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Abstract. Various intersection probabilities of independent random walks in d
dimensions are calculated analytically by a direct renormalization method,
adapted from polymer physics. This heuristic approach, based on Edwards'
continuum model, leads to a straightforward derivation and also to refinements
of Lawler's results for the simultaneous intersections of two walks in 2Z4, or three

2P
walks in Zζ3. These results are generalized to P walks in Zd\ d*= ——-, P^2.

For d<4, an infinite set of universal critical exponents σL, L^l, are derived.
They govern the asymptotic probability &L~S'L that L "star walks" in IRd,
with a common origin, do not intersect before time S. The σL's are calculated up
to order O(ε2), where d=4— s. This information is used to calculate the
probability JΓ(^) that a set of independent random walks in IRd or Zd, rf^4,
(respectively d^ 3) form a given topological networks ̂  of multiple intersection
points, in the absence of any other double point (respectively triple point). This

2P
is generalized to a network in d^——- dimension with exclusion of P-tuple

L — I

points. The method is quite general and can be used to calculate any critical
intersection probability, and provides the probabilist with a large variety of
exact results (yet to be proven rigorously).
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1. Introduction

Intersection properties of random walks or Brownian paths have been a long
standing problem, starting from the works by Dvoretzky et al. [1], and Erdos and
Taylor [2,3]. In particular, it is known [4] that two infinite (discrete) random walks
in Ή4 have a non-empty set of common points, while [1] two infinite Brownian
(continuous) paths do not intersect in R4. For a space dimension d^5 the
intersection sets are empty in both cases [1-5]. In this sense d=4 is a critical value
for the intersection properties of two independent walks or paths, and this is well-
known to be intimately related to the non-triviality of the φ4 field theory [6-10] for d
< 4, and to the theory of critical phenomena, where critical exponents take non-
mean field values for d < 4. For the statistical physicist, the above remark of the non-
equivalence of intersections of discrete walks in Z4 and of continuous Brownian
paths in IR4 is entirely reminiscent of the existence of logarithmic corrections in a φ%
theory with an ultraviolet cut-off (the lattice spacing of Z4), while the continuum
φ4 theory is widely believed to be trivial.

Recently, Lawler [11-13] has been able to give, by rather detailed probabilistic
methods, logarithmic bounds on the probability of intersections of two random
walks in four dimensions [11,12], and of three random walks in'three dimensions
[13]. He considered two trajectories in Έ4 Πί(Q,n) and Π2(Q,n) of two simple
random walks of n steps, starting at 0 and Xo respectively, and their probability of no
intersection after n steps

) = 0} . (1.1)

The results are for n large

p(n)»\ -aQnnΓ1 (1.2)

if \x0\
2xn, with a prefactor a of the logarithm depending on x0\

2/n = a, and for XQ = O

p(n)x(lnnΓlβ (1.3)
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Actually (1.3) is only asserted to be the actual decay rate of p(n), logarithmic bounds
being obtained, which do not suffice to prove rigorously (1.3) as asymptotic limit.
More precisely [11] it was shown that

nnΓl/2 , (1.3 bis)

where c and c' are constants, and [12] that lim (In n)rp(n) = oo for all r > 1/2. Similar
«->00

bounds as in (1.3 bis) have been rederived by Felder and Frohlich [10] using
(rigorous) methods in field theory, (see also Aizenman [9]). One should note also
that more recently a different probabilistic approach, using "intersection local
times", has been devised [14-17] for studying the intersection properties of random
walks or Brownian paths. In particular [15], conjecture (1.3) appears likely in this
approach. Lawler [13] has also considered the triple intersections in Ί? of three
simple random walks, d— 3 being there the upper critical dimension. The results for
three trajectories 7Ij(0, ft) are

1. For two walks starting at 0, and a third starting at a distance Xo~]/n,

P{/71(0,«)n772(0, oo)n/73(0, oo)Φ0}^(ln/t)-1 . (1.4)

2. For three walks starting at the origin

, oo)n/73[0, oo) = 0}^(lnrcΓ1/4 . (1.5)

Actually, (1.4) is proven by upper and lower bounds, while the (ln«)~1/4 decay rate
of (1 .5) is rigorously obtained as an upper bound, the lower being only conjectured.
Lawler [11,13] also presents results for a variety of other probabilities of the same
type, like those of two-sided walks, to be described below.

The aim of the present article is to propose a different approach, which embodies
both analytical calculations on Brownian motions (like in the probabilistic ap-
proaches) and renormalization (like in field theory), but directly applied to the
Brownian intersection theory. This approach comes from polymer physics [18-20].
It has to be adapted to treat intersection properties of random walks. Polymers
indeed correspond to random walks which are both self- and mutually avoiding
[18-21]. Here only the mutual avoidance properties are relevant. This case also
exists in physics and corresponds to polymer solutions with selective interactions or
"chemical mismatch" [22]. We use for that purpose a continuum model, derived
from the standard Edwards' model for polymers, and which describes the
intersections of, e.g., two independent Brownian processes in lRd, for d= 4 — ε, ε ̂  0.
Using renormalization theory, we are able to reach the limit ε = 0, d=4. We then
recover and extend Lawler's results. For instance, for two walks starting at 0 and XQ ,
we obtain in four dimensions the universal limit

lim 21n77P{771(0,«)n/72(0,/7)Φ0}--(l-e"α)-£τ

ί(-α) , (1.6)
n-» oo $

where α— lim \x0\
2/2n, and where Et(—a) is the exponential-integral function

£,(-<*)= - J Λ . (1.7)
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The finite limiting value actually corrects one (ln(l +l/α)) asserted by Lawler in
[11]. For three walks (0, n) (0, oo), (0, oo) starting respectively at (XQ, 0, 0), we find
similarily in Tl? the new result

lim 41n«P{Π1(0,«)n/72(0, oo)n/73(0, oo)Φ0}

= \dx(\-y\-x)e-~ — -£,(-«) , (1.8)

which gives the exact universal form of (1.4). By the same direct method, we
reobtain (1.3) (1.5) for walks all starting at the same point.

We also present a series of generalizations. A first generalization consists in
looking at the intersections of P paths (P Ξ> 2) at the same point, the intersections of
p paths 1 ̂ p^P — 1, being not considered. These P-body intersections occur (in
probability) only below a critical (continuous) dimension d* = 2P/(P — 1). We show
how to calculate the scaling behaviour of the probabilities of multiple intersections
of P walks in Rd, for d^ d*, including their universal logarithmic behaviour in IRd*,
which generalizes (1.3)(1.5).

A second progress in the known results is obtained for the standard intersections
of two walks (P = 2), by calculating the scaling behaviour of p(n) (1.3) for d<4

p(n)ϊzn^ , fl-»oo , (1.3ter)

where ζ is an universal critical exponent which depends only on the space dimension
2^ί/<4. We calculate it to (9(e2), where ε = 4-d. This second order (two-loop)
calculation allows also [20] in d = 4 the obtention of all the subdominant
O(lnln«/ln«) universal logarithmic correction terms in asymptotic results like
(1.2)-(1.7).

Finally, rather than considering only two (or P) walks starting at the same point,
one can discuss nets of random walks in ΊLd, or Brownian paths in Rd, for any
topology. A net ̂  is determined by requiring that a certain number of independent
walks of lengths n meet at some prescribed vertices, where two, three, . . . , L, . . . walks
meet. The vertices are not fixed in space, but the topology of the network, i. e. the net
of walks, although arbitrary, is fixed. In other words, the topography of the walks is
similar to that of a hydrographical network made of rivers flowing ones into the
others at the same prescribed confluence points. Other crossings of the rivers are
forbidden. We calculate in this work the probability P(<&) that the walks have no
other intersection points than the prescribed confluence vertices. One can forbid
double points in ί/^4, or only triple points in drg3, or ... /7-tuple points in d^d*,
and obtain each time a different universal scaling behaviour, which is evaluated here
as an explicit function of the topology of the network. We find, below the critical
dimension, that the probability P(^) scales like

where <£ is the number of independent loops in ,̂ and where ζ^ is a new universal
exponent, topology dependent. We calculate ζy to order O(ε2), ε = 4 — d, when two-
walk intersections are excluded, and to order O(ε'), ε' = 3 -d, when only three-walk
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2P
intersections are excluded. We generalize this to P walks, with ε = - -—d(>0).
At the critical dimensions, P(^) scales like

where 3^ is a new universal logarithmic exponent, generalizing —j or — \ in (1.3),
(1.5). We calculate explicitly 3^ as a function of the topology of ̂ , in the cases where
two-walk, three-walk, ...P-walk intersections are excluded.

The continuum model that we use, for instance in the case of the intersections of
two independent Brownian paths in IRd, is given by the probability weight

2 o \as1 ) 2. 0

-i / *! I ds2 δ* [Γl (Sl) -r2 (s2)]} , (1.9)

where τί(si), 0^si^S1 τ2(s2), Og^2^^2 are two Brownian trajectories in IRd,
interacting via a local repulsive distribution δd, with an interaction coefficient b > 0.
For £-κx), (1.9) describes mutually avoiding walks. We work in dimensional
regularization, which amounts to continue analytically the theory from d<2
towards d=4. For d< 2 no divergences appear in the perturbation expansion of the
model, while they occur at some poles for 2^d<4. All quantities are calculated as
meromorphic functions of d. The limit S\ , S2 -» oo (actually equivalent to b-> oo, see
below) will yield the universal properties of the intersections of long Brownian paths
in d^4. It is also to be noted that working in dimensional regularization with d=4
— ε, ε > 0, allows one to take the d= 4 limit, after renormalizatίon. Then one obtains
automatically the scaling limit of the theory with an ultraviolet cut-off in four
dimensions, as discussed in detail in ref. [20].

