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Abstract. We use Sobolev inequalities to study the simulated annealing
algorithm. This approach takes advantage of the local time reversibility of the
process and yields the optimal "freezing schedule" as well as quantitative
information about the rate at which the process is tending to its ground state.

0. Introduction

Simulated annealing is a Monte Carlo method for locating the minimum of a
complicated function U on some space E. Thinking of U(x) as the "energy" of the
"state" xeE, the method is to run a time-inhomogeneous Markov process on E
in such a way that at any time f g r O the corresponding instantaneous time-
homogenous Markov process has as its equilibrium distribution the Gibbs measure
with energy U at inverse temperature β(t). By choosing ί -»β(t) to go to infinity as
ί-> co, the idea is to force the process toward the minima of U.

Inherent in the simulated annealing procedure is a competition between two
goals. On the one hand, one wants to make the temperature tend to 0 as fast as
possible, thereby concentrating the Gibbs measures as fast as possible near the
minima of U. On the other hand, having the Gibbs measure concentrated
near the minima of U will do one no good unless the process at large times is
close to equilibrium. Since, as we will see below (cf. Theorem (2.1)), decreasing the
temperature inhibits equilibration, one must be careful not to adopt too fast a
"freezing schedule" (i.e. rate at which /J(t)-> GO).

The problem raised above has been studied previously by many authors
([1~7])? and much of what we prove below is qualitatively similar to known
results. Nonetheless, we believe that our approach to this problem has several
features to recommend it. In the first place, it is simple and essentially context
independent. Secondly, it yields quantitative information about the rate at which
the process is tending to the minima of U. In fact, the results in Sect. 2 indicate
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that at least asymptotically, our estimates may be optimal. Because in practice it
is the most realistic situation and since its description involves the fewest
technicalities, we will describe everything for the case when the state space E is
finite. However, as will be apparent to anyone familiar with Dirichlet forms, only
the results in Sect. 2 really depend on E's being finite, and even those results have
extensions to other contexts.

Let μ0 be a probability measure on E and assume that μ0 charges every point
(e.g. normalized counting measure). Next let q0(x,y) be a probability transition
function on E which, in practice, should be chosen so that U(y) — U(x) can be
easily evaluated whenever x and y are points for which q0(x, y) / 0. We assume

00

about qQ(x,y) that it is irreducible on E (i.e. ]Γ q(S\x9y) = oo for all x, j eE, where
n = 0

q(Q+1)(x,y} = Σ qo(x,ζ)q(o}(ζ>y)) and that it is μG-reversible in the sense that
£eE

α(x, y) ΞΞ μ0(x)q0(x9 y) = φ, x), x, yeE. (0.1)

(One may think of μ0 as the Gibbs measure at infinite temperature and q0(x, y) as
controlling the one-step transitions that the annealing process may make.)

Next, define
e"βυ

where Zβ = $e~βudμ0. Then μβ is the Gibbs measure at inverse temperature β.
Corresponding to μβ we define the transition probability function qβ(x, y) by

εxp(-β(U(y)-U(x))+)q0(x,y) iϊyϊx
v / κ\ f~ Σ <iβ(χ> Q lϊy = x-

With the preceding conventions in mind, we can now define the transition function
Ps,t(

χ>y) f°r our simulated annealing process. Namely, define

MM = Σ (ΦW - ΦW)φ, y\ *^ (0.3)
yeE

for φ: E -> R1 . Then the simulated annealing process corresponding to the freezing
schedule ί -> β(i) is to have its transition probabilities determined by the forward
(i.e. Fokker-Planck) equation

-ΛA y} = [L|(t)PSff(x, )]ω, t ̂  s, (0.4)

where the meaning of the first equation in (0.4) is that

~ [Ps,tφ] (x) - [PΛwΨ] (*)» i ̂  s, (0.40

for φ:E-^Rl. (In (0.4X) and elsewhere, [JPSϊίφ](x) = Σ Φ(y)Ps,t(*>y) is tne operator
yeE

determined by PSjt(x,y).)
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As is well-known, Pst(x,y) satisfies the Chapman- Kolmogorov equation

