
Communications in
Commun. Math. Phys. 115, 607-629 (1988) Mathematical

Physics
© Springer-Verlag 1988

On the Linearized Relativistic Boltzmann Equation
I. Existence of Solutions

Marek Dudyήski1 and Maria L. Ekiel-Jezewska2

1 Institute for Fundamental Technological Research, Polish Academy of Sciences,
ul. Swietokrzyska 21, PL-00-049 Warszawa, Poland
2 Institute for Theoretical Physics, Polish Academy of Sciences, Al. Lotnikow 32/46,
PL-02-668 Warszawa, Poland

Abstract. The linearized relativistic Boltzmann equation in L2(r,p) is inves-
tigated. The detailed analysis of the collision operator L is carried out for a
wide class of scattering cross sections. L is proved to have a form of the
multiplication operator v(p) plus the compact in L2(p) perturbation K. The
collisional frequency v(p) is analysed to discriminate between relativistic soft
and hard interactions. Finally, the existence and uniqueness of the solution to
the linearized relativistic Boltzmann equation is proved.

1. Introduction

In the standard approach to the relativistic kinetic theory one assumes the
Boltzmann equation as an evolution equation for the one-particle distribution
function [1,2]. One of the main mathematical problems one faces in that approach
is to prove, under physically reasonable assumptions, existence of a unique
solution of the Cauchy problem. Such a proof depends crucially on a specific
choice of a function space one uses to describe a physical system. Several
interesting results concerning solutions of the Boltzmann equation in general
relativity have already been obtained [3-5]. For functions of a compact support
bounded by exp [ — j?α(x)pα] Bichteler [3] proved local existence of a solution to the
Boltzmann equation under the assumption that the total scattering cross section is
finite. A similar result, but in Sobolev spaces and with additional assumptions on a
form of cross section, was obtained by Bancel [4]. The Sobolev spaces are also
appropriate for analysis of the coupled Boltzmann and Einstein-Maxwell
equations. The Cauchy problem for such a system of equations has been solved by
Bancel and Choquet-Bruhat [5].

It is still not known whether solutions in those spaces allow for any
hydrodynamical approximation. On the other hand, the detailed analysis of the
nonrelativistic Boltzmann equation, including rigorous justification of the hydro-
dynamic approximation, has been given by Grad [6, 7], Ellis and Pinsky [8], Ni-
shida [9], and Kawashima et al. [10] for a different space of functions correspond-
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ing to systems close to a global equilibrium. Our aim is to perform a similar analy-
sis for the relativistic Boltzmann equation.

In this paper we shall prove that with some quite weak bounds on a possible
form of scattering cross section there exists a nonincreasing in norm, global in time,
unique solution to the linearized relativistic Boltzmann equation in a flat space-
time.

Physical relevance of our results is discussed in [27].
The paper is organized as follows.
In Sect. 2 preliminaries on the system and the linearized relativistic Boltzmann

equation are given. For a suitable regular cross section the collisional operator L is
decomposed as L = — v(p) + K, where v(p) is a function of p called collision
frequency.

In Sect. 3 the compactness of the K operator in L2(p) is proved.
In Sect. 4 the dependence of the collision frequency v(p) on the scattering cross

section is analysed and the notion of relativistic hard and soft interactions is
introduced.

In Sect. 5 the existence and uniqueness of the solution to the linearized
relativistic Boltzmann equation is proved.

2. The Linearized Relativistic Boltzmann Equation

We consider a one-component classical relativistic gas of particles with rest mass
m φ 0 in the flat space-time and in the absence of all external forces. We assume that
the system is close to a global equilibrium and that in order to determine its state it
suffices to know the one-particle distribution function.

It is convenient to introduce dimensionless variables xμ and pμ, which are
defined by relations: xμ\ =yμ/cτ and pμ: =qμc/kT, where yμ and qμ represent the
usual, dimensional four-vectors of position and momentum respectively. The
dimensionless mass is M = mc2/kT. It is convenient to interpret T as the
temperature in the global equilibrium state: τ is a time scale to be specified.

We write down formulas in a covariant manner, using an arbitrarily chosen
frame of reference. In this frame we decompose xμ and pμ as: xμ = (ί,r) and
Pμ = (Po? P) The signature is ( H ---- ).

