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Abstract. Consider models on the lattice Z¢ with finite spin space per lattice
point and nearest-neighbor interaction. Under the condition that the transfer
matrix is invertible we use a transfer-matrix formalism to show that each Gibbs
state is determined by its restriction to any pair of adjacent (hyper)planes.
Thus we prove that (also in multiphase regions) translationally invariant states
have a global Markov property. The transfer-matrix formalism permits us to
view the correlation functions of a classical d-dimensional system as obtained
by a linear functional on a noncommutative (quantum) system in (d — 1)
dimensions. More precisely, for reflection positive classical states and an
invertible transfer matrix the linear functional is a state. For such states there
is a decomposition theory available implying statements on the ergodic
decompositions of the classical state in d dimensions. In this way we show
stability properties of Z¢ -ergodic states and the absence of certain types of
breaking of translational invariance.

0. Introduction

In this paper we study properties of and relations between the equilibrium states
of some models with nearest-neighbor interactions on the lattice Z% As a main
tool we use a transfer-matrix formalism. This formalism enables us to prove a
global Markov property with respect to (hyper)planes for invariant Gibbs states.
This property entails that for such states the spins in {xeZ%x, >0} behave
independently of the spins in {xeZ?|x, <0} upon fixing the spins at the boundary
{xeZ%x,=0}.

Intuitively Markov properties and transfer-matrix techniques are closely
related. The relation can be made explicit when considering a part of Z¢, for instance
AWM = (xeZ?||x;| < Nfori=1,....,d — 1} with NeN, which is infinite only in one
direction. In this case one is effectively considering a one-dimensional system. On
all of Z¢ however, the relation between the existence of finite-volume transfer
matrices and Markov properties is not immediate, although if one assumes Markov
properties the introduction of an infinite-volume transfer operator is not difficult,
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see e.g. [1]. In this paper we show how, under certain conditions, finite-volume
transfer matrices can be used to derive Markov properties for invariant states.

Proving Markov properties requires some care. Indeed for the three-
dimensional Ising model Goldstein has presented an example of a Gibbs state that
does not have a global Markov property [2], despite the existence of finite-volume
transfer matrices. (This example involves a Gibbs state that is not translationally
invariant.) When applying transfer-matrix techniques one usually starts out with
finite-volume states and studies the Gibbs state(s) arising as thermodynamic-limit
state(s) of these finite-volume states by means of the transfer-matrix formalism for
the finite volumes.

We will develop a transfer-matrix formalism which can be applied directly to
all Gibbs states. The important property we need is the invertibility of the transfer
matrix. Let g be the number of possible spin configurations per lattice point.
Because we are assuming that only nearest-neighbor interaction is present, the
invertibility of the transfer matrix is equivalent to the invertibility of a ¢ x ¢ matrix.
Therefore checking the invertibility is relatively easy when considering specific
models. Potts models (for nonzero coupling) have invertible transfer matrices and
can therefore be handled by the methods in this paper. Note that the methods
used are valid for arbitrary dimension d of the lattice.

Let us sketch the transfer-matrix formalism that is used. Let C,(£2) be the space
of functions on the configuration space 2 which depend on finitely many variables
only. We construct a linear map T from C,(£2) onto a*-algebra A,. A, is dense
in a C*-algebra . The map T depends on the interaction. We show, if u is a
Gibbs state, that there exists a unique linear functional /, on U, such that

Uleoen = Lo T (1)

Stated as such this does not provide useful information on the Gibbs state u.
Interesting results will be derived by studying the details of the relation between
Co(£) and A, which is given by the map T. For instance we show that every Gibbs
state is uniquely determined by its restriction to two neighboring (hyper)planes:
the expectation value of an observable in C,(£2) can be computed as the expectation
value of another observable which depends only on variables in two (hyper)planes.
This other observable depends on the interaction but not otherwise on the Gibbs
state considered.

An important observation is that the map T depends on @ (and thus on the
simplex of Gibbs states for @) but not on the state p in the set of Gibbs states
individually. The map T by transposition maps, affinely, the Gibbs states onto a
set L of linear functionals on 2,. Decompositions of invariant Gibbs states into
other invariant Gibbs states using the noncommutative formalism will be used in
the sequel of this paper to derive stability properties. However in case invariance
is absent we are not able to use noncommutative decomposition theory since we
lack a useful characterization of L.