P,,t(x, y) = £ PJx, ξ)PSιt(ξ, y\ 0 ̂  r < s < ί;
ξeE

which, in conjunction with (0.4'), yields the backward equation:

~ lP8,tΦl (x) - - [iWs>] M, o g 5 ̂  t. (0.5)

Also, once the initial distribution v has been specified, the transition probabilities
Ps,t(

x> y) completely determine our simulated annealing process X(t) via the equation

Prob(*(ί0)EΓ0,...,X(OeΓnH £ ... £ v^P^^o^i)-^.,^-!,^) (0-6)
yH

eΓn yoeΓo

for 0 = ί0< ••• <tn and Γ0,...,Γn cE.
The intuitive description of the simulated annealing process is as follows: If the

process is at site x, then it waits an exponential time with mean one and at the
end of that time it chooses a site y with probability g0(x, y) and attempts to move
there. If U(y) ^ I7(x) then the process moves to y, but if U(y) > U(x) and if the
attempted move occurs at time ί, then, having chosen y with probability q0(x,y),
the process actually moves to y with probability e ~ β(t) (U(y} " ̂ ^ and with probability
1 - e'PWW-vw) it remains at x. This is just the continuous time version of the
usual discrete time simulated annealing process (see [8]).

Since what we want to test is whether the simulated annealing process is having
time to equilibrate, the quantity of interest is the Radon-Nikodym derivative, ft9

of the distribution of X(t) with respect to the Gibbs measure μβ(t}. Then the degree
to which equilibrium has been achieved can be measured by keeping track of the
size of/j. For example, let q e(l, oo] and T>0and suppose that \\ft\\L*(μ t )^
for all t ̂  T. We would then have that

ί^Γ, (0.7)

where l/min = min 17. Obviously, (0.7) gets better as q gets larger. However, one
E

should expect that one will pay for large q with slower freezing schedules β(t) and
larger constants C.

Our analysis of \\ft\\Lι(μ } will be based entirely on consideration of the
Dirichlet forms Eβ associated with the operators L^. (It is this fact which makes
most of analysis context independent.) Namely, define

_ φ(y))(ψ(x) - ^(y))α(x, y) (0.8)

(cf. (0.1)) for functions φ and ψ on E. It is then an easy matter to check that

-lφLβψdμβ = Eβ(φ,ιl,). (0.9)

In particular,

y(β) = inf {Eβ(φ,φ): \\ 011^=1 and < φ yβ = f φdμβ = 0}

β)is the gap between 0 and the rest of the L2(μβ) spectrum of — L^; and, as such, y(β)
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controls the L2 — rate at which eίL/? approach equilibrium. Because q0(x, y) is
irreducible, we know that y(0) > 0. However, as β gets larger, y(β) will get smaller
at an exponential rate (cf. Theorem (2.1)).

Assume that we know that

γe~βm, /?^0, (0.10)

for some γ > 0 and m > 0. (We can always take 7 = y(0) and m — M, where

M = max U - min U, (0.11)
E E

but sometimes (cf. Theorem (2.1)) one can show that m < M.) We will now give a

simple example of our ideas as they apply to the study of ||/JL2{μ). To this end,

note that (cf. Lemma (1.6))

II f, - 1 llέv,, = - 2£Λt)(/,,/,) + β'(t)S(u - < u >μjfϊdμβm

= — 2Eβ(t}(ft,ft)

- <u yμβ(t)(ft - ιWβ(t) ^ c - 2
\\\ft-ni^} + 2β'(t}M\\ft-\\

Thus if we take β(t) = l/mlog(l + myt/M), and we set u(t) =\\ft-l \\2

L\μβ(t}]> then
we see that

M + myt

from which it is easy to estimate sup || ft \\L2(μ ( } in terms of || /0 ||L2(μo), y, m, and M.

