we recover the Lax pair, and hence the original KP equation, if we make the
identification ψ2, oC*) — ψ(x) > Ψs, iC*)Ξ f ψ(x)> and ^3, oC*0 = ̂ W To observe the full
KP sequence we differentiate the nth equation in Eq. (43) with respect to xm, and we
differentiate the mth equation with respect to xn and subtract the results, which
yields

fim *> -"" * " " c/?"' ̂  J m z) = ° (46)
Π \ OXi/ OXm \ OX1J }

The above equation is shorthand for the entire KP sequence of equations, since it
embodies infinitely many constraints on the coefficient functions \p^k. In principle
after an infinite number of integrations all the ψjtk are determined in terms of a
particular one; these relations are in the form of infinitely many non-linear partial
differential equations with respect to an infinite number of independent variables.

It has been asserted that the KP equations can be solved exactly. We will show
presently how this goes by deducing the solution for the original KP equation
(more precisely, we will show how one obtains the so-called quasi-periodic
solutions). However, before doing so we will first take a brief detour by writing the
KP equations in a different form to bring infinite-dimensional Lie algebras into the
discussion.

A striking feature of the KP equations is the natural emergence of the Virasoro
algebra from the solution set. The way this comes about is essentially as follows. It
is usually the case that a system of exactly solvable non-linear partial differential
equations has associated with it a group of transformations of the solutions of the
equations. Such transformations comprise a Bάcklund group. The generic element
of the Backlund group takes a given solution of an equation in the "integrable"
system into another solution. The totality of the elements transform all of the
solutions into one another.
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In the case of the KP sequence the Backlund group is in fact an infinite-
dimensional affine Lie group. Furthermore, the infinitesimal generators of the
group satisfy the Virasoro algebra with central extension,

We would now like to see how the solutions of the KP sequence are
transformed into one another by the Virasoro algebra, and as well to see the
infinite set of solutions from a clear vantage point. To this end it is very useful to
rewrite the KP equations using a clever change of variables suggested by Hirota
[29]. First we shall introduce the Hirota bilinear operator, P, as follows,
Associated with a differential operator in one real variable, D(x), we define the
Hirota operator acting on the product of two functions of x:

P(D(x)) [/(x) g(χ)] = D(y) [/(x + y) g(x- )>)]ly = o (47)

For example

— [/(x) g W] - f'g - ft' > (48)

and

P { fr ) [/W «(*)]=/«" - 2/'g"+/"« <49)

For later convenience we list here the following results;

) = 0, (50)

) = 2(ff"-f'2), (51)

) = 0, (52)

P(d4) (f - f ) = 2(/r/; - 4/7"' + 3/"2) , (53)

etc. The Hirota bilinear operator associated with differential operators in several
real variables is a simple generalization of Eq. (47):

P(D(x1),D(x2\...}ιf(x) g(x)-}

(54)

Having introduced Hirota's bilinear operator we now define Hirota's tau~
function τ(x) through the following change of variables:

d2

ιp(x) = 2~~2 logτ(x) , (55)
6X t

where ψ(x) appeared first in Eq. (32). Substituting Eq. (55) in Eq. (40) and using the
definition of the bilinear operator we obtain, after some algebra, the bilinear form
of the original KP equation,

^(Dί + 3D^-4D 1/) 3)τ-τ = 0. (56)

To now generate the entire KP sequence we define the Schur polynomials [29]
Sπ(x)(n = 0, l , . . . )v ia , , α

exp X xπz-" = Σ z~nSn(x)9 (57)
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so that

343

,
S0(x) =

(58)

We will also need to introduce the vector

d \ d \
(59)

With these definitions it is possible to show that the bilinear equation
WHfh^ ) are arbitrary (ΦO))

p\ Σ
1 = 0

y n—
χ / = ι / 7δVJ

τ(x)-τ(jc) = (60)

is [in similarity with Eq. (46)] shorthand for the entire KP sequence. This can be
seen (with some effort) by equating to zero each coefficient of monomials in the r\ r
in this way one in principle may recover the infinite set of non-linear partial
differential equations.

Now to see the action of the Virasoro algebra we recall Eqs. (47) and (54), we
observe that (here c is a constant)

= 0 (61)

), (62)
and

provided P(D(x}} [/(x) g(x)] = 0. With this in mind, following Lepowsky and
Wilson [31], we introduce the operator

(63)
nz-»- X χnζ-» exp - X pnz»+ Y

where the pn are defined in Eq. (59). If we now denote the so-called ]V-soliton

( d2 \solution2 of the KP sequence by τ^ actually the solution is 2-~IlogτΛ? with

N

1=1
(64)

(the (Xi form a sequence of complex numbers) it can be verified that

^Tjv = τ j v + l ί (65)

where aφ {αz}. Thus F acts on the solutions of the KP equation essentially as an
infinitesimal Backhand transformation. Since 1 and the operators V span a Lie
algebra [31], the group orbit of the highest weight (vacuum) vector 1 is isomorphic
to the solution space.

2 This describes a "wave-packet" formed from N separate waves
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After this digression to make contact with the Virasoro algebra we will now
deduce the form of the quasi-periodic solutions of the KP equation. These
solutions are so named because of the appearance in them of the (quasi-periodic)
Riemann theta-functions.

