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Abstract. We analyze further the algebraic properties of bi-Hamiltonian
systems in two spatial and one temporal dimensions. By utilizing the Lie algebra
of certain basic (starting) symmetry operators we show that these equations
possess infinitely many time dependent symmetries and constants of motion.
The master symmetries t for these equations are simply derived within our
formalism. Furthermore, certain new functions T3, are introduced, which
algorithmically imply recursion operators @,,. Finally the theory presented
here and in a previous paper is both motivated and verified by regarding
multidimensional equations as certain singular limits of equations in one spatial
dimension.

I. Introduction

This paper investigates certain algebraic aspects of exactly solvable evolution
equations in 2+ 1 (i.e. in two spatial and in one temporal dimensions). It is a
continuation of [1], although it can be read independently.

We consider evolution equations in the form

4, = K(q), (1.1)

where g(x, y,1) is an element of a suitable space S of functions vanishing rapidly
for large x, y. Let K be a differentiable map on this space and assume that it does
not depend explicitly on x,y,t. If Eq. (1.1) is integrable then it belongs to some
hierarchy (generated by a recursion operator @,,), hence in association with (1.1)
we shall study g, = K™(gq). Fundamental in our theory is to write these equations
in the form R

qy, = jdyz(su LK1= jd}'zész(f% =K{), (1.2)

& R

where 6., =9d(y, — y,) denotes the Dirac delta function, ¢; = q(x,y;,t), i=1,2,
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K" (q,.q,) belong to a suitably extended space S, @,,,K?, are operator valued
functions in S. If ¢ is a matrix function then 1 is replaced by the identity matrix.
Throughout this paper m and n are non-negative integers.

The following results were obtained in [1]: 1) There is an algorithmic approach
for obtaining the recursion operator @, , from the associated isospectral eigenvalue
problem. ii) This operator is hereditary. iii) Each member of the hierarchy
(@7,K, 1)y, = [dy,0,,@7,K%,- 1, where K9,-1 is a starting symmetry, is a

symmetry of (1.2R). For example the Kadomtsev—Petviashvili (KP) equation and
the Davey—Stewartson (DS) equation admit two such hierarchies of commuting
symmetries. iv) If the hereditary operator admits a factorization in terms of two
Hamiltonian operators, then hierarchies of commuting symmetries give rise to
hierarchies of constants of motion in involution with respect to two different
Poisson brackets. For example, the KP and the DS equations admit two such
hierarchies of conserved quantities.

The above results extend the theory of [2-4] to equations in 2+ 1. Novel
aspects of the theory in 2 + 1 include: i) The role of the Frechét derivative is now
played by a certain directional derivative. If subscripts f and d denote these
derivatives then there is a simple relationship between directional and total Frechét
derivatives:

Ki2,[012F,] :Klzf[F] iKn [Fu] + an [F22] (1.3a)

where K, is an arbitrary function in S, and K17 denotes the Frechét derivative of
K, with respect to g;, i.e. "

8 . L
K12 [Fu] KlZ(ql + CFH’ q})la 0 bJ= 1’27 l;éj (13b)

Operators on which directional derivatives are defined are called admissible [1]
(applications of the d-derivative in explicit examples can be found in Appendix A,
see also Appendix C of [1]). 1i) The starting symmetry K9, can be written as
K?,-1, where K9, is an admissible operator. Essential to our theory is that the
operators K,z, acting on suitable functions H,,, form a Lie algebra.

1. For the equations associated with the KP equation,

@, =D*+q,+Dq,D"' +q,D " 'q, DY, qiEq +q, + Dy FD,),
(1.4)

where D, = 8/0y,. The starting operators K9, are given by

Ni>=4q15, My, =Dqi,+47,D 'qy,, (1.5)
and H, is an arbitrary function independent of x, i.e.

Hi;=H,(y1,52) (1.6)
The Lie algebra of K9, is given by

[leH(fz),N (Z)Jd" _N12H12’[N12H(1)aM12H(122)]d: _M12H(132),
[MIZ 12)M12H(2)]d:_(p12N12H123 (]-7)
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where
[KY, K31, = KV, [KE] - K3, [KY], (1.8)
HY) = [HY, HY], = idh(H(fs) H$)— HHHYY). (1.9)

R

2. For the equations associated with the DS equation
O,=0P,— Q5P 00), 00LF =0 F,+F 50,
P12F12$F12'\~JF12"‘—Flzy_’J, (1.10)

where J =ao0,0 =diag(l, — 1), Q is a 2 x 2 off-diagonal matrix containing the
potentials ¢ 1 (X, ), 42(x, ) and @, is defined on off-diagonal matrices. The starting
operators K, are given by:

Nio=0n Mip0n0, (L.11)
and H, is an arbitrary matrix function satisfying the following properties:
H,, diagonal matrix, P,,H;,=0. (1.12)
Also
(NLHG NG HG Y = — N HY, [NGHG M B = = Mo HE
(M HY, M, HE = — Ny HEY. (1.13)

iii) The recursion operator @, is admissible and enjoys a simple commutator
operator relation with hy, = h(y; — y,):

oh
(Do, hya]= —Phyy, hyy ZTIZ’ (1.14)
ALY

which implies that 5121(‘1"%:512(1)'{212?2-!:ZB’(?)GY{?(SQZK?Z'I, where
=0

05 = 00,,/00%.
The starting operator K¢, is also admissible and its commutator relation with
h,, implies that 5,, K{) can be written in the form

01K} =01, @K1, 1= 3 b @1 'KY, 01, (1.15)

for suitable constants b, ;.
1. For the two classes of evolution equations associated with the KP equation
we have that

p=—4u[Nyyh1,]=0, [My,.h,]1=—fDhy,, F=p2  (1.16)

and

n R .
/3’<l>, for K{,=N,,
b, = 117
! : 1—sps( S > 0 Y, ( )
Y BB s ) for KV =M,,.

s=0
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2. For the two classes of evolution equations associated with the DS equation
we have that

B=20, [Nyyh,]1=[M,,h,]=0 (1.18)

b, = /)”< > (1.19)

In [1] we assume knowledge of the underlying isospectral problem. This
problem implies: a) a hereditary operator @;,: b) suitable starting operators, say
M,, and le, and functions H,,; c¢) two skew symmetric operators such that
@, = ©F(OY) L. Furthermore, it can be shown that @, , is a strong symmetry
for the starting symmetries. One then needs to: a) Find [3 and b, , appearing in
Egs. (1.14), (1.15). b) Compute the Lie algebras of M,,,N,, on function H,, (i.e.
obtain equations analogous to (1.7), (1.13). ¢) Verify that the starting symmetrics
correspond to extended gradients, i.e. verify that (@) 'K, H,,). K9 =M,
or N,,, is symmetric with respect to the bilincar form

{G12>f120 = LdXdeYZtraceguflr (1.20

and

d) Verify that ©%4, 3 are compatible Hamiltonian operators.

