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Abstract. Unknotted ring defects in ordered media are classified in terms of the
homotopy theory. It is also investigated what type of point defects will appear
when a radius of the ring defect tends to zero.

lβ Introduction

The homotopy theory of defects in ordered media has been developed in the field of
condensed matter physics (see [1-4] for a review). Topologically stable defects can
be classified by means of the homotopy groups of a topological space X which
represents internal order of a medium (order parameter space). In the theory, the
configurations with defects which can be transformed into each other by continuous
deformation are regarded as the same. The topological types of line defects are
characterized by conjugacy classes of the first homotopy group (fundamental
group), and those of point defects by automorphism classes of the second homotopy
group by the action of the first homotopy group. In this paper we develop the
mathematical foundation to classify defects of circular shape, or unknotted ring
defects which are not penetrated by line defects (Fig. 1). We call the defects of this
type the ring defects for short in this paper.

Fig. 1. An unknotted ring defect

In physical situations, ring defects appear when the two line defects which are
characterized by mutually inverse elements of the first homotopy group merge. If all
the parts of the two line defects approach each other evenly, they disappear at the
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(d) Cb)

Fig. 2. a Two line defects characterized by y and γ ~x e % approach unevenly, b Some of their parts
combine to disappear (the dotted lines) and a ring defect is left

same time when they merge, but if they approach unevenly and it happens that some
of their parts touch each other and disappear while the others have not, ring defects
are left (Fig. 2).

Although the local structure of the ring defect is nothing but that of a line defect,
a ring defect is a defect localized in finite volume and does not extend to infinity like
a line defect: in that sense the ring defects can be categorized as a type of point
defects. In fact, some of ring defects are found to become point defects when their
radii tend to zero and, as has been pointed out by Mineev [3], the characterization of
the ring defects requires two parameters one for the line defect and the other for the
point defects.

The homotopy approach to the classification of ring defects has been explored
by Garel [5], who studied the problem by means of the homotopy sets of mappings
from tori to order parameter spaces. But these sets do not have group structure and
are difficult to analyze. Besides all the elements of the sets do not necessarily
correspond to ring defects themselves but some of them represent rings which are
penetrated by line defects.

In the present work, we investigate the topologίcal types of order parameter
configurations with ring defects by using the homotopy sets which are somewhat
different from the one studied by Garel.

2. Order Parameter Configurations with a Single Ring Defect

The order parameter configurations with a single ring defect are represented by
mappings. R3 — Σ^X, where R3 denotes the three dimensional Euclidean space and
Σ denotes an unknotted ring, e.g. Σ = {(x,y,z)eR3',x2+y2 = \,z = ΰ}. We assume
that the order parameter space X is an arcwise connected topological space and
mappings are always continuous. Since R3 — Σ is homotopically equivalent to the
topological space W which is defined as the spherical surface with the two points TV
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N

(b)

Fig. 3. a The spherical surface S2 and b the closed surface W with the north pole TV and south pole S

of S2 shrunk into a point

and S (e.g. the north and south poles) shrunk into a point

W=S2/{N,S}~R3-Σ , N,SεS2 , 7VΦS (1)

(Fig. 3), the homotopy set of the mappings from R3 — Σ to X, which is denoted by
[R* — I X], is equivalent to \W\ X] as a set. Therefore we can study the isolated ring
defects by studying the mappings from the space Wto the order parameter space X.

In order to introduce the group structure, a base point * e X is fixed and we
consider only mappings which send the base point *w e W(to which N and S shrink)
to *. This homotopy set [W, *w; X, *] of the mappings, for which we use the
notation τ2(Z, *), can be also defined as follows. Let Fτ2(X,*) be the totality of
mappings f:I2-+X which satisfy the condition

/(M,0)=/(«,l) , /(O, w)=/(l, t>) = *,

where u,υel=[0, 1]. Thenτ2(% *) = π0(Fτ2(X, *)). The multiplication in τ2 (A', *) is
introduced by the multiplication in Fτ2(X,*), which is defined by

and we use the notation f~l e.Fτ2(X, *) to denote

The same homotopy group has been considered by some mathematicians [6-8].
Then the following theorem holds.