Let us briefly discuss the relation of this approach (1.9) to the field theoretic
representation of polymer problems [21,23,24,5-10]. To each random walk
β ( = 1 , 2) is associated a field φ β (x) with n components φf (x) i = 1 , . . . , n, where x is a
point of the lattice TLά . The local repulsive interaction between walks is simulated by
a field interaction term [5-10] b ]Γ £ \φβ(x)\2\φy(x)\2 in the Lagrangian. Amass

χGiLd β*y -m2ΣSβ
term m ]Γ \φβ(x)\2 corresponds to the exponential killing factor e β of the

β
times {Sβ} allowed to the set of walks {β} in (1 .9). Then the «->0 limit [23-25] of the
Euclidean field theory corresponds to the theory (1 .9) of Brownian paths with a
mutual local repulsive interaction between any two paths. This correspondence,
implicit in Symanzik's representation of field theory [26], has been fully understood
and exploited in polymer physics, starting from the original works by de Gennes
[23] and des Cloizeaux [24], and using Wilson's theory of critical phenomena [27].
More recently, this correspondence has also been quite fruitful in mathematical
physics, by mixing random walks and field theories [5-10], yielding rigorous results
in the latter. But here we want to follow the other direction [18-20,22], without
employing field theory, but only direct renormalization methods, which deal
directly with locally interacting polymers, or, as in (1.9), with locally interacting
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Brownian paths. In these direct theories one can perform any analytic calculation of
configurations of random walks with some specific intersections. Hence, the
parameters are directly those of interest for the probabilist mathematician. In
particular, what is called "local time" [14-17] corresponds precisely to the
interaction integral in Edwards' formulation (1.9) [28-32] of interacting random
chains. [The existence of weight (1.9) could be established as in Westwater [29-32]
who studied the standard Edwards' model [28]]. Admittedly, up to now, the validity
of the direct renormalization methods for the Edwards' model has only been
established [33-35] by a Laplace-de Gennes transformation [25] into a O(ή) field
theory in the limit n -> 0, and using the renormalization scheme of the field theory. So
it has the same heuristic validity as the standard perturbative Callan-Symanzik
renormalization of, e.g., the (φ4)d field theory, as used by K. Wilson for describing
critical phenomena in d=4— ε. A similar derivation of the multiplicative renor-
malization structure could be performed for model (1.9), starting from the
interacting field theory [φβ(x)} described above. But the direct renormalization
method is quite powerful and simple. New results and new generalizations to more
random walks with various topologies (like those of star-walks, or nets of walks) are
given in IRd, d^4. We also consider in detail the case of triple intersections in IRd,
rf^3, for various topologies, and of P-tuple intersections, using the same method.

We hope that this study could interest various readerships, by bridging a gap
between probabilistic approaches and field theoretic ones. It can be used also as an
heuristic mean to invent new exact results, which then remain to be proven
rigorously, in the mathematician's sense. It could also suggest in probability theory
more direct approaches to intersection properties, which should embody the salient
features of renormalization theory.

2. Intersections of Two Walks Near Four Dimensions

2.a. The Continuum Theory

Let us consider first the simplest situation of two independent random walks of the
same length. We describe them by a continuum theory in IRd with d< 4. At the end,
we let £/->4. The probability weight of configurations r1(s), τ2(s) in IRd is of the
Edwards' type (1.9)

(2.1)

S is the "length" of the two walks, and by dimensional analysis one checks that it has
the dimension of an area in the continuum theory. More precisely [18], for a single
isolated random walk

<[r(S)-r(0)]2>0 = ̂  , (2.2)

where the average is taken with the Brownian weight (2.1) for one walk (bδd drops
away). Thus S replaces the usual number n of steps in a lattice walk with n/d-> S. Let
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us then perform the rescaling τt = S1/2ρh / = 1,2, and s = Sx, ρ and x being now
dimensionless. We get for (2.1)

i i i i
- \dxql(x)-- \dx'Q2

2(xf)
z o z o

-(2π)"'2z } rfx ί dx'δd[ρι(x)-ρ2(x')]\ , (2.1 bis)
0 0 J

where the dimensionless parameter z of the two-point interaction is defined as [18]

z = (2πΓd/2bS2~d/2 . (2.3)

Clearly, for d>4, z-»0 for S-+oo and the intersection local time [14-17, 36, 37]

s s
f ds f ds'δd[r1(s)-r2(s')]-S2-df2 (2.4)
0 0

is irrelevant (vanishing). On the contrary, for J<4, z->oo when 5~>oo, and the
intersections are important. As is well known, d=4 is the marginal case, where
logarithmic behaviour occurs. In the limit z-»oo, the weight (2.1) (2. Ibis) selects
only configurations without crossings, and enables us to discuss intersection
probabilities. For doing this, we define the averages with respect to weight (2.1), as
the functional integrals

where ̂ 0 is the pure Brownian weight of the trajectories for b = 0, which defines the
normalization in the continuum theory. Following Lawler's notation [11, 12], let us
consider the probabilitity that two simple random walks in 2£d, starting from 0
(Fig. 1) do not intersect again before step n: P{/71[0,«)n772(0,«) = 0}. In our
continuum theory this is just ¥g(S,S; 0, 0), where

, S; x, y) = <^(rt (0) -x)<5d(r2(0) -y)> (2.6)

is the correlator of two walks of lengths 5 starting at x and y in Rd. Owing to (2.5), ̂
is dimensionless. The critical limit z-κx) will yield the continuum analogue of the
no-intersection probability P above.

2.b. Diagrammatic Rules

The strategy is the following. We first calculate (2.5), (2.6) by perturbation theory of
weight 2P (2.1) in powers ofb. To first order, we have

^S O^l-δJώfώX^Ir^^ ,
o o (2>?)

where the subscript 0 stands for the Brownian weight with b = 0. (We see that at this
order 3? is given by the average value of the intersection local time (2.4) but at higher
orders correlations of local times come in.) Such a term (2.7) is represented by a
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Fig. 1. One-loop diagram contributing to the probability of no further intersection of two
independent random walks starting at the origin 0. The dotted line represents conventionally a
local contact — b δ d [ τ ί ( s ) — τ 2 ( s ' ) ] in space, between points of abscissa s and s'

diagram [18] as in Fig. 1 with a dotted line for the δd contact. Calculations are
always performed by Fourier transforming [18-20]

I ddqeίq r , (2.8)

(2.9)

(2.10)

and using for each pure (b = 0) Brownian path r the Green function

Hence we trivially find for (2.7)

a
,S;0,0) = 1 -b J —-M ds J ds'

(2π) o o

This is a particular case of general diagrammatic rules [18] for calculating an average
like (2.5) in perturbation series of b. They are easily obtained by expanding the
exponential in (2.1). These rules, which we shall need all along, are the following
(Fig- 2).

Fig. 2. A second order (two-loop) diagram contributing to JΓ(5,S,x,y) [Eq. (2.6)], and the
associated integration variables appearing in Eq. (2.11), as an illustration of the diagrammatic
rules of Sect. (2.b)
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1. Diagrams are made of walks (continuous lines) interacting via arbitrary
dotted lines joining two interaction points on walks, with a factor (—b) for each
interaction.

2. When some physical points on the walks are at some prescribed positions
(x,y, ...} in Kd one draws also a set of independent vectors {x— y, ...} which span
the independent relative positions.

3. A set of independent loops is selected in each interaction diagram, which
involve both continuous walk lines, interaction dotted lines, and relative position
vectors. An independent momentum q flows along each loop, with integration

, ddq
measure — -— Γ.

J d

4. Each of the relative vectors {x -y, . . .} of rule 2 carries a momentum Σq which
is the sum of the momenta of the independent loops to which the vector belongs.
Then it contributes a factor e

l< χ - y ϊ ' Σ f i to the integrand.
5. Along each segment of length s of a walk, determined by two successive

interaction points along a same walk, one evaluates the total momentum flowing
along it, which is the algebraic sum Σq of the momenta of all the independent loops
to which the segment belongs. This segment contributes then a factor e ~ έ (Σq}2s to the
integrand.

6. One integrates over all independent momenta, and all positions of inter-
action points which preserve the topology of the diagram.

7. One sums over non-topologically equivalent diagrams.
Equation (2.10) corresponding to Fig. 1 gives a first trivial example. The

contribution of the second order diagram of Fig. 2 to ̂  (S, S;x, y) (2.6) is for
instance

(2.H)
• f dsί J d

0 0

Now, for calculating the contribution of a diagram obtained by the above rules,
one integrates first onto the L Gaussian loop variables q z, /= 1, . . . , L, with the well-
known Gaussian formula

J Π A/exp -~ Σ
L 1,1'

where the matrix Mu> acts here only on the loop indices /=1, . . . ,L, which are
decoupled from the lRd space components. Clearly (2.12) now allows the analytic
continuation [38] of the theory to non-integer values of d. [One should also note that
after Gaussian integration over all momenta q's one gets an integrand in terms of
parameters s, which is exactly that of the Schwinger-Feynman "α parameter"
representation of the (φ2)^ quantum field theory. The only difference lies in the
domain of integration. The walk parameters {s} are bounded by constraints on the
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lengths S of the various walks, while in usual QFT the α parameters, αe [0, oo[, are
exponentially killed by mass terms e~™2Σ*. Of course, multiple Laplace transforms
relate both cases.]

Let us now return to the evaluation of ^ (2.10). We have after Gaussian
integration

s s
^ = l-b(2πΓd/2 ί ds j ds'(s + sγdl2 (2.13)

This quantity diverges for rf=4, and for d=4 — ε the leading diverging order in 1/ε
reads

JT = 1 -z - + 0(1) + 00?2) . (2.15)
Γ2 Ί
- + 0(1)

Lε J

Of course, one could wonder why such an expansion is useful. First, the expansion
parameter z grows without limit, second, the coefficients of the expansion have

poles in ε when ε->0. ί To order zp, the pole is of order — . I That is where

renormalization, which exploits the mathematical structure of this double Taylor-
Laurent expansion, comes in.