In this paper the followmg results are presented i) In Sect. 2 we investigate
further the Lie algebra of the starting symmetries K9, H,,. In [1] we only used a
subclass of solutions of (1.6) and (1.12), given by H,, =h{, =h(y, —y,) and
H,,=hy,(al + ba), a, b, constants, respectively. This gave rise to time-independent
commuting symmetries. We now choose H,, to be a more general solution of the
above equations; this gives rise to time dependent symmetries. Time dependent
symmetries for the KP have been studied in [6,7, 18,20]. ii) In Sect. 3, using the
Lie algebra of IZ?ZH 1, and an isomorphism between Lie and Poisson brackets
we prove directly that @7,K9,H,, correspond to conserved quantities. This
derivation, which capitalizes on the arbitrariness of H,,, has the advantage that
does not use the bi-Hamiltonian factorization of @, ,. In other words, for the theory
developed in this paper one needs only to verify a)-c) above.

We recall that Fuchssteiner and one of the authors (ASF) introduced an
alternative way for generating symmetries, the so-called master-symmetry
approach. A master-symmetry is a function t which has the property that its Lie
commutator with a symmetry is also a symmetry. The t functions for the
Benjamin—Ono and the KP equations were given in [5] and [6-7] respectively.
Several authors (e.g. [8]-[12]) have noticed that master-symmetries also exist for
equations in 14+ 1 as well as for finite dimensional systems [13]. Let t and T
denote mastery-symmetries for equations in 2+ 1 and 1+ 1 respectively. If @ is
the recursion operator and X' = tK + T, is the scaling symmetry of an equation in
1+1, q,=K, then T=®T, is a master symmetry. However, there exists a
fundamental difference between t and T. The function @ ' T (@ is a Hamiltonian
operator) is not a gradient function; this can be used to constructively obtain @
from T. But ® !t is a gradient and hence the above construction of @ from t fails.

In Sect. 4 we show that 7 is not the proper analogue of T. Let us consider the
KP for concreteness. As it was mentioned earlier, @7,K9,-1 generates time-
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independent symmetries; it will be shown here that @%,K%,(y, + y,)" generates
time-dependent symmetries. It turns out that t=(®2,K%(y, +v,)),, (sce
Sect. IID). But @,' @%,K?%, H,, is an extended gradient for all H,,, hence @ "'t
is a gradient function. In Sect. 4 we show that the proper analogue of T for the
KP is Ty, = ®1,6,, (it corresponds to @*-1 for the KdV). Actually, @, T,, is
not an extended gradient and it can be used to constructively obtain @, ,.

In Sect. 5 we show that exactly solvable 2 + I dimensional equations are exact
reductions of nonlocal evolution equations generated via nonlocal isospectral
eigenvalue problems. This result both motivates the basic ideas and concepts
introduced in [ 1] and in this paper, as well as verifies several results presented in
the above papers.

I1. A Lie-Algebra for Equations in 2 + 1

In developing a theory for time-dependent symmetries in 2 + 1 it is useful first to:
i) characterize the commutator properties of these symmetries, ii) study the action
of @ on the Lie commutator [a,b],, where

la.b], = a,[b] = b, [al, (2.1)

and a, denotes an appropriate derivative. This derivative is linear and satisfies the
Liebnitz rule. For equations in 1+ 1 one only needs [a,b],, while for equations
in 2+ 1 one also needs [a,,,b, ], (see (1.3)).

Lemma 2.1. ¢ is a time dependent symmetry of order r of the equation g, = K, i.e.
oo™
——+ [G<r)> K]L = 0» (22)
ot
iff
oo . 1 .
o"=3% PV, FU=__[3UV K], j=1,..r [K,XV] =0. (23)
j=0 J
The above result follows from the definition of a symmetry and the assumption
that TV is time independent. It implies that constructing a symmetry of order /
is equivalent to finding a function X' * with the property thatits (/ + 1)* commutator

with K is zero.
The action of a hereditary operator @ on a Lie commutator is given by:

Theorem 2.1. Let
S=&,[K]+[D K, ] (2.4)

Then

a;) ‘17"[K1,K2]1,=[Kl,@"KzlLJr(Z @"‘r51@'"1>K2~ (2.5)

F=1
If @ is hereditary, ie. if

O, [ Dv]w— @D, [v]w is symmetric with respect to v, w, (2.6)
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then the following are true:
a,) O [P"K]+[D,(P"K), ] = D"S, 2.7
a;) ""[K,Ky] = [@"K,, @"K ],

+ @"( z d)m—rsl d)rv1>K2 - @m( Z (pn~rSZ(Dr~1>Kll
r=1 F=1
(2.8)
(m,n are non-negative integers).

Proof. To prove (2.5) use induction: (2.5), is an identity. Applying @ on (2.5), we
obtain

Q" [K,,K,], = P[K,, ®"K,], + <D< Y oS, (15'“1>K2.
r=1

Equation (2.5),, ; follows from the above and the following identity

QLK M], =K, @M], + S, M.

Equation (2.7) also follows from induction. To prove (2.8) first note that (2.5) implies
O"[K K, — (i oS, cD’"1>K2 —[K,, D"K,],. 29)
Equation (2.5) also implies
O"[K,,K,],=[®"K,,K,], — (; oS, rp'—l>1<1.

Let K, = @K, then (2.6) implies S, = @S, and the above equation becomes
(D"[Kh (DmKZJL = [@nKla @mKZ:IL —< Z @n—r(pmsz q)rﬁl>K1.
r=1

Applying @" on (2.9) and using the above we obtain (2.8).

Corollary 2.1. Let the hereditary operator @ be a strong symmetry for both K, and
K,,1e. 8,=S5,=0. Then
Q" MK, Ky 1 =[P"K,, K, ], (2.10)

In the rest of this section we characterize extended symmetries ¢,,. The
following theorem, proven in [ 1], maps extended symmetries ¢, , to symmetries g .

Theorem 2.2. Assume that the commutator of @, with hy, is given by (1.14) and
that the starting operator K9, are such that (1.15) is valid. If o, is an extended
symmetry of (1.2), i.e. if

n
001,

ot

+[015,8,,@1,K9,1],=0, (2.11)

then ¢, is a symmetry of (1.2), i.e.
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0o
0“ + [0, K], =0. (2.12)
In the above
[JII,K(I”}]f=O'“ql[K(1"i] _K(ﬁ:][au], (2.13)
and
[012,512@'{212?2'1](1:lZObn,l[UUa(D’{;K?zéazjw (2.14)

It is necessary to rewrite d,,®",K9,-1 in the form appearing in (2.14) since
the directional derivative is defined only for functions of the form L,,H,,, where
L,, is an admissible operator.

Using Lemma 2.1, Corollary 2.1 and the Lie algebra of K% H,, (with
appropriate H;,) we obtain extended symmetries, which then via Theorem 2.2
give rise to symmetries.