Theorem. The homotopy group τ2 (X, *) = [ W, *w;^, *] is isomorphίc to the semi-
direct product of τiγ (X, *) and π2 (X, *) :

) , (2)

by the usual action ofπ±(X, *) o« π2(Ar, *). Namely, every element ofτ2(X, *) cα
represented uniquely by a pair ofyeπΐ (X, *) α/tJ n e π2 (A^ *) as (7, n) e τ2 (X, *),
ί//e multiplication is given by

(3)
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where y2

1 («ι) denotes the image of HI e π2 (X, *) by the automorphism introduced by
lϊ1 e πι (̂  *)• We have used the symbol -f /0 denote the multiplication ofπ2 since π2 is
Abe Han.

Proof. We introduce a family of mappings Fπ2 (X, *) as the totality of mappings
f:I2-+X which satisfy the condition

and Fπl(X,*) as the totality of mappings f:I-+X which satisfy the condition

/(O) =/(!) = * .
Then

Fπ2-^Fπ2-^Fπl , (4)

forms a fibre space, wherep is a projection given by/?(/) (w) =/(M, 0). In (4), we have
used the abbreviation Fπ2 etc. to denote Fπ2(X, *) etc. This fibre space has a section
^ ° Fπι^>Fτ2, p°s = l, which is defined by s(g)(u,υ)—g(ύ).

Then we obtain the homotopy exact sequence for this fibre space (4).

s* π s*

leading to the exact sequence

)-»0 , (5)

with/?^ ° ^^ = 1 , Where the mappings ̂  and *2 are constant mappings *x : /-> * and
>}ί2 /2-^*. The sequence (5) gives (2).

We put

(y,*)=s*(y) ί*(n) (6)

for y e 7^ (Jf, *) and n e π2 (Z, *). Note that ISit(y}(n) = ̂ (y («)), where 7α(6) denotes an
inner automorphism by a;Ia(b} = a -b a~l, then the multiplication rule is

, «2) = ̂ *(7ι 72) * ̂ ^-^(^

giving (3).

A topological type of configurations with a single ring defect corresponds with
an element of the homotopy set \W\ X] without a base point. The correspondence
between the elements of [W X] and τ2(X, *) = [W, *w X, *] is given by the
following proposition.

Proposition 1. 77z<? elements o f [ W \ X] have natural one-to-one correspondence with
the automorphism classes of τ2(X,*) by an action ofπι(X,*) defined below.

The action ofy' 6 π^ (X, *) on the element (7, n) e τ2 (X, *) is denoted as y'((γ, n)) and
given by

/((^^(y'.OHy./iH/.OΓ1 , (7)

where y£π± (X, *) α« J « G π2 (Jif, *).
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Proof. Let F^2(X) be the totality of mappings f:I2-+X which satisfy

/(O, 0) =/(0, v) =/(!, v') , /(w, 0) =/(M, 1) , u9v,v'el .

Then π0CFτ2) = [W;.3Π and the inclusion & :Fτ2(X*) ̂ F^ 00 induce the mapping

fc*:τ2 = πo(Fτ2)->[^;^] = 710(^2).
Then we can prove that k% is surjective and k^1 ([#]) coincides with one of the

automorphism classes ofτ2(X, *) by the action defined above for any [g] eπ2(Fτ2),
giving the proposition. Π

From Proposition 1, it is seen that two configurations with a ring defect can be
transformed into each other if and only if they are characterized by the same
automorphism class ofτ2(X,*) by the action ofπί(X,^) given by (7).