2.c. Renormalization

Briefly stated, renormalization [18-20,27, 33-35] is a way to eliminate poles in 1/ε
by a suitable change to "renormalized" variables. In the present case of inter-
sections of independent random walks, we have to adapt the direct renormalization
method devised originally for standard polymers [18-20,22]. The idea is to
substitute to the interaction parameter z (2.3) in the scaling functions a function
g ( z , έ ) which converges to a finite fixed point limit g* when z->oo, and for
d<4. A scaling function is here a function of z, ε, which still has poles of all orders
in ε, but which reaches a fixed point limit for z-»oo, (for d<4). For instance,
here, we expect [10] the probability «2Γ above to scale for S large (and d<4) like

where ζ is a universal critical exponent. Hence the scaling function
ε d

- In J? |g should reach the fixed point limit ζ when z -> oo.
: 2 '

Then the renormalization principle [18-20,33,34] is that a (singular) Taylor-
Laurent expansion g(z, ε) exists such that the substitution of g to z in any scaling
function must give a new double series in g, ε, which is regular to all orders in g when

A possibility for g is furnished [18] by the dimensionless "second virial
coefficient" of two independent random walks, here defined as
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where J 2̂ (S, S) is the connected partition function of two walks interacting via
weight (2.1):

(2.17)

i.e. the two walks have at least one point in common. (In the z-> oo limit, they will
have only this point in common). A probabilistic meaning can be given to the
dimensionless quantity g (2.16), (2.17): it is the average intersection local time
of two mutually-avoiding Brownian paths intersecting once [normalized by
( 2 π S ) ~ d / 2 ] . Note that z (2.3) can be written similarly as

z = b(2πSΓd/2 i f

(2.17bis)

where the only change with respect to (2.17) is the occurrence of the pure Brownian
average <( . . . )0 instead of that of two mutually avoiding paths < . . . ) . So one basic
statement of renormalization theory is that the expansion of scaling functions (like
C (z, ε) above) is ε-regular in terms of the true intersection local time g of two
mutually avoiding Brownian paths, while it is singular in terms of the intersection
local time z of two simple Brownian paths. It is worth noting that g reaches in the
long time limit of the paths an universal fixed point limit (see below), which it would
be interesting to study in probability theory.

Remark. Usually, the renormalization in QFT involves a multiplicative re-
normalization scheme, with renormalization conditions [27]. We have also here a
multiplicative renormalization structure of the walk partition functions which will
appear only later (Sect. 6), in more complicated situations involving nets of walks
meeting at some branching points. We shall state there that the ratios of any
partition function of complicated multiple walks to those of simple "star walks"
reach finite limits. This multiplicative aspect of renormalization does not appear
here since 3?(S, S, x, y) (2.10) for two mutually-avoiding paths is the simplest object
of the theory, the (normalized) partition function of a single pure Brownian path
being trivially one.

The first order diagrams contributing to J 2̂ t° orders /?, b2 are shown in Fig. 3.

Fig. 3. The diagrams contributing to the connected partition function j^CS, S) (2.17) of two
independent Brownian paths, and the actual conformations in direct space
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Their contributions are easily obtained from the diagrammatic rules above

j ds(S-s) J ds'(S^')eΛ-(s+s/)

0 0

s s

= bS2-2b2(2πΓd/2 f ds f ώχS-
0 0

The integration leads for d = 4 ~ ε to

3T2 = AS2 Γl-z - + ... . (2.18)Γl-z (- + ... VI
L Vε /J

Hence the dimensionless "second virial coefficient" $ (2.16) reads for two
independent random walks

(2.19)

This quantity can be shown, by generalizing the arguments of ref. [33, 34], to have a
fixed point value for z->oo. We obtain it in a standard way, by introducing the
Wilson function

oS
ε 5 ε 2 /o™\= ~ ̂ 0l = ̂ -42:24-... . (2.20)

b,ε 2 ϋZ 2

We know [18,27, 33-35] that the substitution of g to z in W makes W[g, ε] finite to
all orders in g when ε->0. (Here, this seems a triviality but the next order, to be
considered later, will exhibit this fundamental mechanism.) So we compute

Since g^>g* when S->oo, i.e. Z->GG, one has S-—0->0, and g* is thus found from
W[g*,ε] = Q. Hence

0*=^ + <9(ε2) . (2.22)

In four dimensions, the situation is slightly different [20]. We set ε = 0 right into
W[0>ε] (2.21), since the latter is regular at d=4. Hence

4
Integrating gives immediately

1 /lnlr»ς\
(2.23)

where s0 is an integration constant, which plays the role of the ultraviolet cut-off. It
is the reminiscence in the continuum theory of the lattice spacing. From now on, we
shall always drop away s0, except when necessary (S is large).
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Now the limit for S large of the probability JΓ of no intersection of two random
walks starting at the origin, is evaluated by a simple "Callan-Symanzik" equation.
As already mentioned, 3£ scales for d< 4 like ;¥ ~ 5ζ, S-+ oo, where ζ is a universal

critical exponent. So S— In^f will reach a finite limit ζ when S-xx). We have
from (2.15), dS

—
ε d

= -z—\n^=-z + O(z2) . (2.24)
b,ε 2 OZ

Again ζ [g, ε], when g is substituted to z, is a regular double series in g and ε [1 8, 33-
35]. Here trivially

(2.25)

In the limit of large walks, S->oo, g->g* and

ζ=-^ + 0(ε2) (2.25bis)

ford=4-ε. For d= 4 on the contrary, we use definition (2. 24) and (2. 25), (2.23), to
get

... (2.26)

which is trivially integrated at dominant order into

1/2 . (2.26bis)

C is a constant, here depending [20] on b, which is thus model or lattice dependent,
and not universal. Equation (2.26) is just Lawler's result (1.3), obtained here by a
trivial one-loop calculation. It is worth noting that the method by Lawler in d=4
has deep connections with our techniques, even if renormalization for d^4 is not
used there. Indeed he compares walks of length n and « (In ri)~β, where β > 0 is fixed
(which is a kind of scale transformation), and states [12] that for two walks starting

at the same point p(n)^p[n(lnn)~β] ( 1 --β—Λ - 1, where 77(72) is the discrete
y 2 inn J

analogue of ̂  here. The limit β-»0 of this equation yields the differential equation
ndlnp(n)/dn= — l/(21n«) which is nothing but (2.26). Hence, a probabilistic result
like (2.26) can be seen as a consequence of perturbation expansion followed by
renormalization up to d=4. In the next section, we consider along the same lines a
series of other interesting geometrical cases.

2.d. Other Geometrical Cases

Lawler [11-13] considered various other situations. We follow the introduction of
[1 3] for a summary of definitions and statements. Let 7\ («, ω) be a simple random
walk in Z4 starting at x0 and T2 a "two-sided" random walk independent of 7i,
starting at 0. (A "two-sided" walk is gotten by taking two independent simple
random walks, Γ2

+, T^~ , and setting T2 (n) — T^ («), ft^O, and T2(n) = T^(n) for
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:gO. Let /7 l 9 Π2 denote the paths of the walks

Πi[nί,n2] = {Ti(n9ω):n1<n<n2} ,

and similarly for Πi[n1,n2) and Πi(n1,n2].

Let us first consider walks starting at the same point (x0 = 0) and define

Then there exists [11] c1; c1 >0 satisfying

and for r> 1/2 [12]
lim (Inw)1"/?(«)= oo

(2.27)

(2.28)

an βn

©
an

®

Fig. 4a-e. The different geometrical situations considered by Lawler. a The probability (2.29) that
the trajectories of a random walk of length n and of an infinite one, starting at the same point, do
not cross anymore, b The same probability (2.30) that the finite walk trajectory does not cross
a [ - oo, + oo] two-sided walk trajectory, c The probability (2.31) that the segment (OH, βn) does
reintersect the trajectory of an infinite independent random walk, d The half random walk (α«, oo]
does cross the walk (0, ή) [Eq. (2.32)]. e The probability that the two walks (0, n) and [0, oo) starting

at a distance x0|%]/«, intersect each other [Eq. (2.33)]
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Hence the actual decay rate should be p(n)&(\nn)~ίl2, which we found above
heuristically in (2.26). The same is true [11,12] for the no further intersection
probability q(n) of a finite walk and an infinite walk, in Z4, both starting at 0
(Fig. 4 a)

a) q(n) = P{Π1[0,n]r^Π2(0, oo] = 0} ^(InπΓ1/2 , (2.29)

which satisfies (2.27) (2.28). For the two-sided walk T2 (Fig. 4b) one has

b) ^{^(O^nlM-oo, + oo] = 0}^(ln«)-1 . (2.30)

For the intersections of parts of walks in #4 both starting at the origin (Fig. 4c),
Lawler found also (Theorem 4.1 of [11]), for 0<α</?< oo

c) lim (lnn)P{Πί(an,βn)nΠ2(Q, oo]Φ0}=J ln(|8/α) , (2.31)
«-> oo

and for 0 < α < oo (Fig. 4d)

d) lim (lnn)P{Πί(0,n)nΠ2(oc^ oo]Φ0}=£ln(l +!/<*) . (2.32)
n->oo

Finally, for two walks 7i , T2 starting at 0 and x0 respectively (Fig. 4e), supposing
the limit α= lim |x0|

2/2rc to exist, the statement is [11].
n-» oo

e) lim (lnw)P{/71(0,n)nΠ2[0,oo]Φ0} = /(α) , (2.33)

where (incorrectly) /(α)=|Tn(l H-l/α). As we shall see, the limit is rather given by
(1.6). Let us now derive results (2.29) to (2.33) by direct renormalization.

Case a. q(n) is, in our continuum model (2.1), obtained as the limit where one of the
walks is infinite, of the correlator (2.6) q(n)-+2£ (S, oo O, 0). To first order in b,
(Fig. 5 a), it reads from (2.13),

s oo
/2 f ds J <fc'(s + <Γd/2 = l +z •

(\-d/2)(2-d/2) '

(2.34)
Its Laurent expansion in 1/ε is thus

&(S, oo) = l- —+... ,
ε

and is identicalto that of Jf (5,5; 0,0) (2.15). Hence the analysis of Sect. 2.c applies
entirely to Jf (5, oo) and leads to

-(ln5r)~1/2 , d=4 ,
(2.35)

-S~ε/4+ , d=4~ε .

Actually, this identity holds to all orders in ε, the scaling properties of
&>(S,S)~3?(S9 co)^Sζ, being expected to be the same on physical grounds. It
means that the steps of the infinite walk after step S are irrelevant for the
intersections with a finite walk of length 5.
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Fig. 5a-e. The first order diagrams contributing in the continuum theory (2.1) to the probabilities
depicted in Fig. 4. The discrete number n of steps of the walks are replaced by the continuum
variable S (2.2). The various geometrical cases are labelled in accordance to Fig. 4, and
correspond respectively to probabilities &(S, oo 0,0) (2.34), &(S, + oo, - oo) (2.36), ^c (2,38),
^d(2.40) and 3Te(2.41) of the text

Case b. Here we have to sum over two interaction diagrams involving a path and
separately the two other infinite ones (Fig. 5b). This is just the double of case a
(Fig. 5a) [Eq. (2.34)]

1
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So, the coefficient of the pole in 1/ε is doubled, and repeating the calculation of
Sect. 2.c yields immediately

^T(S, ~oo, +oo)^(ln5)~1 , d=4 ,
(2.36)

^S'ε/2+ , d=4-ε ,
in agreement with (2.30).