Proposition 2.1. Assume that the heredltary operator @, is a strong symmetry for
the admissible starting operators M,,,N,,, and that (1.14), (1.15) hold. Further
assume that M5, N, form a Lie algebra (analogous to (1.7), (1.13)). Consider the
following hierarchies

4., = jdyZéudyszxz’] = fdJ’2512N(1"§ =N{}, (2.15a)
R R

qi, =jd}’2512¢?2M12'1 = fdyléle‘{‘} =M. (2.15b)
R R

Then:

a) (O, M, 1)y, (D1, N 5o 1)y,, are symmetries of Egs. (2.15).
b) Appropriate linear combinations of {@7,M,,H{}},,, {®7,N,H?)},, for
suitable functions HY), generate time dependent symmetries for Egs. (2.15).

Rather than proving the above proposition in general, we use for concreteness,
the Lie algebra (1.6) to sketch how the above results can be derived. Details are
given in ILA, IL.B. Let

N =®"N,,, My =d"M,,. (2.16)

Then, using Corollary 2.1, Egs. (1.7) imply

[N(m)H(lxz) N(n l)H(lzz)]d= _N(m+n»l)H(132)’

[N(m H(l) M(n Z)H(lzzj]d: *M(lmz+n—l)H(132)’

MY HY, NGV HY = — MG VHE,

[(MYYHY, MYV H Y], = = Noy D HE, 2.17)
Part a) of the proposition is a direct consequence of Egs. (2.17) and (2.14). For
example

[N§3 1,0, NP 10y = = 3 by N7 01, =0,

since HY, =[1,8},7,=0; thus N{-1 are extended symmetries of (2.15a).
Consider part b) of Proposition 2.1. Let us first consider symmetries of order
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one it t. Then

N a\ . )
N(1m2)(Y1 +y,)— t2[3<1>N(1m2+n 0.1,

M§3 (1 + 1) — t2ﬂ( > b (2.18)
are first order time dependent extended symmetries of (2.15a). Similarly
N (vy + y5) — 12b, MY -1, (2.19)
MYY-(yy + y2) = 12b, N1, (2.19b)
-

are extended symmetries of (2.15b) with b, ; = (— 4a) Z 27 l
—s
To derive the above we use Lemma 2.1 and Egs. (2 17) For example, to derlve
(2.18) we look for a function X% such that its commutator with &,,N{}-1,
commutes with d,, N¢}-1. Clearly 2% =N (y, + y,) or M (y, + y,). For
(2.17a) implies

. . N
[N§2(y1+y2) 012 NT U= 2ﬁ<1>N<m+” V1,

since HY, = [y, + 5,04, 1, = —238,,, where 8, , =0 if [# L or 1 if [=1.
In a similar manner

NP1 +y,) t4ﬂ< ) N +yz>—z24ﬁ2< ) N2,

~

My +y,)? t4ﬂ< ) e Dy, +y2)+124ﬂ< ) My 321 (220)

are second order time dependent extended symmetries of (2.15b). Similarly

Ny, 4 y)? = tdb, MU Dy, 4 yy) 4 247 N0 207 D41, (2.210)

M (y; + ;)7 = t4b, N5 (y) 4 ) + 24y, MO 2 D
byt = (—4a)(n+ 1), (2.21b)

are extended symmetries of (2.15b). Indeed

~

[NT30s +52) ,512N3"5~11d:4ﬁ<’1’)ﬁ<{z+"‘”(yl +52)
since, [(y; 4 v,)% 61,1 = —4(y; + y,)d,,. Also
[NG3 D0+ v2), 01, N1 = 25( ) +202)
The extension of the above results to any order in time is straightforward: To

generate o, consider X% = N (y, + yz) or M%(y, + y,). The commutator of
(v, +y,) with &, produces (y; + y,) " Thus the " commutator of (y, + y,)
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with 6%, produces 1 which commutes with 6{%; hence Lemma 2.1 guarantees the
12 P 12 g

existence of an r'® order symmetry.

I1.A. Time Dependent Symmetries for the Equations Associated with the KP
Equation. Following the construction and the argument sketched above, extended
symmetries of order r in time

ot =Y txY) (2.22)
j=0
are generated through Proposition 2.1, starting with (%) = N H?), or M{3-HY,
where H{}, is defined by
HY, = (1 +9,)5 (2.23)

more generally, any homogeneous polynomial of degree r in y, and y, could be
used as well (note H', solves (1.6)). Using

!
H 8121 = = (1= (= 1)00 — s) = S HYs, 224
1, az0,
6(a) = { 0. Z =0 (2.25)

we can show that

i) The class of evolution equations (2.15a) with N, = ¢;, admits t-dependent
symmetries of order r given by

IO =NW-HY, (2.26a)
. A(m+jn~i251+1) (r~i2$,+l)
2O =2vr 9Ny, 7 CH, T, (2.26b)
and by
20 =M-HY, | (2.27a)
. A(m+)n~§]:2sl+l) (r—ihﬁ—l)
20 =Xv(r, j,s)M o ‘Hy, ™ , (2.27b)

where j = 1, the summation 2 is from s,,s,,...,s; zero to P, and P, = (n—1)/2 if
nis odd and (n — 2)/2 if n is even. Also

v(r, j, s) #(—j!Z)J( Ij10<r-l; 2s + 1>><11j1 bn§251+1><

and b, =(—4(x)’<7>.

ii) The KP class (2.15b) with M,, = Dq}, = q;,D~'q;, admits ¢-dependent
symmetries of order r given by

TQ=NM-HY), (2.29a)

r!

j 5
r— Y 25+ 1)!
=1

(2.28)
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(m+21n+j Z2s,+l) (r~§2;l+l)

0 = Zy(r,2],5)N 5 H," (2.29b)
) (m+(2j D+ j—1-— Z 23,+1) (r~25125,+1)
FCID = Sy, 2j — 1,5)M, H, ™ (2.29%)
and by
2O = M™-HY, (2.30a)
(m+2}n+; 2251+1) (r~§:}251+1)
5@ = Sy(r2j,5) M, H,™ (2.30b)

i (m+ (27— Ln+j— z 25,+1) (r»zilhﬁ—l)
T V=5vr2j~ 15N, ‘Hy, ™, (2.30¢)

1 —

with j=1and b, = Y| [%sﬁs(" S) — 4oy Z 2" ( S).
' s=0 [—s [—s

I1.B. Time Dependent Symmetries for the Equations Associated with the Davey—
Stewartson Equation. The construction of r-dependent symmetries for the
equations associated with the DS equation is similar. Extended symmetries of order
r in time are generated through Lemma 2.1, starting with X)) = N™HY), or
MW HY), where HY) is defined by,

HY) =diag(¢,, ¢ ), & Fyi+y,+2ux (2.31)

HY), satisfies the same formula (2.24), obviously replacing [H{}, 85,1, by [HY,
05,1];. Then, using Corollary 2.1 and Egs. (1.13), one can show that

i) The class of evolution equations (2.15a) with N, = 0., admits ¢-dependent

symmetries of order r given by Egs. (2.26) and (2.27), where b, ; = ﬂ’(?) = (20()’(7)

and j= 1.

ii) The class of evolution equations (2.15b) with M,, = 0,0 admits t-
dependent symmetries of order r given by Egs. (2.29-30), replacing: N©— N¢ =7
in Eq. (229b), MO —-MC~7*Y in Eq. (2.29¢c), MY —>M"" in Eq. (2.30b),

N© N9 in Eq. (2.30c) and using b, , = (2a)l<’;>

I1.C. Connection with Known Results. Before the discovery [14] of the recursion
operator of the KP equation, a different approach, the so-called master-symmetries
approach, was used to generate an infinite sequence of commuting symmetries [6],
as well as r-dependent symmetries [7-11], of the KP equation (see also [18,197).