Point defects are also represented by elements (e, h) of τ2, which form a normal
subgroup isomorphic to π2(X, #). This is expected because the closed surface W can
also enclose point defects. The fact that the ring defects are classified by the
automorphism classes of τ2 by πί is consistent with the fact that the point defects are
classified by the automorphism classes of π2 by π x . It is worth noting, however, that
a topological type of ring defects is not ncessarily represented by a set of a conjugacy
class of KI and an automorphism class of π2.

3* Correspondence Between a Ring Defect and a Point Defect

As we have mentioned in the introduction, the ring defects are the localized defects
and can be categorized in terms of the second homotopy group by considering the
order parameter configuration on the sphere which encloses the defects. When the
radius of the ring defect goes to zero, the singular region shrinks into a point and a
point defect is left. This point defect is also characterized by the same element of
π2 (X, *) with the element wich characterizes the original ring defect because the
deformation during the process is continuous on the sphere which encloses the
defect.

We now define the mapping Ω: τ2(X, *)-+π2(X,*) which represents the above
process as follows. Let Fη2(X, *) be the totality of mappings /: I2-+X which satisfy

f(u, 0) =/(M, 1) , /(O, ι;) = * , /(I, v) =f(\, 0) .

Note that Fη2 ID Fτ2 ID Fπ2, and there exists a homeomorphism

(Fig. 4).

n

Fig. 4. Diagrams which illustrate the homeomorphism ω. The heavy lines denote the regions of/2

which are mapped into the base point * of X and the dashed line and the open circles are sent
to some point of X
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Now let Ω be the mapping τ2(X, *)->π2(X, *) induced from the composition of
the inclusion Fτ2^Fη2 and the homeomorphism ω:Fη2^Fπ2. Then we have

Proposition 2.
Ω((y9n)) = y(n) for (y,ri)eτ2(X,*) . (8)

Proof. From (6), Ω((y,n)) = Ω(s^(y) i^(n)\ and it is easily seen to be y(n)
(Fig. 5). D

(α) (b)

Fig. 5. The diagrams which illustrate Ω((y,ri)) = y(ri). a and b represent (y,n) and
respectively

Equation (8) means that when the ring defect represented by (y, ri) e τ2 shrinks, it
becomes the point defect which is represented by neπ2 since the point defects are
classified by the automorphism classes of π2 by πt .

4. Ring Defects in the Presence of Other Ring or Point Defects

The ring defects have the feature which either the line or point defects do not have,
i. e. other ring or point defects can go through the ring defect. This transformation is
continuous but cannot be treated as a continuous path in the space F^2(X) because
this continuous transformation can be considered only on the surface of the torus
which encloses the ring defect but not on the space W.

The equivalence relation ̂  among the elements of Fτ2(X, *) which includes the
above process is defined as follows. For the elements / and /' of Fτ2(X, *),/~/'
means that they can be connected by a homotopy ht(teI,hQ=f,hί=f) which

ht(u, 0) = (9)

with u,veL Note that f~f i f / and /' belong to the same homotopy class of Fτ2,
ί e [/] = [/Ί? but the reverse is not necessarily true.

Proposition 3. The quotient space ofFτ2(X,*) under the above equivalence relation
Fτ2 (X, *)/ ~ is isomorphic to the set of conjugacy classes ofτ2(X,*) as a set,

Proof. If [/] and [/'] of τ2 where f,f'eFτ2 belong to the same conjugacy class, there
exists geFτ2 such that [f'] = [g 'f'g'1]. The homotopy ht can be defined by

which satisfies (9), A 0=/and [hί] = [f']ί therefore
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On the other hand if/~/', then there exists the homotopy ht with h0 =/, hί =/',
and (9). The element g of Fτ2 which satisfies [0 f ' g ~ 1 ] = [f] can be defined as
g(u9v) = hu(Q,v). Π

Proposition 3 shows that two types of ring defect can be transformed into each
other by continuous deformation allowing another ring or point defect to go through
the ring if and only if they are characterized by the same conjugacy class ofτ2 (X, *).