The evolution of the distribution function F(r,p, ί) is governed by the
relativistic Boltzmann equation [1,2] :

Έ + V/Έ = ̂ P-^IF'F'^FF^ , (2.1)

where
is the total energy;

2g '• = |pι — p\ is the value of the relative momentum;
cosθ: = 1 — 2(pμ — P ι μ ) ( p μ — p'μ)(4M2 — s)'1 defines the angle of scattering;

dΩ = smθdθdφ;
σ(g, θ) is the differential scattering cross section. All the above variables refer to

the centre of mass (c.m.) frame.
Since the system is close to the global equilibrium, its distribution function

F(r,p, ί) can be written as:

F(r, p, ί) =/0(p) + [/o(p)] 1/2/(r, p, ί) , (2.2)
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where

.Wo"2,

609

(2.3)

and the relativistic equilibrium distribution function /0(p) has the Jϋttner form
[11]:

where Uμ has the meaning of a dimensionless hydrodynamic velocity; K2(M) is the
Bessel function of the second kind of index two [12].

Now linearizing Eq. (2.1) we find that the evolution o f / is governed by the
linearized relativistic Boltzmann equation (LRBE) [13,14]:

-1/2 e l / 2

dt PO dr 2p0

fί , /'

U/i'o)1'2 (/ό)1/2 (/ιo)1/2 (/o)1/2J (2.5)

Equation (2.5) is our basic equation. We shall consider this equation in the
Hubert space L2(r, p) of real valued functions with the scalar product given by

(f\g): = J d3r d3p f g . (2.6)

Functions from this space have a simple physical interpretation as describing
systems with a finite entropy1.

To analyse properties of the LRBE (2.5) we need bounds on a form of the
scattering cross section σ(g, θ). Specifically, we assume that there exist constants α,
/?, 7, B, B' such that σ obeys:

σ(g, θ) <* (Bgβ + B'g~*) siny 0, (2.7)

where γ > - 2, 0 < α < min(4,4 + 7) and 0 <; /? < 7 + 2 (see Fig. 1).
This restriction is justified on physical grounds, as will be discussed in a

separate work [27].

Fig. 1. The momentum g and angle θ dependence of the scattering cross section σ [see Eq. (2.7)].
All σ lying in the shaded region are admissible

1 The entropy for the linearized Boltzmann equation is to be understood as Jd3pd3r/2 [17]
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The condition (2.7) is our main assumption. It represents a non-trivial
generalization of the restriction used in the mathematical analysis of the non-
relativistic Boltzmann equation [6,16].

Under the assumption (2.7) the LRBE (2.5) may be rewritten in a form similar
to that known from non-relativistic physics [6, 15, 16]2:

with

K = K2-K^ (2.9)

K/[/(r, P, 0] ̂  ί Pptkfo, Pι)/fr Pι> 0 , (2-10)

v(p) = fd3p1fc1(p,P l)exp[(τ-τ1)/2], (2.11)

where τ : = Uμpμ, τί: = Uμplμ.
The integral kernels fcf have the following form:

1/2

), (2.12)

s3/2

Γ g 1 i
:σ -^-r-^V U-|_sm(φ/2) J

(2.13)

where /0 is the Bessel function of purely imaginary argument of index zero [12]
and ψ is connected with x by the relation:

sin(φ/2) = 21/2g[g2 - M2 4- (g2 + M2) (1 + x2)1 /2] ~ 1 / 2 . (2.14)

p Λ pί is a vector product of p and pj calculated in the rest frame of our gas [in this
frame C/μ = (l,0,0,0)], so the explicit expression for I p Λ p J has a form:

lpΛp1H[4g2(ττ1-g2-M2)-M2(τ-τ1)
2]1 / 2. (2.15)

Using results known from the non-linear relativistic Boltzmann equation [1,2]
one checks easily that the collisional operator L = — v + K is symmetric and non-
positive definite with respect to the scalar product (2.6).

Moreover, L[φ(p)] = 0 iff φ E JV0, where N0 is the subspace spanned by {/O

l/2(p),
Pi /o1/2(p)> Po/o1/2(p); *' = 15 2,3}. In addition, integral kernels fet (p, pj are symmetric
functions of both arguments.

In order to analyse properties of the LRBE (2.8) we follow the non-relativistic
theory [6, 8, 9, 16] and examine first the structure of the K operator and the
behaviour of the collision frequency v (see Sects. 3 and 4).

2 We emphasize that (2.8) is a different equation than that following from the relativistic
Chapman-Enskog approximation and also called the linearized Boltzmann equation by some
authors [18]
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3. Properties of the K Operator

The main result of this section is the proof of the following theorem:

Theorem 3.1. Under the assumption (2.7) the K operator is compact in L2(p).