In the construction of T we make use of the maps Uy eq — VyoVy e, for
NeN and where Vy is the transfer matrix for the volume A in the unbounded
direction. In particular the map o on U, which arises as the N — oo limit of the
above maps is used constructing 7. This map « has been studied by Fredenhagen
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in the context of Euclidean lattice gauge theories to construct the real-time
dynamics [3]. In fact the transfer-matrix method we use has a relation to Euclidean
lattice field theories in case the Gibbs state y is 74 -invariant. It is shown that the
state u is reflection positive in this case. If a Gibbs state u is Z¢-invariant the
linear functional [, on U associated with u by (1) is a state. The Hilbert space
constructed from reflection positivity of y, i.e., the physical Hilbert space, and the
G.N.S. Hilbert space of [, are canonically isomorphic [3].

This paper can be considered as a continuation of a program which was started
in a series of papers on the two-dimensional ferromagnetic Ising model. The state
l,, where u is the Gibbs state with magnetization zero for this model has been
obtained in [4 and 5]. The decomposition theory in the noncommutative setting
was subsequently studied in [6 and 7]. These papers however did not emphasize
the role of the relation (1), which plays a central role in this paper. In this way we
rederive the main result of Araki and Evans on the decomposition of the state [, [7].

Before indulging into details let us make a further remark. Note that by change
in representation a lattice system with a finite-range interaction can be viewed as
a lattice system with next-nearest-neighbor interaction. For instance one can
consider the array of spins in a (sufficiently large) block as a single spin variable.

Although the results in this paper could be largely extended if we were able to
deal with interactions arising in such representations, we see two main difficulties.
First for next-nearest-neighbor interactions the invertibility and locality properties,
if true at all, are hard to establish. Such properties are needed in constructing T.
Even if we could find a representation that has a nearest-neighbor interaction as
for the axial-next-nearest-neighbor Ising model (ANNI-model), there remains a
second difficulty. As the reader will realize, reflectional invariance is used often in
this paper. If in the original, finite-range-interaction, representation of the lattice
system the interaction is reflectionally invariant, this needs no longer be the case
in the (next-)nearest-neighbor-interactions representation of the system, although,
by transport of structure, in this last representation the same type of symmetry
is still maintained. However this type of symmetry does not have the property of
being associated with a plane of reflection, i.e., there is no (hyper)plane such that
observables on this plane are invariant under the symmetry action. It is precisely
such a property, for reflections, that is used in the proofs of Theorem 2 and Lemma 2
of this paper and which are basic to the results obtained. Therefore we think that
generalizations along this line of results in Theorem 2 and Lemma 2 are not
immediate.

Moreover straightforward generalizations along this line of all the results seem
impossible in view of the results on the ANNI-model in [16] compared to those in
Corollary 4.

1. Definitions

Let Q, be the finite set {1,...,q} = N. We equip £2, with the discrete topology.
For A < 7% we put Q,=(£,)" It is assumed that d = 2. Write Q2,4 = Q. We equip
02, with the product topology and denote by C(£2,) the space of continuous
functions on 2,. Let o, ,:02,.—Q, be the restriction map if A">A. We write
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oy 0= o5 Define C = { feC(Q)| there exists f,eC(£2,) such that [ = f,oa,}. The
map C(Q,)ef,— f,oa,eC 4 constitutes an isomorphism of C(€2,) onto C,
Henceforth we identify C(£2,) and C , by means of this isomorphism.

For A < Z* we denote by B , the g-algebra generated by the sets

{Ceay(O)=C4)

Aea,
A finite
&gy

We write B, =B. Furthermore we let B(L2,) denote the Borel g-algebra on 2.
For finite A'< A and ¢ ,€Q, consider the map

%(QA)S{fEQAWA’.A(f)zfA} {CEQWA (&)= fA}E%A

This map, for all finite A'< A and & ,e€Q,, constitutes an isomorphism of the
algebras B(2,) and B ,. Henceforth we identify B(2,) and B 4, by means of this
isomorphism. We denote by Eq , the set of states on C(2,). E¢q , is equipped with
the weak* topology. A state p on C(£2,) is identified with a (Borel) probability
measure du or B(2,) by
= | fdu for feC(Q,).
2,
If u is a probability measure on B , we denote by E%, if A" < A, the orthogonal
projection acting on L*(u;B ,) with range L*(1;B,). Let @: (] Q,—R be a
A finite
e
nearest-neighbor potential: @°o ,=0 unless A is a subset of aAneZarest-neighbor
pair. The Hamiltonian, H % for a finite volume A = 7 is a function in C ,defined by
HRY= Y ®coy.