Case c. The continuum analogue of probability of non-empty intersection (c) is
obtained in a slightly different way. First we note that its complement l-Prob(c) of
empty intersection has a continuum expression

Idfod

It is calculated with the truncated weight

-6 ί & f
αS 0

which is to be evaluated in the universal limit z-> oo. To first order in b, we thus have

/βS oo

l-Prob(c)-»3r = l-M J ds J ̂
\ αS 0

Hence Prob(c) will correspond (at this order) to the continuum intersection local
time

j ds^ds'δ...) +... . (2.37)
«S 0 / O

It is calculated as
βS 00

^c = /7(2π)-d/2 j ώ j
o

1

(l-d/2)(2-d/2)
[β2-d/2_(χ2-d/2]

We see that &c does not diverge anymore when rf->4. One order of divergence has
indeed been suppressed by letting the first interaction point to be at an abscissa
αS =t= 0 from the origin (Fig. 5 c). If α = 0, then (2.38) diverges at d = 4, recovering case
a. Now, renormalization theory tells us what to do at this (finite) order. (This of
course would work to all orders, when divergences occur.) We substitute g to z and
we take the d=4 limit of the coefficient of z. Hence at first order

. . (2.39)

In four dimensions, we obtain from (2.23)

... , (2.39a)
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which is just Lawler's result (2.31). It is interesting to note that there is a deep
similarity with his derivation in d=4 (see in particular the second of [12]). Let us
denote Dn = {Πl [α«, β/?]n772(0, oo)φ0} and P(Dn) its probability. Then [12]
P(Dn) E(In\In ^ 1) = E(In), where E is the expectation value of the random variable
In measuring the number of intersections of the two walks. Lawler proves that
E(In\In = 1) Just looks like twice the number of intersections of two walks starting at
the same point. Hence he finds

E(/Λ)-C6ln(j8/α) (2.38bis)
and

where C6 > 0 is a constant which comes from the Green's function of the random
walk. The ratio of the two gives just (2.39a). Hence our numerical integral (2.38) is
just the analogue of £(/„), while g~l corresponds to £(/„]/„^1).

Case d. We have similarly for (2.32) the continuum limit to first order (Fig. 5d)

(ϊ-d/2)(2-d/2)1'
(2.40)

The same strategy z->g gives in d— 4 the renormalized limit

.

in agreement with (2.32).

Case e. We calculate (2.33) in the continuum theory to first order (Fig. 5e)

(2.40bis)

- (2.41)
\0 0

The diagrammatic rules give

Jd S

— hCJπ\ dβ Γ x/r- Γ A^'P 2Cf 4- sΊ (v 4- v'Λ ^— U \ £* 11 I I L4ιj I t*o tί - ^ V ^ i ^ ^ / V ^ ι ^ <J /v 7 J J v 7

0 0

This can be integrated by parts after taking (s-f s') as a variable, to yield

[ -d2 (d \ 1 -- - 2 13Ce = z\a, Γl^-l\ + ] dxe x(x -x ) ,
L V / o J

where & = XQ/2S. This is finite when d->4. Here again the dominant behaviour for
5-^ oo, and d=4, is obtained by renormalization, which here amounts to substitute
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g to z and let d~+4:

t Γl , (2.41 bis)

21nS
L _J

This corrects Lawler's statement (2.33). [Note that the coefficient of (InS)"1 must
precisely be universal and not lattice dependent.]

3. Intersections of Three Walks Near Three Dimensions

This case has been considered by Lawler in [1 3] (see also [11]). Let S^ (n, ω), S2 («, ω),
S3(«, ω) be independent simple random walks in 2ζ3, with transition probabilities
[13]

e being a lattice unit vector in Ί? .
As above, the trajectories are

etc ..... One assumes one of the walks (ί = 1) to start at the origin, and the two other
ones to start at x0. Lawler studied [13] the probability that

Π, [a, , b, } n Π2 [a2 , b2] n Π2 [a3 ,63] φ 0

when x 0ΦO, and for x0 = 0 the probability that

In [11] it was shown that, with probability one,

#! [0, oo) n J72 [0, oo) n 773 [0, oo) Φ 0

regardless of what x0 is. Hence, three infinite walks always intersect in Z3. So one is
interested in the case where at least one of the paths is finite. Now, if one considers
instead three independent continuous Wiener processes Xί9 X2, X$ in IR3, and let
Γi(a,b) denote the random trajectories Γf(«, b) = {Xt(t) a^t^b}, then with
probability one

Γi(0, oc)nΓ2(0, oo)nΓ3(0, oo) = 0

when the processes start at different points. Hence d= 3 is a critical dimension for
intersections of three walks or paths, like d= 4 was for two walks. This is in relation
to a well-known result in the theory of critical phenomena [27] : d=3 is the upper
critical dimension for tricritίcal phenomena, which are modelized by a (φ2)J
interaction term in field theory [27]. This (φ2)\ interaction term has precisely a
Brownian path representation where three paths intersect [21, 25]. This tricritical
field theoretic representation has been originally used [21,39-42] for studying
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polymers near the so-called (9-point. At this point, excluded volume, i.e. two-body
interactions, vanish, and one is lead to consider the next-order effect of three-body
interactions of chains with themselves or with other chains. The (9-point is so
identified as a tricritical point [21]. The direct analytic theory of such three-body
interactions is now well established [41, 42] for polymer chains. We shall use here a
new variant of it, in order to describe the mutual intersection properties of three
random walks, in a space dimension d^ 3. Let us first recall some expected results.

3. a. Lawless Results

We briefly sketch the essential results of [13].

For three walks all starting at the origin in Tl? :

(a) There exist positive constants k± , k2 such that

ki On n) ~ 1 ̂ f(n) = P {Π1 (0, n] n Π2 [0, oo) n 773 [0, oo) = 0} ̂  k2 (In n) ~ 1/4 .

(3.1)
An incomplete argument was also given that for any r> 1/4,

r /(ft)=+oo . (3.2)

Hence (lnπ)~1/4 should be the actual decay rate of the probability f(n) of no triple
intersections between three walks.

(b) Also, for one-sided walk and two-sided walks, all starting at 0,

Jp{/71(0,^]n/72(-oo, + oo)n/73(-oo, + oo) = 0}^(lnw)"1 . (3.3)

For the probabilities of non-empty intersections, the results are the following. For
0<α</?< oo,

(c) lim (Inn) P{Πί (an, βn)πΠ2 [0, oo) n/73[0,ao)φ 0}=ihι(j5/a) . (3.4)
H-> oo

A constant c\2 also exists such that

(d) P{Π^
(3.5)

1 .
(3.6)

Instead of these upperbounds (3.4) (3.5), we shall obtain the exact asymptotic forms

</(/?/<*) (Inft)" 1, /(βl&) (In^)"1, where J> and / will be calculated explicitely.
Finally, for three walks S1, 52, S3 starting at x0, 0, 0 respectively, one has [13]

(f) P{Π1[0,A2]nΠ2[0, oo)nΠ3[0, oo)Φ0}^(lnτ7)'1 . (3.7)

We shall here derive (3.7) together with its finite universal coefficient.
We shall evaluate (3.1)-(3.7), by using a direct renormalization approach,

which is the analogue of that of Sect. 2 for two walks. It is an extension of the
tricritical theory that we devised for polymers in [40-42]. Here the walks are not any
more self-avoiding but only mutually avoiding. As we shall see, the technique is
extremely simple.
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3. b. The Three-Body Continuum Model and Its Renormalization

The probability weight describing three-point intersections is a generalization of
Edwards' model (1.9) in Rd,

1 Sl 1 S2 j S3

-- f ί^ii^)-^ J Λ2ιife)-- J *3iife)
Z 0 Z 0 Z 0

-c fl ίfai J2 ίfa2 / &3<5d[r1(51)
0 0 0

(3.8)

This weight, and the double local time involved in it j ds1ds2ds3δ
dδd, have not yet

been studied rigorously, and furnish an interesting problem. However, from a
practical point of view, their analytical manipulation is fairly well-defined [40-42],
and efficient. As for Edwards' model (1 . 9), we work in continuum dimension d, with
dimensional regularization [42]. This means that all quantities are defined by
analytical continuation from d<2 [38,42]. More precisely, since d=3 is the upper
tricritical dimension, we shall set

d=3-ε' , (3.9)

and after renormalization, we shall reach the limit ε'-»0. The dimensionless
expansion parameter associated with the three-body interaction term in (3.8) is
defined as [40,41]

y = (2πΓdcS3~d , (3.10)

where S is one of the three "areas" SΊ , S2 , S3 , and is the finite one if some of these are
infinite. The method is then the following: calculate partition functions in
perturbation theory ofy, for d< 3, then renormalize poles in \ /s', by substituting in
scaling functions a three-body renormalized coupling constant [40] h to y, to be
defined below. Calculate via the Wilson function, the fixed point value A*(ε') of A for
d— 3— ε', or its logarithmic asymptotic form for d=3. This program is entirely
analogous to that followed in Sect. 2 for z, g, W[g, ε] in the case of two-body
interactions in a space dimension d=4—ε. We shall need the dimensionless "third-
virial coefficient" A, defined by analogy to (2. 16) (2. 17),

h = ̂ (S,S,S)(2πSΓd , (3-11)

where £Γ3(S, *S, 5) is the connected partition function of three identical walks of
areas S weighted by (3.8)

(3.12)

This is immediately interpreted as the local time measure of the random
configurations where the trajectories of three walks, starting anywhere (with
however one of the origins fixed for eliminating a trivial volume factor), have at least
one point in common.
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+ 4

Fig. 6. First order diagrams and configurations contributing to the connected partition function
3?3(S, S, S) (3.12) of three Brownian paths having a triple point in common

The first order diagrams necessary to calculate J 3̂ are shown in Fig. 6. The rules
are those given in Sect. 2. We have after a Gaussian integration over the momenta,

s s s
f ds I ds' I ds"(S-s}(S-s'}(S-s")(ss' + s's" + s"sΓάl2 .
0 0 0

The dominant diverging part for d=3 —εf is easily evaluated to be

(3.13)

(3.14)

Hence the dimensionless "third virial coefficient" h (3.1 1) reads in terms of the bare
parameter y (3.10),

(3.15)

The Wilson function of h is defined as in Eq. (2.20),

W(y,ε')=W[h,ε'] = ί

Using Eq. (3.15) yields immediately

and by substituting h to y

dS

d
τy

(3.16)

(3.17)

This double expansion in h and ε' is regular to all orders in A, and this non-trivial
result of renormalization theory could be derived by the same method as in [41] for
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the standard three-body interaction of polymers. The fixed point value of h for
d=3— εf satisfies Wr[h*,ε'] = Q and reads

h*(^ = ~ + 0(ε'2} . (3.18)
oπ

For d=3 instead, we first consider the finite limit of the Wilson function

r r L^, v^j x^ Λ O

Vb c,ε'=Q

This is immediately integrated into

S/\n2S} . (3.19)

This asymptotic expression of h is universal [27, 40], and will dominate all the
intersection statistics of three random walks in three dimensions, as we shall see
now.