If one wants to estimate \\ft\\Lι(μ f ) for q > 2, then one must bring other
considerations to bear. In Sect. 1 we give an abstract account of what can be said
about II ft || r°c(ιι , on the basis of the behavior of the Sobolev constant for Eβ. Our

II J I II L (μβ(t )) P

conclusions are contained in Theorem (1.10). In Sect. 2 we see how (at least when

E is finite) one must choose the freezing schedule t-+β(t) in order for the results
of Sect. 1 to be applicable. What we find (cf. Theorem (2.11) is that we can take

β(t) = log(l + t)/(m + β) for any ε > 0, where m is the optimal choice in (0.10). In

addition, we calculate m in terms of U and qQ(x9y) (cf. Theorem (2.1)). Finally, in
Sect. 3 we replace the Sobolev inequality by a logarithmic Sobolev inequality and

see what can then be said. The result here, when applied to finite state spaces,

shows that \\ft\\L^\μ ( ) stays bounded when one chooses β(t)= l/mlog(l +γ(t))9

where lim tε/y(t) = 0 for every ε < 1 and q(t) grows like β(t) (cf. Theorems (3.9) and

(3.21) and (3.23)). However, we expect that the considerations in Sect. 3 are only
really interesting when one considers E's of arbitrarily large dimension.

1. General Results

The results in this section are based on some differential inequalities which are
collected together in the first lemma.

Lemma (1.1). Let α, £>, c, and ε be non-negative numbers and assume that both a and
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ε are strictly positive. Let ueCl((ΰ, oo); [0, oo)).

i) //

— a , , bu cu1/2

u' < u1 +ε + + , t > 0,
~\+t 1+ί 1 + f

then
4λ 1/£

' ί>0'
where λ = b\/(a + c).

ii) IfT>s^O and ueC^Cs, Γ); (0, oo)) satisfies

uf>
~

- - ,
1+ί

then

1+s

1+T

Proo/ We begin with i).

1+ί

i + r
α

Set ω(ί) = (1 + ί)"Λ/2(l + M1/2(f)). Then

1+ί 1+ί

1 + f

λ ,.

and so

Hence

•-[
4λ[

4/1 1 1/ε
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To prove ii) we compute as follows:

((1 + ί)V = 0 + *Π u' + - u U f l ( l + 0 * ~ V + f c = fl(l + ί)~ f i b~1((l + t)bu)1+ε.

Therefore

dt^-' ^ ((t + ίf")1

Thus
a

— (1-fs) u(s) ε ^-((l+-
b

i.e.

ii) follows easily from this. Q.E.D.

Throughout the rest of this section we assume that the following hypotheses
hold.

(1.2) Assumption. U is bounded above and below and sup U — inf U = M < oo.
E E

(1.3) Assumption. There is a constant B < oo, such that dβ(t)/dt g £/(! 4- ί)

(1.4) Assumption. For some finite /I, some 2 < p < oo, and all 0 ̂  ί,

We also use the following notation: For t ̂  0, || ||p>ί is the Lp norm on the space
Lp(μβ(t)\ </>t is the integral o f / with respect to μβ(φ Et = Eβ(t}, μt = μβ(t), and

If p is as in Assumption (1.4) then we let ε = (p — 2)/p and note that p = 2/(l — ε).

(1.5) Lemma. J/(L4) /lo/ds, then for allfεL2(μβ(t))9

Proo/ Set 0 - 1/(1 + ε), then 1/2 - θ/p + (1 - 0), and so by Holder's inequality,

ll/-</>J2,^ll/-</>JlJ/-</^

| |/-</>JβΛ1 + f c ). Q.E.D.

Let/oEL1^)-1" with </0>0 - 1, and set/, = (d(m0P0<ί))/dμf, where dm0 =/0dμ0.