XcA
Furthermore, if A is finite, we define W %eC by
We= Y  @ouy.

X XnA#¢d
XnA“#¢

More generally, for A finite and A’ = 7%, we define W, 4eC,_,, by
Waa= Z Dooy.
XXnA#¢
XA #¢
X< AUA
For A, A c 7% with An A’ = ¢ we define, if ¢ ,eQ, and ¢ , €04, the configuration
&AV éA’EQAUA’ by

O(A,AUA'(éA vig)=¢, and a/\',/\u/\'(é/\ vEy)=E4.
Define for finite A = 7% and ¢ ,€Q,, the function pf . €C, by

wa :
08 (6 =P A Z) FWREAV )]

(A& pe

where Z(‘f)im is determined by the normalization

me =1.

CAER
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For finite A = Z¢ we introduce the operator [ ,:C(£2) —» C(£) by
(EXNE) = Z fav O‘AC(&))/)(%,MC(@(& A)s

E A2 4

where feC(£2) and (E%. f)(¢) is the value of the function E% f, which is the image
of f under E%, at the point (2 A probability measure p on B is said to be a
Gibbs state for the interaction @ if u(f)= u(E%(f)) for all feC(Q) and finite
A c 7% The set of Gibbs states for @ is denoted by % .

Next we introduce the noncommutative *algebras that we need. Let (C?), be
a copy of C? for each yeZ?~!. We number the coordinate axes of Z¢~! from 1 to
d— 1. Let A be the C*-algebra defined as

A= ) L(C),),
yezi 1
where £((C?),) is the algebra of linear operators on (C?),. More generally we set
Ay = @ 2((C%,)
yeA

if A< %1 The C*-algebra % 7 is considered as a subalgebra of U. We define A,
as the *subalgebra given by

W= ) ;.
A finite
ZCZJVI
Define the Hilbert space $F as &= (X) (C%), associated with the vector
Eld‘l
Q,= X e,eH?, where e,e(C9), is the unit vector obtained from a unit vector

yezd!
¢eC’ by the process of taking the copy (C?), of C% Define r, as the *representation

of A on H&, which satisfies for each ez~ 1,

T(0) X €= oe’y®< X e’y>
yeZd‘1 J’EZ(F I\U}
for all eA; <A and all choices of unit vectors e,e(C?), such that ¢ # e, only
for finitely many yeZ?™". )
Let A< 7% ! be finite and 5;€(¢2,)". Then we define 7;€$H® by
i= & é,
yezd“ 1

where

5 = (e(m,)y for ye/}'
Ve, for yeA“.

Here (3), is the value of the configuration #; at yeA and (e;), is the [-th element
of the standard basis {e;,...,e,} of C? under the process of taking the copy (C%),
of C4. : } .
Let M be a ¢! x ¢! matrix with matrix elements
MBI s
H'ye(2)"
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for finite A = Z~!. We also denote by MV the element of U ; = A, = A which
satisfies

s Tl M) g = MUY LI — 2)

AA(m)mM’M) 27 AANAA . A0A

for all ny,nye (.QO)"’, where A'2 A. Here (., Ve Is the inner product of ¢
and o 7 is the operation of restricting configurations on A' = 7471 to A< 7471,
analogously to the restriction operator we introduced for subsets of Z°.

The operator MVe; i 1s well-defined by (2) and does not depend on eeCA
We denote by §#¢ the sub*-algebra of 2, which consists of operators in 2, that
can be defined by a diagonal matrix in (2). The algebra g8 is commutative. Write
Ag=e = AT~ A ;. The set of states on A is denoted by E,. Ey is equipped with
the weak* topology.

2. Formalism

For A = 7% define 0A = {xeZ"|d(x, A) = 1}, where d(,) is the standard metric on
7% x 7°¢ = R* x R%. Furthermore, for n, keN, define

P.(n)={xeZ%xo=k |x]<n for i=1,...,d—1}

and

P(n)={yeZ* '||y;|<n for i=1,....,d—1}.