Fig. 6. The ring defect 2 whose cross section is denoted by the pair of open circles goes through the
ring defect 1 denoted by the pair of filled circles; a->b->c. The heavy and light lines (the dotted
line) denote the cross section of the closed surfaces W, which enclose the ring defect 1 (the ring
defect 2). α, β, and γ denote the elements of τ2 which represent the order parameter configurations
on the surfaces denoted by the heavy, light, and dotted lines, respectively. The arrows indicate the
direction of w-axis

In Fig. 6, the two pairs of filled and open circles denote cross sections of the ring
defects denoted by 1 and 2 respectively, and the heavy and light lines (the dotted
lines) denote the cross sections of closed surfaces W which enclose the ring defect 1
(the ring defect 2). The arrows indicate the positive direction of w-axis. α, β, and y
denote the elements of τ2 which represent the configurations on the closed surfaces
indicated by heavy, light, and dotted lines, respectively. From Fig. 6b, it is obvious
that

a = y β y~ί , (10)

and it can be seen that there are two elements α and β, which characterize the ring
defect 1. They may belong to different automorphism classes and Ω(α) may not
equal to Ω(β). If the ring 1 moves upwards and shrinks (Fig. 6a), then it will become
the point defect characterized by Ω(α) e π2. On the other hand, if the ring 1 moves
downwards and shrinks (Fig. 6c), then it will become the point defect characterized
by Ω(β). In this sense, it might be roughly said that the ring defect 1, which is
originally characterized by α is transformed into the ring defect characterized by β
by means of being penetrated by the ring defect y (Fig. 6a-c).
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5. Physical Examples

The list of systems of physical interest, their order parameter spaces, and the
homotopy groups π1 ? π2, and τ2 is given in Table 1. The homotopy group τ2 is
isomorphic to π± (π2) if π2 = 0 (πl — 0) since τ2 is a semidirect product of π1 and π2 .
Noting τ 2 (A Γ xΎ, (*Ar,#y)) = τ2CY, #jr) xτ 2 (Y, *y), there are only two systems with
non-trivial τ2 in the table the nematic phase of liquid crystal and the dipole free A-
phase of superfluid 3He. We give τ2 for these systems as examples. We use the same
notation for groups with that of [1].

Table 1. The homotopy groups π l 5 π2, and τ2 of the topological spaces for the systems with
physical interest. Q denotes the quaternion group of eight elements, {±1, ±ίσx, ±iσy, ±ίσz],
where σx, σy, and σz are the Pauli matrices. D2 denotes the four-element dihedral group c5Ό(3),
{1, Rx, Ry, Rz], where Rx,Ry, and Rz are the 180° rotations about x, y, and z axes, respectively

Physical systems

Planer spin
Heisenberg spin
Nematics
Biaxial nematics
Dipole free ^-phase (3He)
Dipole locked A -phase (3He)
Dipole free 5-phase (3He)
Dipole locked £-phase (3He)

Topological space

S1

s2

RP2

SOQ)/D2

(SO(l)xS2)/Z2

50(3)
SOtyxS1

S2xSί

KI

0
Z
z
0
z
0
0
z

τ2

Z
z
Z2 ιx Z

β
Z 4 xZ
Z2

ZxZ2

ZxZ

HI

Z
0
Z2

2
Z4

Z2

ZxZ 2

z

J.7. Nematic Liquid Crystal

The order parameter space Z, its πt , and π2 are given by

Since the automorphisms of π2 by πx are

the multiplication law of τ2 is

f(7ι + 72(m°d2), HI +«2) for 72 — 0
(r1,«1) (y2 «2)=((yι+T2(mod2χ_Πι+M2) for y2 = 1

and inverse elements are obtained by

(O^Γ'KO, -n) , (l^)"1 = (!,«) .

The expression y 1+y2(modr) means the sum is taken in the modr sense. The
automorphism classes by πx are
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and the conjugacy classes are

C —A n=0123

C(1,0) = JJ Λ(1,2n) (12)

00

The class A(Qίn) gives the classification of point defects.