(1.6) Lemma. PΓί£/ι/t de/med as α&ot β, d/dί/t - Lr/r + βf

t(U -

Pr<9<9/ Let (/>:£-»(— oo, oc). Then, denoting dμt/dμ0 by v r, we have

— ίΦftvtdμΌ=^Po,tφdm0 = ̂ PQitLtφdm0

tftWt = J φ(L,tft)vtdμ0 .



Simulated Annealing via Sobolev Inequalities 559

Thus d/dt (ftvt) = (Lf/t)v ί5 and so

Finally

- - - β'tU - - = - β't(U - < (7 X). Q.E.D.
vt Zt

(1.7) Lemma. Set K1 =4(1+ 4ABM)/(1 -e~
(1/2A4 2BM}). and letft be as above. Then

Proof. Set M(f) = H/,- 1 | l i t ί = l l / f | l l , f - 1. Then

- <U)t)f2dμt

J5M 25M
M(f) 1 / 2 .

~ 4M(1 +0 1 + ί 1 -h i

Hence the estimate follows from i) in Lemma (1.1). Q.E.D.

(1.8) Remark. Since E is a finite set, /0 is necessarily in L2(μ0), and so we
do not need to run the process for time e1/ε — 1 before fteL2(μt). In fact || /0 ||2 0 ̂
l/minμ0(x)1/2. However, the bound in Lemma (1.7) will become important as E

xeE

gets large.

(1.9) Lemma. Set K2 = 2ABMe2BM/(l - e~BM). Then for all T > e1/£ and φeL2(μτ):

Proof. We may assume that φ ̂  0 and that (φyτ~ ^ Set φs — P^τφ. Then

and so
BM

Next, set φ) = || φs - < φs >s (11,,= || φ, \\ I, - < <£s >s

2 . Then

Applying Lemma (1.5) we bound this below by

2e~2BM ^ BM

ι + ί"
(t)'
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Hence, by ii) in Lemma (1.1),
/ε

. Q.E.D.

We are now ready to prove the main result of this section.

(1.10) Theorem. Assume that (1.2), (13\ and (1.4) hold. Set

Kε - (1

Then for all T^e2l\

Proof. Note that if φ is a bounded function on E and T ̂  <?2/ε, then

\SΦfτdμτ\ = \l(Pt,τφ)ftdμt\ ^ \\Pt,τΦ\\2,t\\ft\\2.t,

where t = e~1/ε(l -f T) - 1 ̂  e1/ε - 1. Q.E.D.

2. The Finite Case

In this section we will check the hypotheses of Theorem (1.10) for the model of
simulated annealing given in the introduction. Since the problem and the simulated
annealing process remain unchanged if a constant is added to the energy, we assume
throughout this section that the minimum of U is 0. This is just to simplify the
resulting expressions, and the reader can easily supply the necessary changes if he
is bothered by the addition of an unknown constant to the energy.

From Theorem (1.10) we see that we want to take the inverse temperature at
time t to be l/wlog(ί + 1) for some constant 1/m, and 1/m must be chosen so that
(1.4) holds. At the same time, we would like to choose 1/m as large as we can.
From (0.8) we see that Lβ is self-adjoint on L2(μβ). The constant m is closely related
to the gap between 0 and the rest of the spectrum of Lβ. Thus we denote this
distance by y(β). An easy argument based on (0.8) shows that y(β) ^ e~βMy(0).
Although this is qualitatively the sort of estimate which we seek, M is only an
upper bound for m. We want to show that one can do better.

For x, yeE we define a path from x to y to be any sequence of points x = x0,
x ! , x2 , . . . , xw = y, such that q0(xt _ 1 , x t ) > 0 (and hence qβ(xt _ 1 , xt) > 0) for i = 1, . . . , n.
Let Pxy denote the set of paths from x to y. Elements of Px>y will be denoted by
P = {pj?=o If we think of the elevation at x as being given by the function U, then
the highest elevation along the path pePx,y is given by Elev(p) = max{U(pi):piep},
and the lowest possible highest elevation along any path from x to y is given by
H(x, y) = min (Elev (p): pePx^y}. Note that for any x, y, zeE, H(x, y) = H(y, x) and
H(x9 y) ̂  max {H(z, x), H(z, y)}. Finally let

m = max (H(x,y) - U(x) - U(y):x,yeE}. (2.1)