3.c. Intersections of Three Walks

(a) Let us first consider the probability f ( n ) (3.1) that three walks all starting at 0 do
not intersect again (Fig. 7a). The associated continuum partition function is simply

^αWl 5 ̂ 2? £3)

(3.20)

where 3f is weight (3.8). The first order contribution to Sa in powers of c or y is given
in Fig. 7a:

3Tfl = l -c(2π)-d I ds I ds' / ds"(ss' +s's" + s"sΓdβ (3.21)
0 0 0

This integral diverges, as expected, for d=3, when s, s', s" go to zero simultaneously.
Evaluating the residue of the pole in 1/ε' is easily performed. For instance one sets
s = u~l, ... , and uses the integral representation

o

We find in the various limits of SΊ , S2 , 3̂ ,

and (3.22)



302 B. Duplantier

®

©

Fig. 7a-f. Diagrams contributing to probabilities ̂ , z = a,b,c,d,e,f of Sect. 3c. The interactions
are only those of triple points occurring in the continuum model (3.8)

only subdominant terms being modified by the limit S2, *S3-»oo. The scaling
behaviour of 2£a^S^ for d< 3 is then obtained by introducing a Wilson function:

(3.23)

In terms of A and ε' the important result of renormalization theory is of course that
ζ[Λ, ε'] is regular to all orders in h when ε'->0. So in d=3 — ε', we find from result
(3.18) the fixed point value of ζ

(3-24)

In exactly d=39 (3.23) (3.19) give together S—-lnJTβ= -— + . . . , which is
integrated into 41nύ

fl = const (In5) (3.25)

This fully agrees with Lawler's probabilistic statements (3.1)(3.2), which is thus
valid both for 2£a(S, S, S) and &a(S, oo, oo).

(b) The two walks S2 , S3 are now infinite and two-sided (Eq. 3.3). Then the
partition function &b which is the continuum analogue of probability g(n) (3.3), is
defined in a obvious way as in (3.20). Its first order expansion (Fig. 7b) is simply
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obtained from (3.22),

&b=\-4χJLy 9
ε

the extra factor 4 coming simply from the 4 analogous diagrams in Fig. 7b, to be
compared to Fig. 7a. This gives immediately in d = 3 — ε' from (3.24)

J^S-ε'+0(ε/2) (3.26)
and in d=3 from (3.25)

^(InSΓ1 . (3.27)

This agrees with probabilistic estimation (3.3) for g(n).
(c) Probability of intersection of a truncated walk Π^ (α«, βri), with two infinite

ones 772 [0, oc) and /73[0, oo). For evaluating (3.4), which is a probability of non-
empty intersection, we use the same technique as in Sect. 2, case c. In particular,
there is no critical divergence in first order in y, and its suffices to renormalize the
coupling constant y into h. More precisely, the probability

P{/71(α/7,/J/7)n772[0,oo)nΠ3[0,oo)Φ0}

has a continuum expression to first order in c

/ βS oc oo

I ds j ds' I ds"δd[τ,(s)-r2(S')}δd[τ2(S')-^(s"}}
αS 0 0

(3.28)

+... ,

where the average is evaluated at this order with the pure Brownian weight (c = 0).
The evaluation of (3.28) is done with the help of diagram c of Fig. 7,

βS 00 00

&c = c(2πΓd I ds I ds1 J ds"(ss' + s's" + s"sΓdl2 . (3.29)
αS 0 0

The multiple integral converges for d= 3. We change the variables :s = Su~2 and get

3TC=>>8 " j ώ/ J </M' J du'\uu'u"y-*(uL+u'2+u"2Tάβ - (3.30)
^5-1/2 0 0

The integral simplifies in d=3, and is evaluated to be

Obviously, this is only a first order calculation in y. But renormalization theory
again tells us that the asymptotic result for S large is simply obtained by substituting
h to y, which could be checked by calculating next order terms. Hence the true
asymptotic behaviour of ̂ c is

. , (3.31)

where we used (3.19). This is just Lawler's result (3.4).

(d) Pί/Mαw, oo)n/72[0,(^-α)?ι]n/73[0,(^-α)7ί]Φ0} .
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The continuum equivalent of this probability is, to first order, simply a variant of
(3.29) (Fig. 7d)

^d = c(2πΓd J ds J ds' J ds"(ss' + s's"+s"sΓdf2 + . (3.32)
αS 0 0

Integration over s yields in d=3,

with

α ~ 1

yoc) — 1 1 W.X ujy (.x H- j^) (.x -|- y -h ^JF) . (3.33)

Now, in the large scale limit S-> oo, the resummation of the perturbation series in y
amounts to a simple substitution y->h (3.19) and finally:

&d = S(β/a)/(4πlτίS) + ... . (3.34)

Note that the function ./(/J/α) is «0ί of the form ln(jS/α) appearing in (3.5).
Moreover J^ can be evaluated for β/a — \ <ζ 1,

(3.35)

which grows faster than ln(/?/α)«jS/α — 1. Hence our result (3.34) (3.35), contradicts
Lawler's explicit upper bound (3.5), for which we think that the coefficient of
(Inn)"1 should be corrected into (3.33).

(e) />{771[05(j8-α)n]nΠ2[αn,cx))n/l3[α«,oo)Φ0} .

This probability corresponds to the physical situation depicted in Fig. 7e, and its
continuum analogue reads to first order in c:

β- α oo oo

3f>

e = c(2πΓdS3-" I ds I ds' I ds"(ss' + s's" + s"sΓdl2 (3.36)
0 α α

Again this integral converges d=3. Integrating on s and renormalizing y into h
(3.19), we find the universal asymptotic result

with

.,
lα I/

This provides the expected asymptotic form, ameliorating the upper bound (3.6).
Both for β-+α, and β-+oo, (3.37) (3.38) do agree with (3.6).

(f) Let us finally consider the probability

P {Π, [0, n] n Π2 [0, oo) n Π3 [0, oo) 4= 0}
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that one walk starting at x0, and two others starting at 0, have a non-empty three
point intersection in Ί? (Fig. 7f). The continuum analogue of this probability is

Prob(/)-+l-Jf/ ,

where Jf/ is the partition function

(3.39)

calculated with the weight (3.8), in the limit y = c(2π) dS3 d-»oo. To zeroth order
«Sy = l. Hence Prob(/) reads to first order in c:

S 00 GO

, 0 0 0

(3.40)

which corresponds to the interaction diagram / of Fig. 7. The Brownian average
(3.40) is evaluated as usual

&f=yjd(a) , (3.41)

1 oo

0 0

where we have rescaled variables by 5, and set

<z = x%/2S , (3.43)

Integral (3.42) does converge for d— 3. Therefore renormalization theory gives the
asymptotic form of 3£f as before for d=3>,

1 ' ' x . . (3.44)

The integral </3(α) (3.42) can be evaluated by setting s = x 2,...,

, (/+z2)

i o

Integrating over the angle variable in polar coordinates for y, z, and performing the
change of variables u = x/(x2+y2+z2Y/2, v = x2(l — w2), one finds

1 °° dυ
Λ(α)-2π \du j ^~αt; — ,

0 I-!!* V

which gives finally, after integration by parts on u, and with use of x = 1 —u2,

(3.45)

This, together with (3.44), yields the universal coefficient of the expected asymptotic
behavior (3.7), as announced in the introduction (Eq. (1.8)).
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4. Higher Order Intersections

4. a. Model

We shall now generalize the above results to the case where P walks (P^2)
simultaneously intersect. This case is briefly alluded in ref. [10]. We shall use for this
purpose the generalization of probability weights (1.9), (3.8),

(4.1)

where the local time of intersection is now a product of P — 1 Dirac distributions.
b > 0 as usual, plays the role of the repulsive coupling constant. First, dimensional
analysis shows that the dimensionless parameter of the P-body interaction can be
chosen as

z = (2πyί«'-»bSp-ί(p-1) , (4.2)

which generalizes (2.3) for P = 2 and (3.10) for P = 3.
Hence the upper critical dimension for intersections of P walks is given by

2P
<** = pΓΓ (4-3)

and for P^ι4, d* becomes less than d= 3, with an accumulation point at d=2 for
P->oo. Hence this critical dimension does not really correspond to a physical
situation. However, the probabilistic nature of the problem does not really require d
to be an integer, and the results have certainly a mathematical meaning. Now, for
d>d*, the interaction parameter z vanishes in the asymptotic limit of long walks
S-^co. So ^-intersections will form an empty set for d>d*. On the contrary, for

Fig. 8a and b. Intersections of order P of the trajectories of P Brownian paths. Diagram a
contributes to the probability (4.4), or continuum partition function (4.5), that P trajectories do
not intersect all together. Diagram b corresponds to the same probability, but for one single path
and P -1 two-sided paths
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d<d*, P-walk intersections are relevant (z->oo), and the theory will reach a fixed
point limit [as a (φ2)% scalar theory]. At the edge d=d*, one expects logarithmic
corrections for walks on Έd*, with a trivial limit in the continuum space Rd*.