In the proof we shall use the following lemma, proved by Drange [15]:

Lemma 3.1. Assume that:
1) J^i(P?Pι)^3Pι is bounded in p for i — 1,2,
2) ktEL2(Qn) for n=l,2,3,.. ., where Ωn = AnnBn and

4, = {(P,Pι):|p-pιl^l/"}, (3.1)

βΛ = {(p,Pι):|Pl^"}, (3.2)

3) lim supfd 3 pΛ (P,Pι)*,, = 0, (3.3)

where i=l,2 and Xn is the characteristic function of the set R6 — Ωn.
Then the K operator is compact in L2(p).

To use Lemma 3.1 it suffices to check whether the conditions l)-3) are satisfied
by the integral kernels (2.12) and (2.13).

We begin with point 1) and we prove:

Lemma 3.2. Under the assumption (2.7) the following estimate holds:

sup Jd3p1/c ί(p,p1)<oo, i = l , 2 . (3.4)
pe#^

In the proof of the Lemma 3.2 and Theorem 3.1 we will frequently make use of
simple algebraic estimates, which are listed and proved in Appendix A.

Proof of Lemma 3.2. For i = 1 and ι = 2 estimations are made separately; in both
cases we first find a bound on /cf(p, p^ as a function of p and v : = pt — p; next we
integrate it over v to show (3.4).

1) ί=L From (2.12) we have:

i /2 π

) , (3.5)

where d: =(τ + τ1)/2. From (2.7), making use of inequalities A.2 and A.8 from
Appendix A, we obtain:

(υ

2 + M2W2 π

+ 1 ' + 1 ' g 1 - ' ) > (3.6)

where ι; = |v|.
Using inequalities (A.2) and (A. 13) it is easy to show that:

feiίftPiί^CΛΊW + Λ'ίWίl+pr'f lexpί-po/lZ), (3.7)
where
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aΠd bM = [vl~* for α = 1 (310)
α - l ^ l - α for α > l '

Since α < 4 [see (2.7)], then /ιΊ and h'[ are integrable over v and from (3.10) the final
estimate is obtained:

sup j <J3pιMP>Pι)^ί ̂ ^(t;) sup exp(-p0/12)

•f Jd3ιΛί(ι>) sup [exp(-p0/12)(l +PS"1)]
pe jR 3

(3.11)

Thus for ί = 1 Lemma 3.2 is proved.
2) i = 2. From (2.13) we have:

where α: = |pΛp!|/(2g). From inequality (A. 12) we obtain:

, 2 U / 2 ζ

x(l+*2)*/2, (3.13)
o

where

C : = max [ - y, (α - y)/2, α/2], χ : - max [0, - (α + y)/2, (j8 - y)/2] .

To estimate the integral in (3.13) we use the following proposition:

Proposition 3.1. Denote by J:

J : = J dxexp[ -d(\
o

ΓΛew

xexp(-ϋ/24), (3.14)

where 0 rg ̂  < 1 and 0 ̂  £ < 2.

Proof is given in Appendix B.
Since 0^χ< 1 and 0<ζ<2, then from Proposition 3.1 we get the inequality:

2y+ ζ +ι

exp( - d/4) + 2(8/M2)*(l + 2/Aί) (6g/t;)

xexp(-ι;/24). (3.15)
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Applying inequalities (A.2), (A.4), (A.8), (A.9), we obtain the final estimate:

M*K2(MΓ

X

-υ/iΓ d2 T* + 1)/21

LPoPioJ J

(3.16)

where y:=\ p/(vp) and

, ,v,
 ! + M2)(ζ + 1)/2[B(t)2 + M2)"/2 + B'M-α]

(M)v ' L v ; J

ι;2_ι_]^2 Γ2Λί4-^~|1+^
u/24) — ~ v~^+® (3 17)

7 2 . 3 y + 6

x exp( - ϋ/24) (4 -f ?;/M)(1 +^)/2[5(t;2 4- M2)βl2 4- j5;M~a]

x(ι;2 + M2)(ζ+1)/2/ι2(ί;,3;), (3.18)

and

for ts)

Notice that (1 +χ)/4< 1/2, and that for ζ^ 1 :(2C- 1 +χ)/4< 1, so Λ2 is integrable
over y. It is easy now to show that functions h'2 and h'2 are integrable over v, and
we have:

sup J d3p1fc2(p, pO ̂  sup [exp( - p0/24)pj +ζ] ί d3uΛ'2(ϋ)

g 96 j d3υh'2(v) + M(;ί " 1)/2 J d3t;/ι^ί;, 3;) < oo . (3.20)

Equation (3.20) completes the proof of our Lemma 3.2.
As a result of Lemma 3.2 and the Young lemma [19], we find:

Corollary 3.1. The K operator is bounded in L2(r, p).