The existence of a hereditary operator in 2 + | dimensions, together with the
Lie algebra of the starting symmetries allows a simple and elegant characterization
of the 2+ 1 dimensional (gradient) master-symmetries introduced in the above
papers. Here we briefly consider the KP example.
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In Proposition 2.1 and in Sect. I1.B. we have shown that the functions
5" = O, K, HY, (2.32)

(where HY) is defined in (2.23), but it could be any homogeneous polynomial of
degree r in y,,y,, and K¢, is N, or M,,) have the property that their (r + 1)*
commutator with 6,,K{) is zero, namely

[ [T(lmz'”, 0y K( %]d ~1a =0. (2.33)
r+1 times r+1 times
Then Theorem 4.1 of [1] implies that
[ [, KN, 1, =0, (2.34)
r+ 1 times r+ 1 times

namely 1" are the so-called master-symmetries of degree r of KP [11]. Equation
(2.33) essentially follows from the fact that a single commutator of t{%" with 6,, KY)
generates a linear combination of lower degree master-symmetries; in fact, choosing
for concreteness t(%” = @7, N, (v, + y,) and K¢} = M{), we have

n

(75", 0, M) ], = — Z AL+ v2) 04,0
n r! _
= IZI 0(}" — [)i}j /_’15' bn,lf(1n5+ nr l), (235)
which implies
L r! o
(03", M, = z; 0(r — l)(’f_—l)—,bn,zf(ﬂ”" . (2.36)

For r=1 Eq. (2.36) becomes
[ MY = b, MY (2.37)

master-symmetries of degree 1 generate equations which belong to the given
hierarchy.

III. Lie and Poisson Brackets for Equations in 2 + 1

In this section we first derive an isomorphism between Lie and Poisson brackets.
Then, using this isomorphism and the Lie algebra of the operators K9,, we prove
that @' K9, H , arc extended gradients. This implies that all extended symmetries
of the previous section give rise to conserved quantities.

Theorem 3.1. Let [a,b], =a,[b]— b [a] be a Lie commutator and {f,g) be an
appropriate symmetric bi-linear form. Let grad I be the gradient of a functional I,
defined by I, [v]=<{gradl,v); then y is a gradient function iff y, = y¥, where M*
denotes the adjoint of the operator M with respect to the above bi-linear form, ie.
{M*f,g>={f,Mg). Then if the operator @ is a Hamiltonian operator, i.e. if

O*=—-0, {a,®,[Ob]c)+ cyclic permut =0, (3.1
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it follows that
[6f, Og], = Ograd{f,0g) + O{(f.— [1)[Og] — (9. — gE)[Of1}. (3.2)
Proof.

grad (f, Og > [v] = {fL[v], Og) + {1, OL[v]g) + { [, Og.[v])
={[1[Og] —g1[Of1) ={fi[Og] + M7 [ —gi[Og],v),

where { f, @ [v]g) = {f,M,[v]) and M, denotes a linear operator depending on
g. Hence

[0f, Og], — Ograd(f,0g) = O,[Og]f + Of [Og] — O,[Of g — Og,[Of ]
—Ofi[Og]+ Ogf[Og] - OM] f
=0.[09]/ ~ O,[0flg - OM7 [+ O{(fL - f1)[Og] — (9. —91)[Of]}.

But the sum of the first three terms of the above equals zero because of (3.1). Hence
(3.2) follows.
In the above a; denotes an appropriate directional derivative. For equations
inl4+1L
[a,b],=[a,bl,, {f,g)=[dxtrace gf. (3.3)
R

For equations in 2 + 1,
Laiz, bzl =1a15,b12)es {fi1:9110= LdXdy trace g, f11»
R

(12,9120 = LdXthdYZ trace g,; f12 (3.4)
R

(if f and g are scalars, then delete trace), where [, 1, [, ], are defined in (2.13),
(2.4). Furthermore the following double representation of the functional I

I={dxdy, tracep,, = | dxdy,dy,tracep,, (3.5)
®? =3

allows us to define the extended gradient grad,, I and the gradient grad I of the
functional I by

Ii[vy,]= J dxdy,dy,0,,trace p;,[v,,]={grad,, L,v;, ), (3.6a)

R3

I [vy,]= jzdxdy1 trace p,y [v;,] = <{grad L,v,, ). (3.6b)
R

The following theorem, proven in [ 1], maps extended gradients y,, to gradients

Y11e

Theorem 3.2.

a) y1, and y,, are extended gradients and gradients respectively iff y¥, =7v1,,
and yY{,=711,, With respect to the bilinear forms (3.4c) and (3.4b) respectively.

b) If y,, is an extended gradient, then y,, is a gradient corresponding to the
same potential, namely if y,, = gradul, then y,, = grad I.
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Proposition 3.1. Assume that the heredltary operator @y, is a strong symmetry for
the starting symmetries M, H,, and N, H,,. Further assume that M,,,N,, form
a Lie algebra (analogous to (1.7) and (1.13)) and that ©,, is a Hamiltonian operator
whose inverse exists. Then

@_I(DTzlz?zlea IZ?2=M12 or 1\712 (3.7)
are extended gradients, proved that © ;' K9, H,, are extended gradients.

Proof. For concreteness we proof the above proposition for the recursion operator
and starting symmetries associated with the two dimensional Schrédinger and
2 x 2 AKNS problems.

II1.A. Conserved Quantities for Equations Related to KP Equation

Corollary 3.1. Let

Ny =41, My, =Dq{, +q1, D" g1y, Hyy =H(yy,p,)

7(n) n oA N7 (n n N 3.8
Ma%;d)anzs N(&:q)mNu, 0,,=D, (38)

where @, , is the recursion operator associated with the KP and is defined by (1.4).
Then

DT 'M"*YHP) = grad{ MWHY), D' NOHY>,

DN DH®) = grad( MM HY, D ' MHY>. (3.9)

Proof. We first note that the assumptions of Proposition 3.1 are fulfilled. Namely
@, , is hereditary and is a strong symmetry of M,,H,,,NH,,, (see Lemma 4.2
and Appendix C.la of [1]) The operator D™ ' is obviously a Hamiltonian
operator. Furthermore, D~ "M ,,H,, is an extended gradient (see Appendix A).
Since D™'M,,H,, is an extended gradient, Theorem 3.1 and (1.7¢c) imply
that D"'N{JH,, is an extended gradient. Then Theorem 3.1 and [M®™H{,
Nil)ngz)]df_M(nH)H(iz) imply by induction (3.9a). Finally Theorem 3.1 and
[M™HY MH3],= — N*"YHY) imply by induction (3.9b).