Let us consider the probability that P walks, starting at the origin in TLά, have an
empty multiple intersection set :

P{/71[05«1]n...nΠp[05«p] = 0} . (4.4)

Its continuum analogue, is, like in the above sections, the partition function

(4.5)

where the average is taken with the weight (4.1), as a functional integral like in
Eq. (2.5), and normalized with respect to the pure Brownian motions. Calculating
2£ to first order in b is an easy task with the diagrammatic rules given in Sect. 2. The
only contributing diagram is given in Fig. 8. Then 3£ reads

s S ~ ~ 2 ~ 2

J{ l)J Π &.(deU)-d/2 , (4.6)
0 0 1

where the determinant of the Gaussian integration is

P \ P

î - (4-7)

The integral (4.6) can be diverging at the origin when all {^} go to zero together.
This happens only when d^ d* = 2 P/(P — 1). We shall search here the dominant
pole when d-^>d*~ , setting

2P
, ε>0 . (4.8)

Hence the dimensionless parameter z (4.2) reads

d

z = (2π)'^P~1}bSε(p~1}'2 . (4.8bis)

To integrate (4.6), we perform the change of variables

s^SuΓ1 , z = l , . . . ,P , (4.9)
with

Si = σi$ •>

S gives thus the common scale of areas {Sj. Hence we can write, using (4.2),

oo oo P / P \-d(2

. / = f . . . f Πdurf12-2 Σ
K1} i \ ι
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It will be convenient to decouple the w f 's by using the integral representation

A oo d P

ί ΦP~2~l T
) i = l

where F reads

--2
F(p, σ 1) = j ί/w U2 e l

d ,d x (4.13)

\ 2

in terms of the incomplete gamma function :

Now, recalling that the possible divergence in (4.6) arrive when {$}->(), hence
{u} -> oo, we conclude that in the/? representation they will occur for/?-»0. Hence, to
obtain the dominant pole in (4.6) we may as well set σt = oo in (4.13), provided that
we regularize at large/? integral (4.12), by, e.g., a supplementary factor e~p. Hence,
the following equality holds true at the dominant diverging order when d-^d* :

rm

We perform the ε expansion of this result [using (4.8)] and find the singular part of J>

-+••• (^,
Hence, the partition function (4.5) has finally the first order expansion

. . . . (4.15)

We note that the dominant - terms does not depend on the distribution {Sj, but

only on its common scale S through z. As a consequence, the dominant scaling
behaviour of Jf , to be determined now, will depend only on S. One can take for
instance all areas equal Si — S, or equally well S^=S, Si Φ t = oo .



Random Walks 309

4.b. Renormalization

The method is a generalization of those of Sects. 2 and 3, and has not been presented
before. We use a renormalized coupling constant, here the Pth dimensionless virial
coefficient g, which will reach a fixed point value for d<d*. We define g as

where

f.. j Π ώ/Π
o o ί=ι ί=ι

(4.16)

(4.17)

describes the connected partition function of P walks of lenghts S, whose
trajectories have at least one point in common, and with one origin fixed to
eliminate the trivial translational invariance. The second factor in (4.16) makes g
dimensionless, as can be checked from (4.17). 3£P is easily evaluated to second order
with the help of Fig. 9 :

s P P 1 \ P Ί~d/2

2p-ί J . . . J Π ώ, Π (S-*) Σ ~ Π *
0 0 i = l i = l = S

(4.18)

The factor 2p~ί comes from all the equivalent diagrams obtained by twisting P — 1
walks in Fig. 9. Now, the singular part in (4.18) is given by the neighborhood of the
origin, and is therefore the same as in multiple integral (4.6), (4.11). We may write
immediately to this order

where Jsίng is given explicitly by Eq. (4.14). Hence g (4.16) finally reads

2

with

Its Wilson function is defined as usual by

P-l

, _ δ _

~dS'
ε

b,E

 = 2

d_

~dz

(4.19)

(4.19 bis)

(4.20)

1 2 P
1 2 P

Fig. 9. Diagrams for the connected partition functions &P(S,..., S) of P paths
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and reads from (4.19) in terms of g

'ε \
-g-g2J^' + O(g3} . (4.21)
2 /

ϊ^is regular when ε-»0, to all orders in g. For ε φ 0, the fixed point value of g is thus
obtained as

/ 1 \
(4.22)

At the critical dimension d*, ε = 0, we use the regular Wilson function for P walks

»Ί0,0]=-02(P-l)./' + 0(03) - (4.21 bis)

This yields by integration the asymptotic behaviour of g,

S) . (4.23)

It remains to evaluate the asymptotic behaviour of partition function ̂  (4.15). For
S large and d< d* , we expect it to scale like 3£ ~ Sζp, where ζp is a universal critical
exponent characterizing the simulatneous intersection of P walks. As in Sect. 2.3,
we define an associated regular scaling function

= S l n 3 T . (4.24)
oS

According to (4.15), it reads simply

. (4.25)

Therefore its fixed point value is obtained for d<d* from (4.22),

ζP=-^(P-l} + 0(ε2} . (4.26)

For P = 2,3 we recover (2. 25 bis), (3.24), as it must.

At the critical dimension d=d*, we insert in (4.24), (4.25) the form (4.23) for g :

S — ln^T=-l/(2p- 1lnS) + ... ,
oS

hence
3T«(lnSl)-1/21'-1 . (4.27)

This gives the generalisation to P walks of results (2.26), (3.25) for P = 2,3, and
valid in a space of continuous dimension d* = 2P/(P — l ) .

s
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If we look instead at the probability 2£' that one walk of length S does not
intersect P — 1 two-sided infinite walks (Fig. 8b), we simply get an extra-factor 2P~1

in the new partition function ££' ', obtained from (4.5), (4.15) as

This corresponds, for each two-sided walk, to the choice of interaction with the
positive time or negative time side. Immediately the critical exponent ζp such that
%'~S^ becomes, instead of ζp (4.26),

. (4.28)

At the critical dimension d* :

jT'^OnS1)-1 , (4.29)

as already found for P = 2,3.
We can also consider probabilities of non-empty intersections, which can be

evaluated in a way entirely similar to that of Sect. 2.3. In particular, one can
evaluate explicitly the analogue of probability &e (2.41) and 3£f (3.40), (3.44), (3.45),
where one finite walk starts at x0 while P — 1 infinite ones start at 0. But we shall not
pursue this question here.

It would be interesting to derive the results (4.27), (4.29) from a probabilistic
point of view, which would require to work in Zd, with dφϋtf.

5. More Results Near Four Dimensions

In Sect. 2, we have considered the intersection properties of two random walks, for
which d=4 is the critical dimension. However, we have contented ourselves there
with a simple one-loop calculation, which reproduced in a simple way probabilistic
results. The renormalization process appeared at this order as an almost trivial
statement, and perhaps its essential tool, i.e. substituting g to z, did not show its
actual efficiency. So, we shall here go one step further and calculate the probabilities
of intersection to second order in ε for d = 4 — ε, and in d = 4 calculate sub-dominant
logarithmic terms, as we did in ref. [20] for polymers.

5. a. Two Walks to O(ε2)

Let us first consider the probability ̂  (2.6) that two walks starting at 0 in TLά or JRd,
do not intersect each other before length S:

(5.1)

where the average is taken with respect to Edwards' generalized weight (2.1). The
expansion of 3£ to second order in b is given by the diagrams of Fig. 1 and Fig. 1 0. It
reads

(5.2)
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Fig. 10 a and b. Second order diagrams involved in the probability 3?(S, S) that two Brownian
paths do not intersect, except at their common origin, at order 0(ε2), d=4 —ε. Their contributions
are a J^ (5.7) and b J2 (5.8)

where J> has been calculated in Sect. 2, Eq. (2.14),

1
[ 22-d/2_2 ]

(l-d/2)(2-d/2)

,/ιC/2) correspond respectively to Fig. 10a,b. They read explicitly

(5.4)

(5.5)

Now, the actual scaling behaviour of ^ will be determined by the Laurent
expansion of these integrals when c/->4. When have for d=4— ε,

(5.6)

(5.7)

= z --- l + l n 2 ) .

The evaluation of J^ (5.4) is not really difficult and yields

"1 1 „

The last evaluation j^2 is not simple [43]. We find

(5.8)

(Note that the calculations are performed here for walks of finite and fixed lengths
S. This amounts in field theory to calculate diagrams involving two different
masses, which are related by Laplace transform to polymer diagrams with fixed
lengths S. This procedure is more complicated and different from the ones used in
[10,44], where the total length 5\ -f S2 of the walks fluctuates with a standard killing
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factor e-
m2(Sί+S2\) Hence we find

ε J |_ε ε

We need now to renormalize the theory at this order.

313

(5.9)

5.b. Renormalization

We need to know the dimensionless "second virial coefficient" g or "intersection
local time" (2.16) to third order in z. The diagrams contributing to the connected
partition function (2.17) ^2(S, S) to third order in b are given on Fig. 11, together
with their respective contributions and combinatorial weights. They can be
calculated by the same method as ̂  above. (See also [18, 22], the first diagram of
Fig. 10 in [18] being corrected here.) We have

(5.10)

(5.11)

and g (2.16) reads at this order

4 \ ι
--- l+41n2 + z3 -2- e(12-321n2)]

in agreement with some results of [22]. This equation is inverted to the same order
into

ε ε2

The Wilson function (2.20) associated with g reads now

(5.12)

w-Ί'τ2 oz
- [24 + e(18-481n2)] .