Put Ry(n) = (A,+,\A,)"P,(n+ 1), where A, = Z%is for neN given by
A, ={xeZ%|x;|<n for i=0,....d—1}.
Choose ¢,€€,:; neN. Define V,, | (£,)€, by means of its matrix elements defined
by
(Vk:n,.l_(én))n,n' = 57],1}’ exp[ - H}?k(n+ 1)(jk77 Vv aRk(n)én):lﬁ
where 1,7'€(2,)"™ and j,ne(2,)"<™ is, for ne(2,)"™, defined by
(jk r])(k,)'l,...,}'d_ 1) = rl(\'),--»,l'd- 1)

with y=(y,...,Ys-1)€P(n) = Z*~'. Furthermore define V,_ ,,,,€ 2, by means of
its matrix elements defined by

(Ve 1jamohr = exp[— ng,i(n),PH ol v i+ )]

Consider a function feC 4 of the form
f=r-r 1

where f,eC,,, for k= —1,...,1 and where [eN. In the standard plane to plane
transfer-matrix formalism one writes

( f)(é ) <(j:(1n+l):OCP,“H,Nmin)A?ne((V—rw.L(éH))l/z

To
Z(An) 4

V‘77+1 2.;1(6?1) o V* (I+1 1/2)31(5”) V—‘(l+ 1 '2),}1(571)f—l V— I+ 1',’2;)1(571)
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.fA—H— 1 V-l+1“2~ (én)f~l+2 I/I—ll/z;n(in)fl-l I/l —l;n(én)ﬁ VH—I/Z;n(CH)
Vi, &)V, I/Zn(é ) nnZ(gn))l/z)(j(;iI)O(XP,I+l(n)€n)A>$§B®5 A3)

where

Vk+ 1/2;n(én) = (Vk;n,L(én))l/z Vk+ 1/2;n,0(Vk+1;n,_L ((’;’n))l/z

and f,eWd?¢ is for k= —1,...,1 defined by its matrix elements given by

(fk)n,n’ = 6n,r,’fk(jk’7)

for n,17'e(2,)"™ with n <meN. The operators V,, (£,) and V, ., can be
expressed as products of more elementary operators. Let [y,z] denote a nearest-
neighbor pair of points y,zeZ%~! (with nearest measured by the standard metric
onZ4"t x 747 = R x R 1) ordered such that (z — y); =0, 1 fori=1,...,d — 1.
The set of such ordered nearest-neighbor pairs in P(n) < Z¢~' is denoted by P,.
Then there exist operators v, ([y,z])e?, , for a nearest-neighbor pair [y,z] in
27 w0y (y)eUy, for yeZ¢ ™t and wir(y)e,,, for yedAj such that

Vk;n,i(gn)—’;( ]_—[ Uk,J_([y,Z])>< n ”)k(y)>( n wf"()’))
[y,z]»sf’,l Y€ An yEf,Af,

The operators appearing in the above product form of V,,  are defined by
means of their matrix elements which are given by

(v (05 2Dy = Sypexp = W2 (i)
for #, n’e(.Qo)“"‘"} and [y, z] a nearest-neighbor pair,
(e = Sy expL—H , (jin)]
for #,1'e(2,)"! and yez?~*, and

(wk (y))r] /A 511 n exp W’jkv {x (]k’? Vv a(xy}én)

for n,n'e(,)” and yedAS, and where x,e0A, is defined by d(j,y,x,)=1. The
following definitions were used. If yeZ¢~! then j,yeZ? is given as

Jky =k yisesVae 1)€Zd

and if 176_(20 for A< 747", then jone(2,)" is defined as (M. dae ) = Mgy
for yeA. Note that all the operators that were just introduced are in g8, Define
furthermore the contact operators », , 12,0(y)€A,,, by their matrix elements given
by

e+ 172,000y = €Xp — W Getties ot Ul Y e ')
for n,n'e()". Then V,,, 20 = H vrs12.0(¥). Henceforth the following

yeP(n)
condition, Condition C,, is assumed to hold for the potential @.

Condition C;. For all keZ and yeZ‘"' the contact operators w;, (y) are
invertible.
Condition C; implies that the operators V., are invertible for neN, keZ.
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Hence the operators V), ,,(S,) are invertible for each choice of £,€0,:. Define
the map o, - A, which maps g€, onto a®"()e, by:

1) if k>0, then

a(k);n,{,,(o_) 1/2n(f ) Vi 1/2n(én)o-(Vk 1/2,1(571))* '(Vl/z;n(én))~l
2) if k =0, then o™ is the identity on A,;
3) if k <0, then
“(k);n’é"(a)=( 1/2n(é )) o k+1/zn(f ))_1O-Vk+]/2;n(€n)"'V~ 1/2;,,(@.)-
Observing that [o5,05]_ =0 if 0;e; and o7eWy with AnA = ¢, it readily
follows that for e, there exist noeN such that the elements in the sequence

{oc“‘)‘"g"(a)}nﬂ do not depend on n anymore, nor on the configurations ¢,e€2,, .
Zng

neN
Thus one can define for keZ the map a®:,— A, which maps 5eq, onto

a®(0)eA, by

a®(g) = lim " (q).