A consequence of the above result is that all symmetries derived in Sect. IL.B.
give rise to conserved quantities. For example, the following t-dependent extended
symmetries (see (2 19b) and (2.21a))

0 =My, +y,) + 120N V-1,
i3 = 1\7 V(1 + 32)? + 240 MYY-(y; + y,) + 1214402 N D1,

of the KP equation q;,= M{)=2(q,___+6q,q, + 3oc2D”1qlm) correspond to
extended gradient functions D~ '¢'Y) and D~ '¢'¥y; then they give rise to the
following t-dependent conserved quantities (see Egs. (4.15))

1 L rom ot a
M= dedy1<2(2 14?;)—(D MO+ v ) +m(D 1N(12+2)'1)11>’
R

1 N
12 = dxd — (DTINmTD + 2
Rjz x‘y1<4(m+1)( i+ y2) )i
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t12a N 1?3602
) -1 (m+1)
2m—|—3(D MYy + v + o

(D_lﬁ(f'?z)'])ll)

I11.B. Conserved Quantities for Equations Related to DS Equation
Corollary 3.2. Let
My, =010, Nip=0;.
H,, diagonal and such that
P,H; =0, MYI%#®22M127 12-(D12N12> O, =0, (3.10)

where @, is the recursion operator associated with the DS equation and is defined
by (1.9). Then

oMV HE = grad (MW HY, oN D HE),

N HE = grad (NI HY, o NHE . (31D

Proof. The assumptions of Proposition 3.1 are again fulfilled (see Lemma 4.2
and Appendix C.2a of [1]). The operator ¢ is obviously Hamiltonian in a
space of off-diagonal matrices. Furthermore, oM, ,H,,,0¢,,N,,H,, are extended
gradients (see Appendix A).

Since the above are gradients, [MPHY,NYVHY], = — M**DH?) implies
(3.11a). Then [M™HY, MHY] = — N®H) implies (3.11b).

The above implies that the symmetries derived in Sect. IL.C. give rise to
conserved quantities. For example, the 1% and 2™ order t-dependent symmetries

ot = ML — S N1

N HE — t16a MY HYY + 126402 N3 2+ 1,
of the DS equation Qlt =M@ = ~[20(Q;, . +°Q; )= 014, +4,0,],
(D—JD)A, = —2(D+ JD,)sQ3, obtained from Egs. (2.29-30), correspond to the

extended gradients 00‘112’,00(122), then they give rise to the following t-dependent
conserved quantities (see Egs. (4.24)):

Lo g, - |

IV = {dxdyt —
sz xdy raceo[Ql,z(;n+1) m 1

@ _ ~1 A\f(m+1) 17(2)
I DEéfzdxdyltraceo’[Ql,—z(nH_1)(D NPT YHE),

8o t232a2 PN
(D7 MYy DHE),, +- =D 1N<;";3)-1)11].

IV. On a Non-Gradient Master-Symmetry

In this section we make extensive use of the isomorphism between Lie and Poisson
brackets. Hence it is useful to investigate the properties of

Olg,—gf)=T,+OT;O ', T=0yg4, O,=0. 4.1
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Lemma 4.1, Let

S=Q,[T]+[DT,], 4.2)
with its adjoint
S*=Q@F[T]+ [T}, d*]. 4.3)
a) If @ is hereditary then
Q[ @"T] + [@"Tf &* — O*¥(Q"T)f = S* D*", (4.4)

b) If @ is factorizable in terms of compatible Hamiltonian operators, i.e. if
O=007, where Q+v® is a Hamiltonian operator, © is invertible and v is an
arbitrary constant, then

(@T), + OPT)EO ' =BT, + OT: O )+ OS*O 1, (4.5)

where we have assumed for simplicity that @, = 0.

c)

(@"T),+ Q@ T O ' =0T, + OTFO )+ Y &' 10D+ "S*@ 1.
r=1
(4.6)

Proof. Equation (4.4) is the adjoint of (2.7) for K = T. Equation (4.5) is derived in
Appendix B, and (4.6) follows from (4.5) by induction.

Theorem 4.1. Assume that @ is factorizable in terms of compatible Hamiltonian
operators and that ©, =0. Further assume that @ *®"M is a gradient function
and that @ is a strong symmetry for M. Then

Q™Y O"TSOTIM = Ograd{ @ '@"M,d"T)
r=1

_ Z @r—l@(p*m~r5* @~1(pnM

r=1
—OT, +OTFO HO"M — """ [M, T],. (4.7)
Proof. Using the fact that @' @"M is a gradient, Eq. (3.2) becomes
[@"M,d"T], = Ograd(O ' @"M,d"T) — {(®"T), + O(®P"T)i O '} d"M.
(4.8)

Since M is a strong symmetry of @, Theorem 2.1 implies

[O"M, " T, = """ [M,T], + (D'”( Y oSO 1>M. 4.9)
r=1
Using the above and (4.6) in (4.8) we obtain (4.7).
Equations (4.6) and (4.9) are useful in finding non-gradient master-symmetries
for equationsin 2 + 1. Furthermore, Theorem 4.1 is useful for deriving the potentials
of various gradients. Formulae (4.6), (4.9) and (4.7) take a particularly simple form
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if the function T, is such that

i) S, =8 =cl, (4.10a)
where 1 is the identity operator and c¢ is an arbitrary constant, and

i) Ty,,+ 0,,Tt,,07 =0. (4.10b)

In the following two examples the non-gradient master-symmetries are generated
through functions T, that satisfy Egs. (4.10).

IV A. Equations Associated with the KP Equation
Corollary 4.1.

a) @2,6,, is a non-gradient master-symmetry for the KP and the equations
related to KP:

[@1,K$,H oy, @3,6,,1,=b, @15 ' K9, H, s, @.11)
8D, =(D7,012)4+ O, (PF,0,,)5 O, (4.12)
where b, and H,, are given by
b,=4n, Hy,=H(y.,y,) arbitrary, if K, =N, (4.13a)
and by
b,=22n+1), Hyy=0;+y), r=01 1 K9, =M,,. (4.13b)
b) Let .
I = @197, 99, =05 KT, (4.14)
Then
"7(1"%H12=grad121n> (4.15a)
1 1 o
I, #b U VH 5,00, = b LdXdyldhéuV(sz)le
n+1 n+1R
1
= - j dxdyl(}?(l";”le)“, (4.15b)
n+1 RZ

where b, and H |, are given in (4.13).