While being singular in terms of z when ε-»0, it is regular in terms of g, ε after
subsitution of (5.12), as it must:

2 β . | - 2 + β(-l + 21n2) (5.13)

-i2+ l ( / » - 1 6 l n 2 ) 1.1(8 - 16 In 2 )

Fig. 11. Second order contributions to JΓ2(S, 5) and their combinatorial weights, resulting in
(5.10)
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^corresponds to the intersection properties of two Brownian paths or two random
walks in d=4—ε dimensions. It is similar, but of course different, from the one
associated with intersections of two polymers or self-avoiding walks (see [18]). The
fixed point value of g such that W[g*,s] = Q is therefore in J<4,

(5.14)

For d=4, we set ε = 0 into (5.13) and get the regular differential equation

. (5.15)

This simple equation describes essentially the way the intersection local time (2.17)
changes with the "times" S allowed to the random walks in Z4. Note that its

d
analogue for usual polymers in d= 4 reads [20] S — g= —4g2 + 17g3, which shows

oS
the difference of intersection properties for Brownian and self-avoiding walks.
Equation (5.15) is integrated into

(5.16)
#

where s0 is an integration constant, g being small. We therefore find

(5 17)1 f ln[21n(5/ί 0 ) ] ,Γ lnMn(S/Λb) _ 2

(Note that a change of integration constant SQ brings in terms of order ln~2S in g.
Hence ̂ 0 can also be seen [20] as the value such that there are no such terms in g.) We
may write in short for simplicity

„- 1 + + . . . . <5.,7b,s)
21nS

5.c. Asymptotic Evaluation of the Probability of no Intersection

We calculate the finite scaling function ζ (2.24) associated with JΓ, from expan-
sion (5.9):

2 dz

Substituting (5.12) we find the regular scaling function

ε
. (5.18)

In less than four dimensions, its fixed point value gives the universal exponent ζ,

(5.19)
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such that
^~Sζ for S-^oo , (5.19bis)

3£ being the probability that two Brownian paths in Rd, d< 4, starting at the origin,
do not intersect again before "time" S. For rf=3, ε = l , we find an approximate
value ζ^—^-^—0.31. It would be most interesting to try and determine its exact
value in two dimensions, using conformal invariance and Coulomb gas methods
[45]. In rf=4, we calculate the scaling function (5.18) at ε = 0,

C[0,0] = -# + (2 + 21n2)02 + 0(#3) . (5.20)

The best way [20] to evaluate 2£ is to use definitions (2.20), (2.24) to write

d

and obtain from (5.20), (5.15) the expansion

Hence
& = Cg1'2[l-gln2 + 0(g2)] , (5.21)

where C is an integration constant, which will be model dependent [20] and thus not
universal. Actually, it can be calculated in terms oΐb for the continuum model (2.1)
[20]. Note that the value (5.21), together with our result (5.17), refines considerably
Lawler's estimation (2.26) in four dimensions. If we do not take into account the
unknown \} in g, we may use (5. 17 bis) and write the simplified universal result
in d=4,

If however one knew the value ofs0, one could write the better asymptotic estimate

O

2\n(S/s0)j 2 ln(S/s0) 21n(S/50)

We can also apply these results to the other geometrical cases described in Sect.
(2.d) (Fig. 4). We shall not need the second order contributions to these quantities. If
one uses indeed expansion (5.17bis) for g, as we have seen in Eqs. (5.21)-(5.23), the

correction terms of order O(g) are required only if SQ is known, while the

corrections terms are automatically brought in by g itself (5.17bis). So we
ameliorate directly Lawler's results of Sect. (2.d) into
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Case a (2.35)

where C" is a non-universal constant.

Owe ft (2.36)

&(S9 -oo,

where C" is non-universal.

c (2.39)

Owe d (2.40bis)

Case e (2.41 bis)

6. Nets of Walks

In this last section we shall give a full generalization of the intersection problem of
random walks in IRd or ΊLd. This generalisation seems not to have been considered
previously in the mathematics literature. It is inspired from known results in the
theory of polymers, where we considered [45] networks of fixed topology, and
calculated their critical properties. Some similar situations for walks in one
dimension (e.g. the "vicious drunk" problem in [46]) have also been considered,
in the context of wetting and melting phenomena [46] and commensurate-
incommensurate transitions [47].

Let us consider in TLά or JRd, Jf independent simple random walks or Brownian
paths. We constrain these walks to meet at some intersection points of degrees L, L
^ 1, where L walks meet together. L = 1 corresponds to free ends or origins of some
walks (Fig. 12). The location of the vertices is not fixed in space, but the topology of
the net of walks $ so formed is arbitrary but fixed [45]. This is entirely reminiscent of
gels, or branched polymers, i.e. polymer networks, with fixed topology. For
simplicity, we assume all the walks to have the same length S between the vertices,
but arbitrary lengths could be considered as well. The topology of ^ will be
characterized by the prescribed set of numbers nL of crossing points, or vertices, of
type L where L walks meet together in the net of walks .̂ The set [nL] does not
entirely define the topology of the net, but [45] it is the only relevant parameter set
for the scaling properties of the probabilities of intersections, as we shall see. We
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n,= 3 , n2 = 1 , n3 = 3 , n 4 = 2

Fig. 12. A net of Jf= 1 1 random walks of the same lengths, constrained to intersect at their
extremities at nL L-line vertices, with nγ — 3 single origins or extremities of walks, n2 — 1 double
point, «3 = 3 triple points, n4 = 2 quadruple points. Outside these vertices, the walks do not
intersect one another

now ask : What is the relative probability &($) that the Jf random walks constrained
to meet at the vertices of ^ at "time" S, never cross one another before "time" SI

(6.1)

This is obviously a full generalization of Lawler's probabilities for two
independent random walks starting at 0. We note that the latter case is simply
described by the set

{ii=2, w2 = l , « L ^ 3 = 0} , (6.2)

since there are 2 = ̂  free ends of walks, and 1 =n2 double point at the origin.
For a general network ̂  made of nL L-leg vertices, the total numbers of walks N

and of independent loops ££ in the net ̂  are given by the topological relations

Λ"=Σ\LnL, ^=£ I(£_2)«L + 1 . (6.3)
L^l Z L^l Z

In [45] we have given the basic renormalization theory required for dealing with any
polymer network. Here we shall adapt it to any net of walks, where it is even simpler.

6.a. Continuum Theory

For describing the mutual avoidance of the J^ walks, it is sufficient to generalize the
Edwards' model (2.1) to the weight ̂  of Jf walks of lengths S, interacting via

) two-body bδd interactions. The critical dimension remains d=4. The

probability of no further crossings JΓ(^) (6.1) is simply given by a functional
integral over all configurations, respecting the topological constraint of forming nL

L-leg intersection points [45]:

Jf JV Jf

Π rfirJPoM Π <5d[Γί(0)] . (6.4)
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δd($) is symbolic : it is the product of all necessary δd distributions in IRd, connecting
the walks in the net ,̂ plus one for eliminating translational invariance. The total
number of δd distributions in δ(^) is thus [45]

Δ= £ (L-i)ΛL + ι . (6.5)
L^l

^(Φ) can be calculated by dimensional regularization. Then, by dimensional
analysis, it can be written as

^($) = (2πS)^-A}d/2Zy(z,d) , (6.6)

where Z$ is a dimensionless reduced partition function, depending only on z (2.3)
and on space dimension d. From (6.3), (6.5) we get the "naive" scaling dimension

(6.7)
Hence we find

&(<9) = (2πSΓ*dβZ9(z,d) . (6.8)

Note that the first factor has been chosen to be precisely the exact Brownian scale of
the probability for b = 0 or z — 0. More precisely, the exact Brownian value of ^Γ(^)
can be shown to be

where <C^ is the connexion matrix of the graph .̂ It is a i^ x i^ matrix, where
y = £ nL is the total number of vertices of ̂ . The elements Cflb are labelled by the

L^l

vertices of ^ and are defined as

a^b , Cα b= — Φ lines joining β to &

a = b , (Cαα = - X <Cαb = Φ lines attached to 0 by one (and only one)
bή=a extremitity.

This matrix has a zero mode, hence det (C# = 0. The notation det <C^/{α} above is then
the minor of (C^ with respect to any vertex a of ,̂ and is independent of a.

6.b. Renormalization by Star Walks

Applying the results of [45], we now state the following multiplicative structure of
the renormalization of Z#. This dimensionless partition function possesses poles in
1/ε to all orders in its perturbation series in terms of z [see for instance JΓ in
Eq. (5.9)]. For extracting them it is sufficient to consider the partition function
^C^L) °f a single star walk &*L, made of L identical mutually avoiding walks of
lengths S9 all starting at the origin (Fig. 13). For this star ̂ L there is no constitutive
loop and Eq. (6.8) shows that ^(^L) is dimensionless:

(z,rf) . (6.9)

Furthermore, since a single walk has no other walk to avoid, one has trivially

Ξl . (6.10)
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Fig. 13. A star walk f/L made of L independent random walks issued from the same point, and the
one-loop diagram contributing to the probability ££ (,yL) (6.18) of no intersection, calculated from
continuum weight (2.1)

Now, as shown in [45], for a general network 3ί, we may factorize j2?(3ί) into

Π (2L)Hl A9(z,d) , (6.11)

where [45]
, (6.12)

and where the amplitude A#(z, d) reaches a finite fixed point value when z-»oo,

A9(z,d)-*A$ , Z-+00 , d<4 . (6.13)

Note that the above definitions are such that A9(z = ̂ ,d) = \. The amplitude
A#(z, d) becomes pole free in ε to all orders in terms of g, when the latter g (2.16) is
substituted to z. Note also that necessarily

{α}Γ
d/2 . (6.13bis)

[Note that in principle [45,18], in Eq. (6.11) one must also replace S~d^/2, by
R ~d^, where R is the physical size (2.2) of the isolated walk when the latter is self-
avoiding. Here there is no renormalization of this kind, since the simple random
walks are not interacting with themselves. In field theory, there is here no mass
renormalization. ]

The meaning of the multiplicative renormalization equation (6.11) is clear: all
the diverging polar parts of J?(0) are removed by simply factorizing out the proper
reduced partition functions (6.12) of the L-star walks, as many times nL as an
L- vertex appears in Ή . These polar parts scale with S with a set of irreducible
independent critical exponents. We have indeed [45] for z-*oo and d<4,

ZL(z9d)~zσL-l(2-d/2)~SσL , z-»oo , (6.14)

where σL is a irreducible universal critical exponent associated with the vertex of L
walks. (Note that for polymers, i.e. usual SAW's, the exact value of σL has been
obtained [45] in two dimensions σL = (2— L)(9L + 2)/64. From this set of values,
one can derive new infinities of exact geometrical exponents for SAW's [45,48].)

Here we have for a star walk (Fig. 13), according to Eqs. (6.9), (6.10), (6.12)

ΞZ^(z,</)~Sσ- . (6.16)
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Hence σL is also the scaling exponent of the L star walk. Because of Eq. (6.10), we
have immediately

The overall scaling behaviour of J^(^) (6. 11) is now obtained from (6.13), (6.14)

l

nL*LAt , S^oo . (6.17)

We only need now to calculate the star partition functions JΓ(yL), which will
yield the basic exponents σL's.