Note that if %0 and y0 are such that //(x0,y0)— t/(x0)— U(yQ) = m, then by the
above observations either £7(x0) = 0 or U(y0) = 0. The intuitive description of m is
as follows. For each x0 with U(x0) = 0 and each yeE consider the path from y to
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x0 which requires the least total elevation gain when beginning at y. Pick x0 and
y to make this least total elevation gain as large as possible. Then m is the elevation
that must be gained along the route that takes the lowest passes between y and x0.

Our immediate goal is to prove the following theorem.

Tfieorem (2.1). There exist constants 0 < c ̂  C < oo such that for all β ̂  0,

ce-βm^y(β)^Ce-βm. (2.2)

This theorem is an immediate consequence of the next two lemmas.

(2.3) Lemma. There is a constant C ̂  oo such that for all β ̂  0,

y(β)^Ce-βm. (2.4)

Proof. We first assume that m > 0.

Set Var^(/)= Σ/2MμX*)-(Σ/WM/)W)2 Then since

we will have proved (2.4) once we exhibit a function F and a constant C < oo ,
such that for all β ̂  0,

Var,(F)

Let x0 and y0 be two points for which H(xQ,y0)— U(x0) — U(y0) — m and set
A = {zeE://(y0,z) < H(y0,x0)}. Note that x0φ\, and y0eA. (otherwise m would be
0). Note also that if xeA, and yφA, and q0(x9 y) > 0, then U(y) ^ H(y0) x0) (consider
the path pePyθίX for which ίΓ();0,x) = Elev(p), and extend it one more step to y).
Thus for all xeA, yφ A, and all β ̂  0, qβ(x,y)μβ(x) = qβ(y,x)μβ(y)^z(x,y)e~βH(y°>xo)/
Z(β). Let F(x) = IA(x), the indicator function of A. Then

F(x))2μβ(x)
x&E xeE xeE

^ Σ Σ a(*> J') e " ""^-^/Zβ . (2.6)

On the other hand

Thus there is a constant C which is independent of β such that

Since Zβ^l for all β ̂  0, (2.4) is proved in case m > 0.
If m = 0, let F be the indicator function of {x: lf(x) = max £/(};)}. Then just

yεE

repeat the above argument with this F. Q.E.D.
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(2.7) Lemma. There is a constant c> 0, such that for all β ̂  0,

ce-l*m£y(β). (2.8)

Proof. From (2.5) we see that it will be enough to find a constant c > 0 such that
for all β ̂  0 and all feL2(μβ\

~βm

Var,(/)

We first bound Var^ (/) above as follows:
If x, yeE let px'yePx,y be a path from x to y for which Elev(p* y) - H(x,y). Let

w(x, y) be the length of px'y, and define

JV = max n(x, y).

I fz , W E E let

1 if for some 0 rg z < π(x, y) p f y = z and pff\ = w

0 otherwise.

Note that if α(z, w) = 0, then χ~?w(x, y) = 0 for all x, yeE. In the following we interpret
χz w(x, y)/α(z, w) = 0 if χz>w(x, y) = 0. Now

2Var,(/) =
xeE> eE

= ΣΣ

xeEyeE

α(z, w)(/(z) -fWfe-W'WM/Zf. (2.10)
zeE iveE

Also

α(z, w)

<
=

Thus (2.9) follows from (0.7) and (2.10). Q.E.D.

(2.11) Theorem. Let ε > 0, and set β(t) = log (1 + t)/(m + ε) and p = 2M/(M - ε), then
there is a constant A < oo such that (1.4) holds.