Lemma 3.3. Let us assume that Ωn = AnnBn, where

Λ = {(P?Pι):|p-Pιl^M? (3.1)

BB = {(p,p1):|p|^n}. (3.2)

ThenkteL2(Ωn) Vn = l,2,3, ... .
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Proof, It is sufficient to show that:

f d3Pιd3pfc2(P,Pι)^°o. (3.21)
Ωn

From (3.1), (3.2), (3.11), and (3.20), we obtain:

j J3pι«(p,PtH I d*v f d3pfc?(p,Pl)
ίJn ι > & l / n p g n

1 oo Γ
12n3 \ dy \ dvv2\ h'^h'

0 l/n L

Γ , .X + M2]^1"2)!2

L(1-W)-M-H j j, .xL ( 1-W )-
Using (3.10), (3.16) and (3.17), (3.18), (3.19) it is easy to show that both integrals in
(3.22) converge, which ends the proof of Lemma 3.3.

Lemma 3.4.
lim supμ3pΛ(p,Pt)^ = 0, (3.3)

where i = l,2 and Xn is the characteristic function of the set R6 — Ωn.

Proof. We will use the relation:

sup j d^t/φ, pOXn ̂  sup j d*vkfa p r) + sup J d3ϋfcί(p, pj . (3.23)

From (3.7) and (3.16) it follows that:

+1)exp(-p0/24) + /ι//(t;,};)

-^2]. (3.24)

For p^n, (3.24) gives:

fciίp, Pi) < 41 2 [ΛίW + h'l(υ, y)-] exp( - n/48) + h'l(v, y) (1/^)(1 ̂ )/2 . (3.25)

Since h and h' are integrable over v, then we obtain:

lim supjd3ϋfc ί(p,p1) = 0. (3.26)
"~*°° P^n

To evaluate

lim sup j d 3tffci(p 5pι),
«-*<» peR3 v^ί/n

we first estimate fci(p,pι) using (3.24):

fe^p, Pl) rg (41 2 + M^ - ̂ /2) [Λί(t;) + ftr/(t;, j;)] , (3.27)

and next examine the behaviour of h't and h' for υ ̂  ί/n. From (3.7), (3.16) and (3.17),
(3.18), (3.19) it is easy to show that:

'ί(υ, y)^C, + C^v1 ~\ (3.28)

(3-29)
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where
d : = 2[M4K2(M)] " > [(y + 4)/(y + 2)] (1 + M2)^2(B + B') , (3.30)

~1

, (3.31)

2VMJ

M2 _ M2 '

= TTT^T^M K2(M)

x (8/M2)*(l +2/M)M(*- 1)/2(4 + l/M)(3 + *)/2 . (3.33)

Now, using (3.28) and (3.29), we estimate the integrals:

J ;:= J d3υ[hZv) + h"t(v,y]}, (3.34)
. , , t> g l/π

with results:

1(l/«)4-z], (3.35)

(2-C)](l/π)2-ζ

x(l+2/(5-2C-χ))]. (3.36)

Thus
l imJ ; = 0, (3.37)

n— ̂  co

and from (3.37) we obtain

lira sup f d3ί;/c i(p,p1)glim[(412 + M():"1)/2)Jί] = 0. (3.38)
n-xx) peR3 v^l/n «->oo

Equations (3.26) and (3.38) end the proof of Lemma 3.4.
Thus the Theorem 3.1 is proved.

4. Relativistic Hard and Soft Interactions

The general results obtained in the previous section are valid for the whole class of
cross sections defined by (2.7). However, as is well known from the nonrelativistic
kinetic theory, more refined mathematical analysis of the Boltzmann equation
seems to be sensitive to further assumptions on a form of function σ [8,21].

Thus, following the nonrelativistic Grad's procedure [6], we shall introduce in
this section two classes of functions σ(g, $), corresponding to the so-called hard and
soft interactions. The distinction between both of them is due to a different collision
frequency behaviour: for hard interactions the collision frequency (2.11) satisfies
the relation:

(4.1)

while for soft interactions we have:

)^v0 and v(p)-»0 for |p|-»oo. (4.2)
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Hard interactions are especially interesting not only because of some physical
motivations, but also from a mathematical point of view. Namely, for this class of
functions σ(g, θ) a more refined spectral analysis of the operator L + (p/p0)V can be
performed by means of a perturbation expansion. In contrast to the nonrelativistic
operator pV, the relativistic streaming operator (p/p0)V is bounded in L2(p), since
\P/Po\ = 1 Thus for hard interactions analytical perturbation theory can be applied
to calculate explicitly an asymptotic form of the relativistic distribution function
for long time and small space gradients. Details of this calculation will be given in a
forthcoming paper.