Define
Vk;n,_l_:< H vk,l([ysz])>< n wk(y))
[y,z)e];,, Y€ An
and
Vk+1/2n ( kn_L) k+l/2n0(Vk+1nJ_)l/2'

Define the map o,,,: 0, — A, by the same formulas as used when defining o

but under substituting ¥, for ¥V, (¢,). Then, if c€?; for a finite A<= 7471,

a®(g) = lim o (a),

n— o

vzhicll shows the independence of a®(s) on {&,},., explicitly. Moreover if
AcA,={yez '||y;|Snfori=1,...,d — 1}, then for k>0 and e,

Cx(k)(o-)ZVl/2:n+2kV1”2;n+2(k—1)'”Vk—I,’2,rx+20-(Vk—1/2;n+2) (V”2n+2k 1)* ( 1/7n+2k)—
With a similar formula for the case k<0 it is readily seen, by using V,,,,,=
Viwi)"* Vi 1pmoWVis 1 )V? that o (o )e?LMkHl when ;. Define T™én:

Co(9) - U, for neN and ¢,e0,. as the unique linear map that maps feCy(£2)
onto T™(f)eA,, where T"(f) is given by

Trén(f) = ol () ()

for f of the form f = f_,-- f, with fye | J Cp,q for k= —1,...,L The map T"% is
n=1
well-defined. Then

(Exe S)(E0) = <(j:(ln+1)°O‘P_(,,Jrl,(n)én)A,

Z(An) &n
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TV, (€)' V-n+1/zln(5n)-~ Vo1pa(C))

(T N7V 120 (C) V2 (En)

Vit CDV2) b 129, a) Ve = 1, (T™f) (4)
for all feC,, and I, is the linear functional on A, given by

1

Zo oo w&n) s

.ne((VAn'nL(i ))1/2 V—-n+1/2‘n(é )V I/Z'n(é ))
)V (&) Vi 12 E) (Vi 1 (€)'
.(jn—+110aP (n)én) >Sje®'

Next define the linear map T:C,(2)— U, as the map which maps feC,(£2) onto
T(f)eU,, where

n+1

l@,.(') =

Pt 1)

n+1

T(f) = lim T"*(f).

n— o
This limit exists trivially for each feCy(€). for some n,eN the sequence
{T™(f)} . is a constant sequence with elements which moreover do not depend
n2ng
neN

on the sequence {¢&, of configurations with &,eQ ..
q .- n€3apc

neN
Let u be a Gibbs state for the potential @. If feC, and meN is taken large
enough that T"n(f) = T(f) for each &, e, then

)= T CodEn)ERNEn) = [ (o e (T5(1)
- j (e W)l (T

m

This shows that one can define a linear functional I, on the range of T by setting

LT()) = tim [ (oge W)(d,0)1e, (T(S))

m—ow 0
for feCy(Q). "
If S: X - Y is a map from a set X into a set Y, then for X, < X we denote by
SX, the image of X, under S. Furthermore if A; and A4, are subsets of an algebra
then A, A, = {ala=a,a, with a,€A, and a,eA,}.

Proposition 1.
T(Cp,.p,NCo(£2)) = Uy,
Proof. Take neN. It will be shown that
Ap,y < linear span of WFEE, | oM (AGES). (5)
Then the proposition easily follows. Indeed, note that

: di 1 d
linear span of W§ZE, ;™ (UURES) = T(C Pon+ 1) Py
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Hence, using (5),

Ay = | Ap(y = [ {linear span of Ages, | o H(Adae)}

neN neN

= U PO (n+1)uP (n)) T(CPOuPl NCo(92).

neN

In order to prove (5) it is useful to consider A, and W, ; 1, as the matrix algebras
by which they. were introduced. The linear span of ?I%}‘,‘,% Voo 2o eq‘uals ‘lIP(,}),
because A is the full algebra of diagonal matrices in p(,, and V,,, , is a matrix
that has strictly positive matrix elements. Therefore,

linear Span Of QI?’:?& Vl/ZNOQI?’l(?g( 1/ Zn()) = QIP(n)'
On the other hand,

(1 di _ - —-1/2
D (UpGs) = (Vo;n+u) 12noul’(n)( Viano) Vo)™ 2
Thus,
di 1 d di = -1/2
ARG, 1o (As) = QIPl(E:l-Pl)V’ZnOHP(n)( Vimo) il Vows1,) 2.
Hence, by furthermore noting that
i
(Vowsr)~ ?€linear span of Wy, oy Wiy

we obtain,
linear span of AL, | ol V(ASZE)

diag —-1/2
= linear span of A ot 10200 ey (Vo s 1.1)