Proof. 1f
Ty, =015, 4.16)

Eq. (4.10b) is trivially satisfied and Eq. (4.10a) holds for ¢ =4, since @;,,[0,,]=
@%,,[0,,] = 4. Equation (4.12) is a simple consequence of (4.6) for n = 2; using the
following results

@, [Ny, Hy5,61,14=0, (4.17a)
(D'iz[Mlz(JH +y3), 01,14 =2073" Miz()’x +y,), r=0,1, (4.17b)

(see Appendix A) in Eqgs. (4.9) and (4.7) (with M = K?zle and H,, as in (4.13)),
we obtain R .
[dyizK?zHu»@T2512]d=bn@q§mglK?2H12 (4.18)
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(that reduces to (4.11) for m = 2), and
b, @™ IKO H12=@1zgrad12<)3(1n%H1zs‘DT2512>, (4.19)

where we have used @7,0,, = O, @%,. Equation (4.19) reduces to (4.15) if one
uses the definition of { f,,9,,> given by (1.20) and (3.4c).

Remark 4.1.

i) T = ®*1 is a non-gradient master-symmetry for the KdV equation. Given
T one recovers @ from T,+ @TFO ~'. Equation (4.12) is the two-dimensional
analogue of this well known formula [8]-[10].

ii) Theorem 3.2 implies that Egs. (4.15) with m=1, H;, =1 reduce to the
following formula [6]:

1
99) = - grad J" dxdy, {0 (4.20)

bn+1

An analogous formula, for the KdV equation is well known

= 22 ]+ 3) grad fdxw‘"+ v,

i) We observe that Eq. (4.18) for H,, = 1 cannot be projected into Eq. (2.37).

IV B. Equations Associated with the DS Equation

Corollary 4.2.

a) @1, T,,, T, =(x/2)0607,0,,1, I = diag(l, 1), is a non-gradient master-symmetry
for the DS and the equations related to DS:

[d)'l'zk?zHu’@%z Tu]d=n<15'i§11€?zHu, (4.21)
2@12=(¢%2T12) +@12((I’12T12) @fz , O =0, (4.22)
where KO, H,, is defined in (1.11-12).
b) Let R
;(1'%'@1;;?2, 70, =0, K}, O,=o0. (4.23)
Then
PV H = grad;, I, (4.24a)
I, ——<1A(1"2+1)H125 T,,)= "(—_*_—] j dxdy,dy, trace d,,07,09{5; " H,,
1
2—(n—+'1~ j dxdy, tracea[Q,, (37 VH 5), ] (4.24b)
Proof. If
X .
Tu#EGQbénI, (4.25)

Eq. (4.10b) is satisfied and Eq. (4.10a) holds for ¢ =1 (see Appendix A). Then the



466 A.S. Fokas and P. M. Santini

derivation of Egs. (4.21), (4.22) and (4.24) is analogous to the one of Corollary 4.1.
(see Appendix A).
V. 2+ 1 Dimensional Equations as Reductions of Non-Local Systems
In [1] and [14] the classes of evolution equations
qh:fdyzélz(p'izk?z’ls (5.1
R

where @, and K9, are defined in (1.4-5), were algorithmically derived from the
spectral problem

W + q(x, y)w 4 aw, = 0. (5.2)

In this section we show that Egs. (5.1) are exact reductions of equations
non-local in y, generated by the following non-local analogue of (5.2):

Wee + qW + aw, = Aw, (5.3)

(@) x, ) = fdyaq(x, v, y2) f(x, y5). (5.4)

where

Heieafter the symbols @ and u,, indicate the integral operator defined by
@f)(x, y) = [dy,ulx, v, 72) f(x,92) (55
R

and its kernel u{, =u(x, y,,y,), respectively.

The algorithmic derivation of the classes of evolution equations associated with
(5.3) is standard; its main steps are:

1) Compatibility. A compatibility between Eq. (5.3), written in the more

convenient form ( v ) = ( ) 0, ! (W ) and the linear evolution equation
we/x \i=g-D, 0)\w,
w ~(w . . .
<w ) = V( >, yields the following operator equation:
x/t Wx

Gi=Cox+[G+aD,, 21 +[+aD,,c 1" +[G+aD,, D' [§+aD,.c]]
—4)&, + Ao(G +aD,) — (G + aD,) Ao, (5.6)

where the scalar integral operator 2¢ is the 1,2 component of the 2 x 2 matrix
integral operator V, Ap.=0and [, Jand [ , ]7 arc the usual commutator and
anticommutator.

i) Equation for the kernel. The operator equation (5.6), together with the
definition (5.5), implies the following equation for the kernels g,,¢5, 4;5:

Q12t=D'i/12C12_‘51_2A12+—‘u-cux» (5.7)

where _
W,=D*+4,+D '45,D+D 'G,D 'G,, (5.8a)
Gi2fi2= j(‘h3f32 * f13932)dys + oDy +D5) f 1. (5.8b)

R

iii) Expansion in powers of 4. Let us first assume that

Ci,= Z )LjC‘li)z, A, =0, (5.9)
=0

J
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equating the coefficients of /(0 < j<n) to zero we obtain: CV} = H); CY; V) =
Ll[jlzc(lj)z + H(xjfl)(l SjEn) g, = Dl}/12C<102); where H‘{; = Hm()p)«’z)- Then

n
C(Oz) _ Z 4s—n W'{ESH({,; s) and

s=0
G1s, = Z 457D qh{—2~5+1H(1'12~S): Z 45*:1@:{;5+1,H(1nz—s)’ (510)
5=0 s=0
where
&,=D¥,,D '=D>+§,+D§H,D ' +§.,D 'g,D " (5.11)

If we assume that

Cp,= 2 HCY, A,=—4 2 jij({)z’ H(lj)z HP(y1,v,),
then C{3 =D~ 'qry HYS Y + HYY: CUy V=1 8,09 + D™ 'q,, HY) + HY; (1 <
j<n); (112l:D'P12(' )+ 447, HY), where H“’ —H(’)() ,¥,). The choice HY, =0
for 0<j<nyields CQ= Y 4 "¥15°D 1§, HY; ** Y and

s=0

n+1 n+1

4112 — 245 ”Dl}l" ﬁlD 1~v H(n s+1)__ 204} nd)n s+1qi/2 H(1n275+1).
(5.12)

Thus the isospectral problem (5.3) generates the classes of evolution equations
(5.10) and (5.12).