In the non-relativistic physics Grad [6] has defined as the hard interactions
those for which the cross section obeys:

σ(g,θ)>B^, (4.3)

and as the soft interactions these with:

σ(g,θ)<Fgε-2, (4.4)

where 0 < ε < 1 (see Fig. 2).
Grad has shown [6] that the dependence of the collision frequency v on

momentum is qualitatively different for both cases. For hard interactions v is
bounded from below: , ,

v(p)>v0, (4.5)

while for soft interactions v is bounded from above:

, (4.6)

where v0 is a positive constant and v'(p)->0 for |p|-»oo.
The aim of this section is to examine the behaviour of the collision frequency

v(p) in the relativistic case and to establish the meaning of relativistic hard and soft
interactions.

The main result of this section is contained in Theorem 4.1 :

Theorem 4.1 A. Let us assume that 3y> — 2, O^/

σ(g,θ)>B^-—smyθm (4.7)

77ιen ί/ι^ collisional frequency obeys:

V(P)>VO,_ M J

w/2£re c0 α^d v0 αr^ constants.

Theorem 4.1B. Let us assume that 30<α<4, y> —2:

Then:

Γ» Ί-ε/2

(4.10)
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9 g
Fig. 2. The non-relativistic momentum dependence of the scattering cross section σ. All functions σ
lying in the shaded regions correspond to the hard and soft interactions respectively. In general
0 < ε < 1 on the figure ε = 1/2

9 9
Fig. 3. The relativistic momentum dependence of the scattering cross section σ. All functions σ
lying in the shaded regions correspond to the hard and soft interactions respectively. In general
0 < α < 4; on the figure α = 1/2

where α for 0 < α< 3,

α — 2 for 3 < α < 4,

+ 1, where 0<<5<1, for α = 3.

(4.11)

Comparing (4.7) and (4.9) with (4.3) and (4.4) we notice that the relativistic
collision frequency depends on a form of the cross section in a different way than it
is in the non-relativistic case (see Fig. 3).

Since Grad's distinction between hard and soft interactions is based on
different properties of the collision frequency for corresponding types of interac-
tions, in the relativistic theory the meaning of hard and soft interactions should be
redefined by using the relations (4.7) and (4.9)3. Roughly speaking, in the relativistic
theory interactions are softer than in the non-relativistic one.

1 Note that conditions (4.7) and (4.9) can be formulated in a more general way, i.e.:
3#0, ε0>0, y> -2 such that:

σ(g,0)> inf J3o —-sinv0, (4.7a)

3S0>0, 0<€ 0 <e 1 <4, γ> -2 such that:

σ(g,0)< sup (4.9a)

Although by adopting conditions (4.7a) and (4.9a) instead of (4.7) and (4.9) the class of soft and
hard interactions is enlarged, but still the distinction is not exclusive. Thus in this work we shall use
less general, but simpler definitions (4.7) and (4.9)
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Proof of Theorem 4.1 A. From (2.11) and (2.12) we have:

es1/2

v(p) = [2M2X2(M)j - 1 J d3p, - - exp(- τ,) J dθ sinθ σ(g, 0) . (4.12)
PoPio o

Using assumption (4.7) and inequalities (A.I 3), (A. 14) we obtain:

8πΰexp(-2ML/0)| exp(-2[/oPl) | g" + 2

> 2(|y| + 2)M2K2(M) J ̂  pj/*p?{? Pl Λ c0 + g' (

where z: =p p!/(ppι). The integral over z may be easily estimated:

Thus from (4.13) and (4.14) we obtain:

(4.15)

where

1-(β-4)/2πβ

- Mβ/2[2M2K2(M)'] ~1 exp(- 2MU0)

x , 10 0 1

"Pι — ^ — (4J6)

Thus Theorem 4.1 A is proved.

Proof of Theorem 4. IB. Using assumption (4.9) and inequalities (A. 13), (A. 14) we
obtain from (4.12) the estimation:

PoPio

x
o

Pl^ } dz(p0p10-pPlz-M2f-)/21. (4.17)
-i J

The last integral may be estimated using the following proposition:

Proposition 4.1. L<?ί ws denote:

(4.18)
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where ηεR, al=p0plo — M2, cι2 = ppί. Then
i) for -\<η<l/2:

(4.19)

and
ii) far -3/2<η<-ί:

IP-Pιl 2 ( 1 + l | ) Po 2 " 1 ' . (4.20)

Proof is given in Appendix C.
Using now Proposition 4.1 with η = (ί— α)/2, we obtain from (4.17) the

following estimates:
i) For 0 < α < 3 :

v(p)<v l P o a / 2

5 (4.21)
where

= 2<* + 1 3>/2π 5' y + 4 « exp(-Plo/3)