Simulated Annealing via Sobolev Inequalities 563

Proof. We fix ί ̂  0 and set β = β(t). Then

= f(^

Now
-

!!/-</>/, Hξoβ-^min μ0M^ I I /-</>/, IIS, min - - ^ l l / ~ </
xeE xe=E

Thus

xeE

That is

for some finite constant A. Since M(p — 2)/p = ε, and /? = log (1 4- ί)/(m + ε)> we have
the desired result. Q.E.D.

Remark. The reasoning used to derive (2.2) may be applicable to a wide range of
situations. For example, let S1 denote the circle of unit length, μ the uniform
measure on S1, and E the standard Dirichlet form

E ( f J ) = $ \ d f \ 2 d μ .
s1

Given a continuous function U'.S1 -»[0, oc) whose minimum value is 0, define μβ

accordingly. If x and y are distinct points on S1, let A + (x,y) and A,(x,y) denote
the arcs running, respectively, clockwise and counter-clockwise from x to y; and
define H±(x,y) to be the maximum of the values that 17 takes on A±(x,y). Set
H(x, y) = min {H + (x, j>), # _(x, y)} and take m = sup {H(x, y) - ί/(x) - l/(j7): x, ye^1}.
Finally, let Φ( , x , y ) be the unit speed geodesic running clockwise (counter-
clockwise) from x to y if H+(x,y) g f/_(x 5 < y) (if H+(x,j;) > //_(x,y)). It is then clear
that, for each ίe[l/2, 1] and x (ίe[0, 1/2] and y\ the map y -> Φ(t, x, y) (x -» Φ(ί, x, y))
is smooth μ-almost everywhere and has Jacobian not less than 1/2. Hence

The problem in more general situations is, of course, that it is not so clear how
one should choose the paths Φ( ,x,y).

3. Logarithmic Sobolev Inequality

We continue to assume that L/min = 0.
In this section we will first examine what can be said about simulated annealing
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on the basis of a logarithmic Sobolev inequality of the form

( φ \\
\\\Φ\\2,βJ J β~ β

We will then discuss what one can expect α(β) to look like in various contexts.
Let β: [0, oo) -> [0, oo) and q: [0, oo) -> [2, oo) be smooth non-decreasing functions

satisfying β(0) = 0 and q(0) = 2. Using Lemma (1.6) above and following L. Gross
[6] (cf. Theorem (9.10) in [9]) we see that

d I I f \ \ l ~ , q

II f n ^ I' •'ί l ig(0»f
/ . _/.v . <. ^^Γ~

tq(t),t/

~ ̂ ) II /« IU J ( uTf— )* V - < I/ yt)dμ, (3.2)
y W / \ II Jΐ \\q(t),t/

In order to derive a useful differential inequality from (3.2), we need the following
lemma.

(3.3) Lemma. If μ is a probability measure and θeL1(μ) + satisfies §θdμ = 1, then
for every ιj/GLco(μ) satisfying §ψdμ = 0, one has

Proof. By a theorem of Sanov (see Lemma (3.38) in [9]), for each θ ̂  0 such that
§θ(x)μ(dx) = 1, we have

lθ(x)loS(θ(x))μ(dx) = sup{$φ(x)θ(x)μ(dx) ~ log(f ^xV(^x))},
Φ

where the supremum is taken over all bounded measurable functions φ. Letting
φ be of the form φ(x) = aψ(x), we see that

f θ(x)log(θ(x))μ(dx) ̂  sup{Jαι//(x)θ(x)μ(dx) - log(J ̂ (x)μ(dx))}.

Note that J^(x)μ(dx) - 0 implies that log(Jeα(A(x)μ(^)) ̂  0 for all a. Thus if in
addition Jθ(x)^(x)μ(dx) ̂  ε ̂  0, then we have

fθ(x)log(θ(x))μ(Λc) ̂  sup{αε - log(f ^(x)μ(rfx))}.
α ^ O

Let ε = jΊ/f(x)0(x)μ(dx). By replacing ψ by — ̂  if necessary, we may assume that
ε^O. We denote \og($eaφ(x}μ(dx}) by F(α).