It turns out that the transformation q,, —>d,,¢,.4; =4q(x,y,), 1S an exact
reduction of Egs. (5.10-11) if, at the same time, 4° "H{, 9,45 "H{H179

n+1 . ~
[3‘( >5§2, In this case §i, —qi,, P, — @,, and
s

n+1

n+1 n n S noay
012Gy, = Z [3l< )@Jl D5, =0, D1 =6,,P",M,-1, (5.13a)

n+1

n+1 . B . Lo
125111 Zﬂ( >¢12HICI12'5112:512(D12Q12'1:512<D12N12'1- (5.13b)

Proceeding exactly in the same way it is possible to show that the nonlocal
eigenvalue problem _
W.=JW,+0W+ W, (5.14)

generates the following class of evolution equations:
012, = 3 i ®3'00 HY, 0125 0%y, 32), (5.15)

where

@, F,=0(P,—05LP 1 00)F,, Fip=F(x,y,,y,) off-diagonal (5.16a)

Qf’zFu T;ICZ.V‘3(Q13F32iFlstz)s (5.16b)
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o = diag(l, — 1) and HY), is defined by

P, HY, =0, HY), diagonal. (5.16¢)
Also in this case the transformation Q,,—3J,,Q, is a reduction of (5.15) if
a,,,,—>/3'<rll>(ﬁ =20) and HY —04,1 or 8,0, In fact, 0, -0, &, - D,,.

Thus one obtains the following classes of equations:

n n _ _ " _
01,04, :lzoﬁ’<l>(p'l'2’Q125‘12[ =06,@1,01,1 (5.17a)
or
n n _ " B
512Q1¢ ZIZO’BI<Z>(D“‘Q“51”(7: 01, 91,0,0, (5.17b)

associated with the eigenvalue problem
W, =JW,+WQ + iJW.

The above results clearly imply that all the notions introduced in [1] to
characterize the algebraic properties of equations in 2+ 1 dimensions can be
justified and interpreted in terms of the algebraic structure of the corresponding
non-local versions. For example:

i) The above derivations both motivate and explain the derivation of the
recursion operators introduced in [ 1] and [14]. In particular the crucial role played
by the integral representation of differential operators is clarified.

i) The directional derivative introduced in [ 1], which is the main tool needed
to investigate the algebraic properties of equations in 2 + | dimensions, can be
derived from the usual Frechét derivative in the space of non-local operators. For
example, the Frechét derivative of §ig;, in a direction f}, is

qg[flz]gu:fitzgu» (5.18a)
f%zgu¢de3(.f1sgszi'g13f32), (5.18b)
R

which is exactly the direction derivative ¢, [ f1,]9;, introduced in [1].

iii) The definition of an admissible function and of its derivative follows from
the fact that reduced functions admit a double representation; for example (5.13b)
implies

" n o _
IZOBI<l>@22lfhz§llz:512(1)'{2‘112'1~ (5.19)

But the directional derivative is defined only on the admissible representation given
by the left-hand side of (5.19), which is the form of the function before the reduction:

n
n—1~— 1y
Zoan,l(plz G HY,.
l:

In Appendix A we investigate (Eqgs. (A.3)) the algebra of the nonlocal operators
ai,defined in (5.18b). Here we remark that this algebra can also be interpreted as
an algebra of matrices in which + indicates the operations of anticommutator



Recursion Operators and Bi-Hamiltonian Structures 469

and commutater respectively, namely a* b = ab + ba. (See also Appendix C of [1].)
This is not a coincidence and the following important observations, here illustrated
on the recursion operator @,, of the KP class, can be made.

i) Integral operators:

q;’zflz:fdJ’3(6113f32if13(132)> (5.20a)
R

G12=9012¢, +ad},, (5.20b)

is equivalent to the introduction of the integral operator 4. Then @, becomes
the nonlocal recursion operator @, ,, defined in (5.11) and associated with the
nonlocal eigenvalue problem (5.3).

1) Matrix operators:

a*f=aqf £ fq q,fmatrices, (5.21)
reduces @, , to the well-known matrix recursion operator
@=D*+4q*+Dg*D ' +q D tq DY, (5.22)

associated with the N x N matrix Schroedinger eigenvalue problem in one
dimension [15].

The directional derivative ¢1,,[ f1,1912 of ¢i3:

szd[fu]gu:fitzglp (5.23)

i) is exactly the usual Fréchet derivative G550 f15191, of 45,
ii) Corresponds to the usual Fréchet derivative ¢*[f]g of g*:

a [flg=r"9=Ffg+gf. (5.24)

Since the + operators in (5.20a), (5.8b), (5.21) and (5.18b) satisfy the same
algebraic identities (A.3), then important algebraic properties of the recursion
operator @, of the KP equation (like hereditariness) are equivalent to the
corresponding properties of the nonlocal recursion operator @, , (5.11) and, even
more remarkable, of the matrix recursion operator @, (5.22).

In order to make this connection with the matrix formalism more clear, we
observe that the nonlocal problem (5.3) can be obtained taking the N — oo limit
of the N x N matrix one dimensional Schroedinger problem

Wt qW = 2W, (5.25)
where the coefficients of the matrix g are chosen in the form
(@)ij = qi;(x, 1) + a0y j s — 6y 5-1), (5.26)
with the obvious prescriptions

0
qij(x, 1) —q(x, 1, ¥1,¥5); a0 41— 0;-1) ——’O‘a . (5.27)
N-ox N-ow V1
The connection between equations in 2+ 1 and N x N matrix equations in

1 + 1 was first used by P. Caudrey. He introduced in [16] a N x N spectral problem
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(similar to (5.25)) which reduces to (5.2) in the limit N — oo. Then he showed that
the N x N Riemann—Hilbert formalism associated with it becomes, in the limit
N — o0, the nonlocal Riemann—Hilbert and the d formalisms of (5.2) [17].

The connection established in this section between the spectral problems (5.25),
(5.3) and (5.2) implies that the well established theory of recursion operators and
their connection to the bi-Hamiltonian formalism in 1 + 1 dimensions, once applied
to the matrix problem (5.25), gives rise, in the limit N — oo, to the corresponding
theory developed in [1] and this paper for 2 + 1 dimensional systems.

It is remarkable that both algebraic properties and methods of solution for
integrable systems in 2+ 1 dimensions can be justified and obtained from the
corresponding properties of 1 + 1 dimensional systems.