(4.22)

ii) For 3<a<4:

exp(-p10/3)

xp (iV1 ) / 2 |p-P!l3~aPr6 ) / 2- (4.23)

The last integral is estimated using the relation:

^p(-Plo/6)p^2^<6. (4.24)

Thus we have:

p + M oo

f dpjIp-pJ'- + δM3-1 J dp ιeχp(-p10/6)
p p + M

/ 4 - α _ , 4-α

<12[(4-αΓ1+exp(-M/6)/MK~α. (4.25)

Then from (4.23) and (4.25) we obtain:

v(p)<v2p
((Γ6)/2, (4.26)

where

. (4.27)
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iii) For % = 3 we use the relation:

g3^max[g-(3 + ε),g~(1+ε)] (4.28)

with 0<ε< 1, to apply the results of i) and ii). We obtain:

v(p)<v 3 Po ( 1 + ε ) / 2 > (4.29)

where

v3 = max(v l 5 v2) . (4.30)

Equation (4.30) ends the proof of Theorem 4.1.
From Theorems 3.1 and 4.1 it follows that the collisional operator L is self-

adjoint and non-positive in L2(p). Moreover, for soft interactions L is a bounded
operator with essential spectrum σess(L) = [ — vmax, 0] for hard interactions L is
unbounded and σess(L) = [ — oo , — vmin] . Location of σess(L) is a direct consequence
of the Schechter theorem on the behaviour of the essential spectrum under
compact perturbation [22].

5. Existence of the Solution to the Linearized Relativistic Boltzmann Equation

We show in this section that for σ fulfilling our main assumption (2.7) the initial
value problem for the Eq. (2.5) has a weak solution in L2(r, p), which is unique and
global in time. Boundedness of the K operator in L2(r, p) and non-negativity of the
function v(p) allow us to construct for the relativistic equation the semigroup
representation of the solution, analogous to that given by Ukai [23], Ellis and
Pinsky [8], Nishida and Imai [24], and Nishida [9] for the non-relativistic
Boltzmann equation. We will follow the notation of Nishida [9] to simplify
comparison of our results and non-relativistic ones.

Let Hl(r), /^O, denote the Sobolev space of these L2(r) functions, derivatives of
which, up to and including order /, belong to L2(r). We denote as ίΓz(k) the Fourier
transform of Hl(τ) with a norm:

ll/(k)|lH'(k)HI(l^ (5.1)

We denote by H the L2(r, p) space. Let us introduce the partial Fourier transform in
r of fεH as follows:

f (k, p) = (2π) - 3/2 J d3r exp [ - ikr]/(r, p) (5.2)

and denote H = {f:f<EH}. For feH we define:

) l 2 HI/l l^ (5.3)
Finally we put HQ = H and for / > 0 we define Hl as the Hubert subspace of H
consisting of all Hz(r)-valued L2-functions of p with the norm:

)l2]1/2. (5-4)

The LRBE (2.5) can be rewritten as follows:

d,/(r,p,ί) = β/(r,p,ί), (5.5)
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Where B = L-^V. (5.6)
Po

For feHl} 1^0, we introduce a Fourier transformed equation:

3t/(k,p,f) = Bk/(k,p,f), (5.7)

where the operator Bk is defined as follows:

(5.8)
Po

For each ke#3 #k is in general an unbounded operator on L2(p) with a domain:

D(Bk) = {/e L2(p) : v(p)/(p) e L2(p)} . (5.9)

An important property of £k is given by:

Theorem 5.1. For each keR3 the operator £k generates a strongly continuous
contraction semigroup on L2(p) such that for any ί^O and /eL2(p) the following
relation holds:

(5.10)

The operators £k can then be used to construct an explicit representation of the
semigroup exp(tB)f, for /ejFf^r, p). It is provided by:

Theorem 5.2. The operator B generates a strongly continuous contraction semigroup
on Ht(τ, p), /s^O, given explicitly as:

exp(ίB)/(r,p)= ^3/2 μ3/cexp(/kr)exp(ίβk)/(k,p), (5.11)

where for ί^O and /or every /(r, p)ef/ ί ; ί^O, t/ze following inequality holds:

V)\\ι^\\f(r,9)\\ι (5.12)

Proofs of the Theorems 5.1 and 5.2 can be easily deduced from their non-
relativistic counterparts due to Nishida [9] and Ellis and Pinsky [8].