Define K(ε) - sup{αε - F(α)}. Since F(0) = 0 and F(0) - 0 and F(α) ̂  0 for all
α ^ O

a we have K(0) = 0 and K(ε) > 0 for all ε > 0. Note that if G(x) ̂  F(x) for all x ̂  0,
then

K(ε) = sup(εα - F(α)) ̂  sup(εα - G(a)\
α ^ O Ω ^ O

Since F(0) - F(0) - 0 and F"(a) ^ 4 1| ψ \\l for all a, we have F(ά) ^ 2a2 \\ψ\\i for
all a. Thus X(ε) ̂  ε2/(8 1| ̂  || « ) for all ε > 0. From the first part of the proof we have
Jθ(x)log θ(x)μ(dx) ̂  K(ε) ̂  ε2/(8 || ψ \\2J. (Q.E.D.

Using Lemma (3.3) with μ = μt, 0 = (/t/ 1| /f ||ί(f)tf )««, and ι> - t/ - < I/ X , we see
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from (3.1) and (3.2) that for any choice of p:[0, oc)-»(0, co),

(3.4)

t w ' 'Jt ' P(β(t))
Hence, by taking ί -> q(t) so that

q'(t) + p(β(t))β'(t)q(t)2--
(

we get

(3.6)

In particular, we want to take p so that j (1/p(β))dβ < GO.
o

We still need to choose t -> j8(ί) in such a way that β(t) and ^f(ί) tend to co as
ί-> oo. To this end, let σ:[0, oo)-»(0, GO) be a smooth non-increasing function and
determine t-+β(t) by

and 0(0) - 0.

Then

-i r^α

o o

and

1 1
(3.8)

We have now proved the following theorem.

(3.9) Theorem. Assume that (3.1) holds for some non-decreasing smooth α:[0, co)—>
(0, oo). Choose smooth functions p:[0, oo)-»(0, oo) so that p is non-decreasing, σ is

non-increasing, R= J (l/p(β))dβ < oo αnrf σ(j8)->0 as β ^co. Define ί->j8(ί)
o

ί-»g(0 as in (3.7) and (3.8). Tten

ll/ ί l l,( ί),^ll/oll2,oexp(2M 2

JR), ί^O, (3.10)

where M ~ max (7 — min U. In particular, if a(β) ^ A(i + β)keβm for some A < oo,
E E

+ ,αndme[0, co) and one takes p(β) = (I + β)2 andσ(β) = (l + jβ)"1, respectively,
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then q(t) ^ (1 + β(t))/4 and

Λ /c + 4 f Y
/ ( ) t + 4 )

 1

i*
2A " )

Γi i mί Ί
/ 1 / \ \ k + 3

. V01 1 + τ ) J

if ί < —
m

if ί>— .
m

The crucial assumption in the above theorem is the bound assumed for α(/?).
When the state space E is compact, it is reasonable to assume that

(3.11)
2,0

for some ,4 < oo. Indeed, as we will see below, (3.11) is implied by the ordinary
Sobolev inequality

for some pe(2, oo) and C < oo; and (3.12) holds in a wide variety of finite dimensional
compact situations. (For example, if E is a compact connected Riemanian manifold
of dimension N and if £0 is the Dirichlet form associated with the Laplacian on
E, then (3.12) will hold with 1/p = 1/2 - l/N.) On the other hand, there are
interesting infinite dimensional examples for which (3.11) holds but (3.12) fails for
every pe(2, oo). Indeed, (3.11) for μ0 and E0 on E implies the same estimate (with
A unchanged) for any situation which results by taking arbitrary tensor products
of this one with itself.

The following lemma provides a crude means of passing from (3.11) to an
estimate (3.1).

(3.13) Lemma. // (3.11) holds, then (3.1) holds with a(β)^AeβM, where
M = supU — inf U.