5.2. DipoleFreeA-Phaseof^He

For this system
X=(SO(3)xS2)/Z2 ,

7^1 ~ ̂ 4 = JO, 1, 2, 3} , 7Ϊ2==Z .

and the automorphisms of π2 by πx are

The multiplications and inverse elements are given by

\(y\ + 72 (mod 4), Πι+n2) f°r 72—0? 2

|(7ι 4-72(mod4), — n± +n2) for 72 = 1,3

and

(2,ft)"1 — (2, — n) , (3,«)-1 = (!,«) .

The automorphism classes by πί are

^(m,n) = {(m>w),(w, —«)} » w = 0,l,2,3

and the conjugacy clases are

Γ1 — >4 n —0 1 ? λ^(0 «) — ̂ (0, n) °> 'l — ̂  ^ ? ̂ ? J5 ...

00

00

C ( 1 > 1 )=Uo ^α,2. + i)

C<2,Π) = Λα,n, , n = 0,l,2,3,... (14)

00

n=0

GO

«=0

The class A(Qtn} gives the classification of point defects.
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6. Summary and Discussions

We have investigated the topological classification of ring defects by analyzing the
homotopy group τ2 of the mappings from the space W, which is homotopically
equivalent to R3 — Γ, to the order parameter space. It has been shown that τ2 is a
semidirect product of πί and π2, which is the manifestation of the duality of the ring
defects, namely, the local structure of the singularity is identical with that of the line
defects while the defect is confined in finite volume like a point defect. The
topological types of isolated ring defects correspond to the automorphism classes of
τ2 by the T^-action, whereas one type of the ring defects can be transformed into
another type which is characterized by the conjugate element of the original one in
the presence of other ring or point defects if they are allowed to go through the ring
defect.

For both physical examples shown in Sect. 5, the automorphism classes of τ2,
(11) and (12), coincide with the direct products of the conjugacy classes of π^ and the
automorphism classes of π2 since π1 is Abelian. But it is not true in general. When X
is not 2-simple and has non-Abelian π±, the two sets do not necessarily coincide and
the number of topological type of ring defects can be greater than that of line defects
times that of ring defects although we have no such interesting physical examples in
Table I 1 .

The multiplication of two elements of τ2 is easily seen to give the type of ring
defect which is obtained when the two ring defects merge in the way shown in Fig.
7a. When the multiplication of two automorphism classes does not result in a single
automorphism class, the result of the defect combination will depend on the path
along which they merge in the presence of other line defects, as in the situation for
the line defects (Fig. 7b).

(α) (b)

Fig. 7. a Two ring defects combine into one. b Two different paths along which two ring defects
combine in the presence of a line defect

Some of the ring defects leave point defects when the shrink. The theory predicts
that the elements which belong to the same conjugacy class can result in different
point defects [see (8), (12), ans (14)]. However, this is not a contradiction and a
similar situation occurs for the point defects in the presence of the line defects, i.e.

1 We can easily construct a mathematical example for which the two sets do not coincide. For
example, if we define the action by D2 on SO (3) as the left multiplication and that on S2 as
1, Rx: Γ652ι-*r and Ry,Rz: r^ -r, then for X=(SO(3) x S2)/D2, nί(X) = Q and π2(X) = Z. The
πj-action on π2 is +1, ±iσx:neZ\-+n and ±iσyί ±iσz:n\-+—n
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the point defects can be created or annihilated by being brought around the line
defect. Analogously, in the presence of another ring defect or point defect, the ring
defect results in different types of point defects depending on whether it shrinks
directly or after the ring or point defects pass through the ring defect.

Some extension of the present theory is possible. A ring defect in the four
dimensional space can be treated by a simple extension of the theory and can be
interpreted as a pair creation and annihilation of point defects. The theory can also
apply to the classification of nonsingular texture of a "ring soliton" which are
embedded in the uniform configuration.
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