It is now easy to see that /(r, p, t) = exp(ffi)/(r, p) is a solution to the LRBE with
the initial value /(r,p). Thus we have:

Corollary 5.1. For every initial data /(r, p) e Hl with I ̂  0 there exists globally in time
a unique, nonincreasing in Hl norm, solution to LRBE represented by Eq. (5.11).

This is only a weak solution to the Boltzmann equation because we cannot
guarantee differentiability with respect to the r variable. For initial data from Hl

with / > 5/2, by virtue of the Sobolev embedding theorem, this solution is also a
classical one [25].

In our proof of the causality of the LRBE [26] we have used a different
representation of the solution (5.11). Global validity of that representation for
cross-sections fulfilling condition (2.7) is provided by the following proposition:

Proposition 5.1. For cross-sections fulfilling condition (2.7) the solution to the LRBE
with arbitrary initial data /(r, p) e L2(r, p) can be represented by a norm converging
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series of the form:

(5.13)
where °

/<°>(r, p, ί) = exp [ - v(p)ί]/(r - ίp/Po, p) , (5.14)

p,5), (5.15)

(5.16)

Proof. In order to obtain Eq. (5.13) we first transform the linearized Boltzmann
equation into the following integral equation:

/(r, p, ί) = exp(L4)/(r, p) + Jdsexp[(f —s)^4]K[/(r, p, s)] . (5.17)
o

In Eq. (5.17) we have introduced an auxiliary operator A of the following form:

A=-?-.V-v(p), (5.18)
Po

and for g(r,p)eL2(r,p) we have:

exp(L4)g(r, p) = exp [ - v(p)ί]g(r - ίp/p0, p). (5.19)

Iterating Eq. (5.17) we obtain a formal solution in the form given by Eq. (5.13).
Estimating this series term by term in the L2(r,p) norm one easily sees its
convergence with the following upper bound:

||/(Γ,P, ί)l lL 2 (r,p) = e XP(II^IIO l l/ ( Γ >P)l lL 2 ( r ,p)> (5.20)

with ||X|| being the norm of the operator K. Applying now Theorem 5.2 we see that
in fact estimate (5.20) can be improved and the following inequality holds:

We can conclude then:

Corollary 5.2. For cross-sections fulfilling condition (2.7) the solution to the LRBE
with arbitrary initial data /(r, p) e L2(r, p) is causal.

For the proof and precise definition of causality see [26].

Appendix A

In this appendix inequalities used in the proofs of Theorems 3.1 and 4.1 are listed
and proved.

Inequality A.I. , , ,u/2< < (\ \ \\

where



= p% + 2yvp + v2<z (p0 + v)2 .
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Proof. From (A. 1.2) we have

Inequality A.2.

Proo/ It is easy to check that vμ is a space-like vector and vμvμ= — 4g2, which
immediately gives the upper bound on g in (A. 2.1). The lower bound in (A.2.1) is
easily obtained from the following estimates:

g2 - V2(p0 + p i o) ~ 2 [Po ~ P V + (PoP i o - Po - 3φi>)/2]

and:

/. Since

t;2(t; + 2M) - 2(M/p0)
2[/72

then from (A.2.2) we get (A.3.1).

Inequality A.4.

^ z;2(ί; + 2M) ~ 2M2(1 - \

Proof is a trivial consequence of (A.2.1) and (A.3.1).

Inequality A.5. Let us denote:

d\=(c + ̂ )!2 and α: = |pΛP l |/(2g).

Then we have:

d2-a2^ M2/4 + ι;2(|M2 + g2)/(36g2) .

o/; Equation (2.15) gives for d2 — a2 the expression:

In the following we use the relation:

to estimate (A.5.3):

d2 - a2 ̂  M2/4 + [(τ - τj2 + 4g2] (|M2 + g2)/(4g2)

^ M2/4 + ϋ2(|M 2 + g2)/(36g2) .

Thus (A.5.2) is proved.

(A.2.2)

v2(v + 2M) " 2(M/p0)
2[p2 - p2y2] ̂  ι;2(ι; + 2M) ~ 2M2(M/p0)

2 , (A.2.3)

where to obtain (A.2.2) Inequality A.I was used.

(A.5.2)

(A.5.3)

(A.5.4)

(A.5.5)
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inequality A.6.

Proof follows immediately from Inequality A. 5.

Inequality A.7.

d2-a2^M2. (A.7.1)

Proof is a trivial consequence of (A.5.3).