E E

Proof. It is clear from (0.8) that

Thus we need only show that

\ 2

,^-"rj
\ Φ \ \ 2 , β / / ^β \\\\Ψ\\2,0

But for any probability measure m on E and any /:£->(— oo, oo),

(3.14)

2(£) log = inf J (f\ξ) log (f2(ξ)) -f\ξ) log (x) -f\ξ) + x)m(dξ),
\\J\\L2(m)

and for each x > 0 the integrand on the right side of the above equation is
non-negative. Also the infimum on the right side is achieved when x = §f2(ξ)m(dξ).
Hence one easily checks that (3.14) holds. Q.E.D



Simulated Annealing via Sobolev Inequalities 567

When (3.Π) is all that one knows, then Lemma (3.13) seems to be optimal.
However, as we will now show, one can do much better if one knows that (3.12)
holds for some pe(2, oo) and in addition, that there is a spectral gap estimate of
the form:

\\φ-<Φ>β\\2tβ^Be^EίJ(φ9φ)9 β^O. (3.15)

(Since (3.12), itself, implies (3.15) with B = C and m = M, we will always assume
that the m in (3.15) is in [0, M].) To see what can be said on the basis of (3.12)
and (3.15), first note that (by Jensen's inequality)

, f * Y Λ 2 rM V, { * YΛlog d μ - - 108 dμ

Hence, since log x ̂  δx + log 1/δ, x > 0, for every δ > 0,

j^2iogM^j ^^iwiip+αogi/wiii]-
At the same time, it is easy to check that (3.12) implies

Combining these, taking δ — e~βM, and using (3.15), we conclude that

μβ^D(\ +β)e^Eβ(φ,φ\ β^Q, (3.16)

where D < oo depends only on B, C, p, and M.
There are various ways to pass from (3.16) to the estimate we want. Perhaps

the most efficient route is provided by the following lemma due to Jean-Dominique
Deuchel (private communication).

(3.17) Lemma. For any probability measure μ and any φeL2(μ),

Proof. Let φeL2(μ) with (φyμ = 0 and || φ ||2>μ = 1. What we have to show is that
if J φ2 log φ2 < oo , then

μ^2, (3.18)

for every α ̂  0. By an easy approximation argument, one sees that it suffices to
check (3.18) for the class Φ(μ) of φ's such that <φ>μ = 0, | |0 | | 2, μ=l 5

 and

8 ^ I φ I ̂  1/ε for some 0 < ε < 1.
First note that if φ<=Φ(μ) then l/φeΦ(φ2μ) and

μ. (3.19)
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[1], ι2m_ί9and β / 2 (/ 2 m-ι) = 6161 ••• διfem-ι), where 1 ] has length I
Second, check that for any probability measure v and ι//eΦ(v):

and so:

F(β, ψ, v) g 2β j> log ιA2dv + 2β2. (3.20)

Taking v = φ2μ, φ = l/φ and β = 1/α in (3.20) and using (3.19), we get (3.18).
Q.E.D.

Summarizing, we have now proved the following.

(3.21) Theorem. Assume that (3.12) and (3.15) hold for some B, Ce(0, oo), pe(2, oo),
and 0 ̂  m ̂  M = sup 17 — inf U. Then there is an A = A(p, J3, C, M) < oo , such tfiαt

E E

-}2dμ^A(l+β)e^Eβ(φ,φ), β^O. (3.22)
2,β/

Q.E.D.

We combine Theorem (3.9), Lemma (3.13), Theorem (3.21) and (0.7) for our
final result.

(3.23) Theorem. If (3. 11) holds but (3.12) does not hold, let B(β) = A J(l + ξ)3eξMdξ.
o

If (3.12) and (3.15) hold, let B(β) = A j( l + ξ)4eξm, where A is as in (3.22). Let
o

β(t) = B~l(t) be the cooling schedule for the simulted annealing process. Then if
/o is the density of the initial distribution with respect to μ0,

Prob(£7(*(t)) ̂  l/min + δ ) ί \ \ /o ||2,o^2M2(^(ί)({^: U(x) ^ l/min
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