We consider again the original Kadomtsev-Petviashvili equation [Eq. (40)] in
three real independent variables. The solution ψ(x) for this equation is given in
Eq. (32) in terms of an expansion coefficient for the Baker-Akhiezer function which
appears in Eq. (31). We utilize both Eq. (31) and Eq. (14) to write the relevant
Baker-Akhiezer function as

(66)
θ(φζ(z)-φζ(D)-κ)

where here

) , (67)

) , (68)

), (69)

and
Y = f f , (70)

b

N = f v , (71)
b

and
Λ = f / . (72)

b

Using Eq. (31) we now write the logarithm of the Baker-Akhiezer function near the
point θ of the Krichever map as

(73)

where α, β, y are constants. Comparing this with Eq. (66) we see that in a
neighborhood of $ the coefficient of order z of

108 %ζ(z)-φζ(Z))-κ)

is

g^xJ + αxj+jS-Xz + yxj. (75)

Now we employ the expansion

φc(z) = φζ(»)-zY + 0(z2), (76)

which after choosing ζ-»θ becomes

), (77)
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to deduce

345

(78)

When we combine Eq. (78) with Eq. (32) we discover that the quasi-periodic
solution of the Kadomtsev-Petviashvili equation is

d2

(79)

Note that the solution depends on the chosen non-special divisor D, and hence on
a point in the abelian variety associated with the lattice defining the theta-function
in Eq. (79). In fact, it can be shown that the solutions determine a straight line on
the Jacobi variety of the Riemann surface associated with θ.

Here we have considered the original KP equation for simplicity, but
analogous solutions can be found for the entire KP sequence by extending the
above analysis. We choose to employ Eq. (55) to work with the tau-function rather
than the solution ψ(x) itself.

Following Fay [32], we write the tau-function for the KP sequence [here now

x = (xι,x2,.-.)] as

where

6(χ)=

log LJ

(m—!)!(« — 1)' oumov" u — v

(80)

(81)

(82)

Fig. 2. This figure depicts the "partial parameter space" for the quasi-periodic solutions of the KP
equations with a degenerating solution locus
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with M, v e (C and E(w, ι;) the "prime-form" for the Riemann surface. In the argument
for the theta-function, ξ is arbitrary (parametrizing position on the Jacobi variety),
and 00 dz

x η=- X nxn§z n— (83)
n = 1 b Z

of course θ(z) = θ (z|Ω) as in Eq. (11)

With the tau-function given as above, we can give a partial parametrization
(ignoring, for instance, position on the Jacobi variety) of quasi-periodic solutions
by constructing the space indicated in Fig. 2. There are three axes, for genus,
number of independent variables, and soliton number respectively. Here it should
be noted that motion along the genus and soliton number axes is generated by the
Backlund transformations discussed previously [33].

Outlook

The path integral with respect to the string coordinates for the bosonic string with
first-quantized action

S=—\Xd()X (84)
4π

has been evaluated by Vafa [26]. Here the functional integral is evaluated for a
string producing a world-surface with the topology of a sphere with an arbitrary
finite number of handles and with exactly one hold cut out of the surface. This path
integral defines a functional on the space of values of the two-dimensional
quantum fields at the boundary of the world-surface. Following Vafa, we will
denote such a functional by <x|</>>, and this symbol will specify a state in the
Hubert space referring to the boundary.

We now introduce the following isomorphism between the first-quantized
string oscillators and a discrete, infinite set of commuting real variables [30] (one
each for the left-moving modes and the right-moving modes):

1 d
MR) ^ —α«

7 1 / n n' v ,
(85)

where the algebra satisfied by the string oscillators is

Γ ~L ^ΛL~] r ~R ^ f R Ί 1 ίQ£\
[_fln, dn J — [_Cln <)Cin J — 1 . (vu)

Using the isomorphism in Eq. (85) Vafa has established the following relation
between the states in the Hubert space and the quasi-periodic solutions of the KP
equations:

^χ| φy _ rc τ(£L)] . [c τ(xRJ] , (87)

where the CL R are (undetermined) complex constants. Recalling Eq. (55) we write
now

32
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and define

21og<x|φ> = <x |v>>. (89)

Then we have that the sum of the second derivatives for the left- and right-movers,
taken with respect to the ground states, of twice the logarithm of the string
state-vector, is equal to the sum of the solutions of two independent KP sequences:

(90)

From the analysis of Vafa we know that the same description can be obtained
starting from a Lagrangian describing a fermionic theory rather than the bosonic
Lagrangian given in Eq. (84). However, the discussion throughout has been
applied to free two-dimensional field theory. Should one decide to adopt the
Green-Schwarz picture instead of the Neveu-Ramond-Schwarz picture it is not
clear how to proceed. Since these two first-quantized pictures are often held to
•describe the same theory, it should be interesting to extend the KP equations so as
to account for the Green-Schwarz picture.

It should be noted that the lower elements of the KP sequence, which depend
on a finite number of independent variables, may be used to furnish what could be
called a low-energy approximation to the string, since then only a subset of all the
string modes are included in the description.

Finally, it may be useful to investigate extensions of the KP equations which
augment the real, commuting (even) independent variables with an odd set. Such
supersymmetric extensions of the KP sequence have been formally defined [34]
the immediate problem to solve for application to a fundamental formulation of
string theory is the determination of explicit aigebro-geometric solutions, for
surfaces of finite and infinite genus. Work on all these topics is actively in progress,

Acknowledgements, ί wish to acknowledge useful discussions with M. Douglas and R. Rohm.
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