Inequality A.8,

d^υ/6; d^p0/6. (A.8.1)

Proof follows from A.6 and the relation:

d^τ/2^(U°- U)pQ/2 ^ po/6 . (A.8.2)

Inequality A.9.

d^Ua^-lylΓ^^ + υ/M)1'2^^2. (A.9.1)

Proof. From Inequality A.I it is easy to show that:

(A.9.2)

Inequality A.10.
I/2 l + x2 1 / 4

Proof. Using the inequality:

1 +x2 — [(g2 — M2)/(g2 + M2)]2^x 4gM/(g2 + M2), (A. 10.2)

it is easy to show that

which immediately gives (A. 10.1).

Inequality A.ll.

2d4^^cos!- (A 11 1)

Proof is obtained by the estimate:

x2 x2 (l+x 2) l / 2-l "
< '

2J '

(A. 11.2)
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Inequality A.12.

where

625

ζ : = max [ - y, (α - y) A α/2] , χ : = max [0, - (α + y)/2, (0 - y)/2]

- - (1+x2)*/2

Proof. From assumption (2.7) it follows that

where

'sinvj/2~|" + y

ΓTΊ

(A.12.2)

(A.12.3)

(A.12.4)

(A.12.5)

Bounds on b and V depend on sign of y, β — y, and α - h y ; so the six different
estimates on b and b' are obtained from Inequalities A. 10 and A . l l :

? " y)/4(g2

')/4(g2 + M

-f

(A.I 2.6)

(A. 12.7)

3. y^

- 2 ~ <'gy(l 4 x2)(^ " )>)/4(g2 4 Mψ ' Ί]l2

x [(1 +x2)1 / 2/x]-y^B 2ζ[(l 4x2)1/2/x]

x (1 4 x2f ~ y)/4[(g2 4 M2)/g2] - y/2(g2 4

(A.12.8)

4. ^
α ̂  F[(l 4 x2)1/2/x]α/2(Mg) ~α/

(A. 12.9)

g)(α-y)/2M-α^FM (A.I 2.10)
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6. y^-α.

(A.12.11)

The estimates (A.I2.6)-(A.I2.11) immediately give (A. 12.1).

Inequality A.13. For γ> — 2:

4/(\γ

Proof is easily obtained by changing variables : z = cos θ and using estimate : 1 — \z\
^1-z2^!.

Inequality A. 1 4.

Proof.

Appendix B

In this appendix the proof of Proposition 3.1 is given.

Proposition 3.1. Denote by J :

— (l+x 2 y> / 2 .J: = j ώcexp[-d(l +x2)1/2]/0(αx)x
o

Then:

ί*n/'Λ2-~rd*+1

xexp(-ι;/24), (B.I)

where 0^η<l and 0^

Proof. The idea is to estimate the integrated function in such a way that its
estimator can be integrated for large arguments. To this aim we split the integral:
oo 1/2 oo

ί = ί + ί and investigate its two parts separately.
0 0 1/2

For x^ 1/2, making use of Inequalities A.5-A.7, we have:

(B.2)
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00 00

For x^ 1/2 we estimate: [(l+x2)1/2/x]^< 3^ and next: J g J . Thus the following
relation holds: 1/2 °

Ί
x J dxx/0(αjc)exp[--ρ(l +x2)1/2] L (B.3)

o J

where ρ: =(d2 — M2/4)1/2 and the upper bound on function
G(z): = exp[ — (d — ρ)z~]zη was inserted:

V. (B.4)

The integral in (B,3) may be calculated exactly [20]:

o

x(ρ2-α2)-1exp[-(ρ2-α2)1/2], (B.5)

and next estimated making use of Inequality A.8:

J'^ 2(1 + 2/M) (6g/v)2(M2 + g2) " 1 d exp( - 1 /24) . (B.6)

Equation (B.6) ends the proof of Proposition 3.1.

Appendix C

In this appendix the proof of Proposition 4.1 is given.

Proposition 4.1. Let us denote:

Jη:= i dz(a1-a2z)«, (C.I)

where η e#? a1 =PoP\Q — M2, a2 = pp\. Then
i) for -\<η<\/2\

p lorK ; (C.2)

and
ii) /or — 3/2 < ?; < — 1 :

(C.3)

Prop/ J, = [(a!+fl2);;+Mfli-fl2)' + 1]/[azfa+l)], so:
i) Using Inequality A. 14 we have:
A) f/<0.
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B) 0^η<ί/2.

Jη = {2α2(α1 - a2γ + (a,+ a2) [(a, + a2)
η ~-(a,- a2Y]}l[a2(η + 1)]

l(Pι/Pιo)ηPη<>. (C.5)

ii) It is easy to show that:

(α1-α2)-1^2/)0p ) 0M-2(p-P l)
2. (C.6)

Using (C.6) and Inequality A. 14 we obtain:

Thus Proposition 4.1 is proved.
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