6.c. Logarithmic Behaviour in d=4

For calculating the dominant logarithmic behaviours in d=4, a first order
calculation is sufficient. In the next section the second order one will be performed
to get 0(ε2) results. The combinatorial calculation of &(^L) for a star walk is
extremely easy to first order in z [45] (Fig. 13) [Eq. (2.15)]

... . (6.18)
ε 2

The critical exponent σL is then calculated as

(6.19)

and reads to first order in g

. (6.20)

Of course it is regular to all orders in g when ε-»0. For d= 4 — ε, its fixed point value
is thus from (2.22),

σL=-|L(L-l) + 0(ε2) . (6.21)
O

Hence Eq. (6.17) implies that the probability JΓ(^) of no further intersections of the
net of walks & scales like

GS-+OO) (6.22)
with

L g l

In d=4, we write instead (6.19) as
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and get from (2.21) and (6.20),

Hence
(6.23)

where CL is a non-universal constant. Now we insert this information inside (6.11),
together with (6.13bis), to get in 4D,

&W~(2πSΓ2*g&"LL(L~ί)l*[l+0(g)] . (6.24)

We can use the refined result (5.17bis) for g in rf=4, to get the exact asymptotic
behaviour in %4

2lnS

1 v-, ι Ί
- Y nLL(L-l) + O(\n-lS)\ . (6.25)
Λ i—J y I

This yields the full generalization of Lawler's result to any net of walks. For the case
(6.2) of two walks, we naturally recover (5.22). Equation (6.25) gives the answer in
2ζ4 to question (6.1). We remark that the L=l vertices do not contribute to the
scaling behaviour. The origin of this fact lies in Eq. (6.10).

6.d. Calculation to 0(β2)

For completeness, let us now calculate to order O(ε2) the set of basic critical
exponents σL governing the partition functions J^(^L). The diagrams contributing
to this order are given in Fig. 14, together with their values. Note that the last
diagram of Fig. 14 is the only one which has not been calculated above. It equals </2

(5.8). It remains to attribute to each diagram its combinatorial weight, obtained by
choosing the interactions between the L chains. We find finally

(6.26)

Inserting the elementary values

2 1
+ -;(3-21n2)
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= 2 ( _ - 1 * in2

\

Fig. 14. Diagrams contributing to ^(^L) for L walks up to two loops, and their nominal
contributions. Here L = 4, but for L < 3 some diagrams do not appear. This is taken into account
by attributing to each diagram its combinatorial weight, which is L dependent [see Eq. (6.26)]

we find

Let us now simplify the notations

(6.27a)

(6.27b)
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where a,a'\b,b' can be read off from (6.27a):

α -fln2-,)

; ^ -
\ ^ / W V 2 /

For calculating σL (6.19) we can substitute 0 (5.11) to z in

(6.28)
.Z, ί7Z

and obtain a regular scaling function σL[0, ε]. We prefer to use here a different
method, which is simpler, and on which we would like to draw the attention of the
reader. In [34], we have indeed shown (in the case of real polymers) that rather than
substituting the second virial coefficient g to z as in [18], one can use equivalently a
simpler minimal subtraction scheme. We showed that it exists a unique renor-
maϋzed variable ZR with the minimal double Laurent-Taylor expansion of z(zR, ε),

* = Σ * i Σ ; . <6 2ί»

where the coefficients anrp are pure numbers independent of ε and z, such that any
scaling function like g(z,έ), ζ(z, ε), σL(z, ε) above, etc...., becomes regular with
respect to ε, ε->0, to all orders in ZR. For the present case of intersections of random
walks, a similar minimal scheme (6.29) exists. It has the advantage over g (5.11), to
be free of irrelevant finite contributions, g and ZR are related together by a finite
renormalization [20, 34]. Let us impose for instance that g (5.11) for two random
walks,

/ Δ. \ ΓΊ6 1
2- + -(12-321n2)

ε

is regular in (zR,ε). We find immediately the universal expansion (6.29) of z

4 „
(6.30)

ε \εz ε

Note that this minimal expansion is simpler than the equivalent one (5.12) in terms
of g and makes calculations easier. The fixed point value ofzR is obtained [20, 34] by
defining a Wilson function

W(z^=W\zR^=~z^zR ,
2 oz

and solving W\z'R,ε} = Q. We find

/Ά 2

zS = + 2 +0(ε3) . (6.31)
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This gives the universal "minimal" fixed point for intersections of two random
walks in IRd, d<49 and can be used in any further study.

Let us now calculate σL (6.28), (6.27b) with this scheme. Substituting ZR to z with
(6.30) gives

. (6.32)

The renormalizability of the theory requires first the following identity to hold true :

2a + b-a-=0 . (6.33)

It can be indeed checked from (6.27c), as an identity valid for any L^ 1. Now, we
find the fixed point value σL[z%,ε] from (6.31),

(6.34)

The particular values (6.27c) of a,a',b,b' yield, after some simplifications, the
universal exponent

, (6.35)
2 4

which is our final result.
One notices that all the In2 terms appearing in the expansion (6.27a) have

disappeared in this critical exponent. Mathematically, this comes from the fact that
the coefficient found for In 2 in σL is precisely (6.33), which must vanish for the
renormalization to be valid. Physically, the occurrence of In2 terms is an artefact of
the direct renormalization method, where finite walks of fixed lengths are
considered. This induces boundary effects (i.e. In 2 terms), which are absent in the
field theoretic version of the same critical theory. In the latter case, all the lengths of
the walks fluctuate and only the total length is controlled exponentially by a mass
term or a "killing time". We note that universality requires the critical exponents to
be the same. Here, this is insured by (6.33), which is a renormalizability condition.
Hence renormalizability and universality are synonyms. This appearance of
boundary effect is the drawback of direct renormalization [18] and makes
calculations slightly more complicated (see comment [43]). These effects disappear
in critical exponents. However, they are of importance in some universal numbers
l ike# (5.14).

The value (6.35) gives the critical exponent (^ governing the probability
for any <^,

, S->oo (6.36)

with

τ>& 2-ί L L 2-ί L
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We remark again that the L = l vertices, i.e. the origins or ends of walks do not
contribute to ζ^, and this of course is valid to all orders in ε, since it comes directly
from (6.10).

6,e. Three-Walk Crossings

We have considered above the exclusion of further two-walk intersections between
any two random walks in the net of walks .̂ One can of course consider the problem
of excluding three-walk intersections only, the two-walk ones being allowed. This
obviously generalizes the case considered in Sect. 3 for three walks starting at the
origin. The critical dimension for this tricritical problem [40] is still of course d= 3.
Using the formalism developed in Sect. 3, and extending the analysis given in Sects.
6a-c above, to the tricritical case, it is clear that we can evaluate JΓ(^). We shall not
give further details of calculations here. The general results read:

For d=3— ε',ε'>0 ,

where ζ$ is the universal exponent

^=~TΛ Σ nLL(L-l)(L-2) + O(ε'2) . (6.37)

For d=3, the universal limit is

For the simple Lawler's case of three walks starting at the same point: nί — 3, n3 — \,
and we do recover (3.25), as expected.

We can also generalize these results to a net ^ in d dimensions, for d^d*
= 2P/(P — 1), when only further P-walk simultaneous intersections are forbidden.
In this case we have for any number L of walks 1 rg L ̂  P — 1,

JT(^L) = 1 , (6.39)

since there are no possible P-walk intersections for L<P. Furthermore, we have for
L = P walks

2£(Seu = X , (6.40)

where ̂  (4.5) is the probability of no intersection of P walks starting at the origin
calculated in Sect. 4. Hence in all generality, we have

ζp = σp , (6.41)

where ζp is defined in (4.24) and σp in (6.16). Therefore, from (4.26) we find to first
2p

order in ε = d the fixed point value:
i i

σP=-~(P-\) + 0(i?) , (6.42)



326 3. Duplantier

IP
and the scaling function (4.25) in d=d* = .

Ό — Γ

(6.43)

Now, to first order in g or ε, it is easy to calculate σL for L^P in terms of the scal-
ing function for P walks. Looking indeed at the first order diagram of L walks
(L^jP) with one intersection of P walks, one gets a new combinatorial weight

I j = — , which is the number of choices of P walks among L.

Therefore, comparing to Eq. (4.15), we find immediately

From this, we deduce the relation between scaling functions (4.24) and (6.19) in the
case of P-body intersections, valid only to first order,

\p,
Owing to (6.42) this gives the fixed point value

. εuL— — p | v1 Λ ; ^p + ̂ (ε ) j

and from (6.43) in d* dimensions, the scaling function

}g+0(g2) , (6.45)

Now, from the general multiplicative equation (6.11), (6.16), (6.17), the scaling
behaviour of the probability ^(^} is found for any net of walks ^ in d^d*
dimensions, with P-point intersection forbidden. First for d<d*, it reads

with

C.- Σ .,.,- - Σ -, ~ p - . + OV> (6.46,
L^P L^P L ^

At the critical dimension d=d*, one has to calculate the ^-derivative

9 ^

where use has been made of (6.45) and (4.19bis), (4. 21 bis).
Integration gives

(6.47)
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Inserting this into (6.11), we find finally

d*

^(%)*S~^^(lnS)3« (6.48)

with the exact critical logarithmic exponents

2P
This gives the exact logarithmic scaling behaviour for any net of walks in J* = -

dimensions when P-walk mutual intersections are forbidden. For P = 2, 3 one
recovers from Eqs. (6.46) and (6.48), the former results (6.22) (6.25) for P = 2, and
(6.37), (6.38) for P = 3. QED

In conclus ion, we have shown in this article how various intersection
probabilities for random walks in TLά or Brownian paths in IRd can be calculated
from a minimal continuum model of the Edwards' type. This included the study of
double points in drg 4, triple points in d^ 3, . . . , P-tuple points in d^2Pj(P — 1). The
essential analytical tools are : perturbation expansion around the Brownian paths in
series of the number of intersections, study of the singular parts of the perturbation
series, followed by a direct renormalization, which actually amounts to resum the
dominant scaling behaviour of the probabilities or partition functions. The method
is quite flexible and can be applied to any topological problem of intersections. In
particular, we generalized considerably Lawler's results to the study of any net of
walks which form a hydrographical network with a prescribed set of confluence
points. The exact irreducible universal contributions of the star walks, i.e. the
confluence points, were given at order <9(ε2), as well as the corresponding
irreducible logarithmic factors in d=4.

The perturbation technique around Brownian paths is originally close from the
one used in probabilistic rigorous studies. However, the (direct) multiplicative
renormalization scheme is not considered or known there. So we hope that this
study could help to make this now standard methods of theoretical physics more
directly available to mathematicians.

Acknowledgement. We thank G.F. Lawler for an interesting correspondence after he received
this work.
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