Appendix A

In this Appendix we present some of the explicit calculations necessary to apply
the results presented in this paper to the classes of evolution equations associated
with the KP and the DS equations. In order to make this paper self-contained,
we first present some results contained in Appendices B, C of [1].
The directional derivatives of the basic operators gi, and Qf,, defined in
(1.4b) and (1.10b) respectively, are
szd[fu]gu:ffzglza f12,912 scalars, (A.la)

szd[fu]glz = f12912. fi, off-diagonal matrix, (A.1b)

where f},are defined by

12912 ¢de3(f13932ig13f32)~ (A.2)

The integral operators f, have the following algebraic properties:

air,bi,=tbira,,, (A.3a)

(ai2bir —bisan,)e; =(anshi,) ¢ = —canbys, (A.3b)
(@b Fhisan)e, =(anbn) ¢ = tenalhhby,, (A.3¢)
ai; = +ai,. (A3d)

Moreover the integral representations
‘11i2f12 = de3(‘113f32 T f13932) q12=9012q, + 2075,
R

szfxz = jd}’3(Q13f32 + f13032), Q12=01,04,

imply that the operators qi,and Q7,satisfy Eqgs. (A.3) as well. Equations (A.3)
are conveniently used to show that:

a) The recursion operators @;, (1.4) and (1.10) are strong symmetries of the
starting symmetries K9, H,, (1.5-6) and (1.11-12) respectively. For example, if
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K%, =0, and H,, is given by (1.12),
D, [0 H 1 12— (01 H12)i[Piaf121+ ¢12(Q 12 Hiz)al f12]
=—0[(QLH.,) " P05+ 00L,PL(QnH ) 112
— (0P, —QHPH 00 f12) Hiz+0(P,—QLPLQ0G) f1,H =0,
since the terms without QF, give
—0(Pi2f12) Hiy; +0Py f1H, =0,
and the terms with QF, give
—0(Q1,H,,)" Pr, 'O f1a— GerzPl_zl(szHn)Jrflz
(0Q12P121Q12f12) H12_5QT2P1_21Q;r2ff2H12= "‘7(((Q1~2H12)Jr
+HL00)P 5L 00 1+ 00LPL(f120,H i+ 05 /1, Hy,))
= —Uszple(Hszfzfn““f1+2Q1'2H12+ Q1+2f1_zH12)=0~

b) The Lie algebra of the starting symmetries is given by Egs. (1.7) and (1.13).
For example

i) if K9,H,, are given by (1.5-6):
[N HY, M HE1, = (Dai, + 41D i) HE) ™ HY = Digr, HY) " HY
—(qi:H{) D™ 1q, HY —q1,D " (g1, HY))” HY
= —Dq2(HY) HP +q, D" (—(HY) g, HY
+(H®) g, HY) = _Mle(fz);
ii) if K9,H,, are given by (1.11-12)
(N HY M HR = (Q0HE) HY — Q1 HY) oHY
= —(HY)" QoHE +(c(HY) 0, HYY
= —M,,HY.
c¢) The functions T}, given by (4.16) and (4.25) satisfy Egs. (4.10); for examples
i) if Ty, =9,,, then
Si2f12=@15,[0021f12=207,+01,D g, + 41, D 1015) f12=4f 12,
since 8,,,=0and 0, f,,=2f,,,0;,f1,=0.
il) If Ty, = (x/2)06Q1,0,, 1, then Egs. (4.10) are satisfied using the following results:
T5,[f12] :gaffzfsul':xaflz,

01, /12, fi, off-diagonal

T f1s =x(00, f1s £ f120 :xo{f :
12/12 1f12 £ f1,00,) 0%, f12s f1, diagonal

For instance:

Siafi2= “U(T;rzpl_le;rz‘FQ;rzP;zl T1+2)f12 +0(Pyy— Q12P1 Q12)>°0'f12
‘X(P12'“Q1+2P1_21Q1+2)f12 = f1i2-
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d) @1,[K%H,,,T,,]=0,if K9, H,, and T,, are given by (1.11-12) and (4.25)

respectively, or by g, H,,H,, =H(y,,y,), and d,,. For example

) @1,0q1,H15,012]0= @156, Hy,=0.

ii) q)'{z[szHu» TlZ]d = r{z(Ti_zle - szd[Q;sz])
=@, (x0Q;, —x0Q,) Hi,=0.

e) Equation (4.17b) holds. It follows from M124[612] =D06{,+0,D Yq, +
q7, D~ 167, = 2D, which implies

d"{z[MQ'Hu’ém]d=2@’I2D'H12- (A~4)

Different choices of H,, = H(y,,y,) give different results. As it was shown in
Appendix B of [1]

< H(y, —y,)

QUIDH, =) Q) O M 1Y, H =05 (AS)
1=0 Y
an analogous, although more tedious derivation, gives
DD H = 0L My + Y, 6202 @52 M, HE, (A6a)
1=1

o'H —1)/2, dd
moy = AU R oy, 02 (A6b)

oy, n/2, n even

and the coefficients C{ are obtained through the following recursive construction:
m _ ~m—1 m—1 m—
géo:;ff ‘20T + Oy, (A7)
where C{ =0 if b <0 and b > a. Equations (A.4) and (A.6) imply Eq. (4.17b).
f) O, CD'{ZK?ZHH are extended gradients; for example if
1) [2(1)2=N12¢4f2’H12:H(Y1>Y2)a O, =D and n=0:
<_f12,(D‘11\712H12)d[g12]>=<f12,D’1g{2H12>=<D—1f12,Hf2g12>
= —(H,LD ' f15,912)=<{D" ' fL,H 5,912
ii) 12(1)2:Mlz#Dq;z’l‘%_zD_]‘h_z,Hu""H(YUJ’Z)’ O, =D and n=0:
<f12!(D—1M12H12)d[g12]>
={f12:912H12+D 'g,D " 'q;,Hi, + D 'q;,D g, Hip)
={f12,(H{; =D (D" 'q,Hy5)” + 41, D" ' H,))g,2)
=((H{; = (D" 'q,H15) +H,D 'q)D ) f1.912)
={(H{; =D (D" 'qH5)” +qH D) f12.912)-
iii) K9, =M,,=0Q;,0, H,, defined in (1.12) and n=0:
<f12a(0M12H12)d912>:<f12,_H1+2912>:<“H1+2f12y912>-
iv) K9,=N,,=01,,H,, defined in (1.12) and n = 1:
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<f12,(UN(112)H12)d912>
= f12:(= (P 0L0LH ) —PLHL+0LHLPH Q)92
== (P Q500H,) —PLHL+QLHLP L 00) 12,9120
g) Equation (4.24b) holds, since
PV VH 5, x0Q150,,1) = —<xQ 5070y VH 5,0,,1)
:stdXdJﬁdyzéutraclezaf’(fzﬂ)Hu-

Appendix B

In this Appendix we show that if @ is factorizable in terms of compatible
Hamiltonian operators 2and @ in the form @®= QO ™!, and if @ is invertible and
®, =0, then Eq. (4.5) holds.
We first show that
(T =L5+TFO*, Lrb=d [b]T. (B.1)
QW T+OLEO o=@, [T]h. (B.2)
(B.1) simply follows from the definition of the adjoint:
A@T)a,by =<a, @ [P]T + @T, [b]) = (L} + T{®*)a, b,
while (B.2) requires the use of all the hypothesis of this Lemma.:
(O, W]T+ OLEO 'v,a)
=[O0 ')]O 'T,a) +{2[Ox]O v, 'T)
=, Q[TT1O > =<o, @, [T]v).
Then, using (B.1-2) and (4.4) for n =0, we obtain Eq. (4.5):
(@), + O@T)FO o= d(T, [v]+OTfO 'v)+ @, [v]T
+OL O v+ O(TFO* — O*TF)O ™ 'y
=P(T, [vV]+OTFO 'v)+ OS*O 'v.
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