= linear span of LS e Aeey 2 Wpy- O

As a corollary of Proposition 1 one obtains that for each-Gibbs state u there exists
a unique linear functional [, on A, such that

luo T=pu rco(.(z)- (6)

Such a pair (u,1,) with p a state on C(£2) and [, a linear functional on 2, which
are related as in (6) will be called a canonical pair (for T). Note that T Fe,.nCo@ is
a *-isomorphism onto AL, Thus the plane P, plays a special role. However one
could also consider a formalism in which this role is played by the plane P,. In
such a formalism one would, instead of considering the functional [, associated
w:th a Gibbs state u by T, consider the functional 1,oa® dssomated with u by
( ) o T

Part b. of the next theorem is for k = 0 an immediate consequence of Proposition

1, but in view of the remarks just made it holds for each keZ.

Theorem 1.
a. If wis a Gibbs state then there exists a unique linear functional I, on W, such that

Hleoy =LoT. 0

b. For each keZ a Gibbs state is determined by its restriction to Cp, p .
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Remark. Proposition 1 implies that for each geC(£2) there exists an feCp p N
Co(9) such that T(f —g) =0. Apart from g the function f only depends on @.
Hence for each Gibbs state p,

n(f) = u(g).

An explicit formula for f given g can be obtained by applying Eq. (8) in the next
section.

3. Decompositions

In order to exploit the relation u [CO(Q) =1,°T between a Gibbs state u and a linear
functional [, on 2, further, it is useful to assume that ®and p have some invariance.
Let 6, be the reflection of Z* in the plane {xeR?|x, = k} where keZ. Furthermore
let @ be the action of translating Z¢ over a aeZ“. These actions, T and 0,, act
in a natural way on the spaces £, C(£2), E. o), and on potentials. These actions are
also denoted by ™ and 6,. If G = Z% is a subgroup of Z¢, then E{, denotes the
set of G-invariant states on C(€2). Furthermore, if aeZ?~ ! then the automorphism
of A which gives translation by aeZ?~! is also denoted by t9. If Hc Z4 ' is a
subgroup then EX denotes the set of H-invariant states on 2 In the following
741 is identified with {xeZ% x, =0} by the correspondence

2713y =(yiseees Ya-1) 0,015 Va1 )ELY

In particular subgroups of Z?"' are in this way viewed as subgroups of Z¢
Henceforth we assume the potential @ meets Condition C,.

Condition C,. The potential @ is reflectionally invariant with respect to reflections
in the planes {xeZ‘|x; =k} ., -and the potential @ has an invertible contact
operator in each coordinate direction of Z¢.

Note that Condition C, expresses that @ has invertible contact matrices in the
0O-direction. Condition C, therefore includes Condition C;. Also note that
0000, =1, where 1o =129 with (1,0,...,0)eZ%. Thus Condition C, implies

that @ is Z¢ -invariant, where Z,, is the set of even integers. The Z¢ -invariance of
@ implies

Uk+2+1/2,0()’)= Uk+1/2,o()’) for all keZ, }’GZd‘1
and
Vg + 1/2,0()’):7)“ 1/2,0(}"“}/) forall keZ, yez’"' and ,V/EZg;1~

Reflectional invariance implies furthermore

7/‘1/2,0()’)* =v_ypo(y) forall yeZ™ 1.
Similarly for all keZ and [y,z]e| ) P,,

neN

Uk+2,1_([y7 z]) = Uk,L([J’a z])
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and
T(a)(vk,l([ys z])) = 7}k,L([y +a,z+aj)

for all aeZ¢; . Also for all keZ, yeZ* ! and aeZ¢; !

T(a)(wk+2,l W)= (v +a)

Furthermore v, ([y,z])* = v, ([y,z]) and «(y)* = «,(y). The following lemma
states some properties of the map T:C,(£2)— A, which are easy consequences of
the above stated properties of the operators which constitute the transfer matrix.

Lemma 1. Take feCy(£2). The map T:Cy(£2)— A, has the following properties.

L T((00 /) = T(f)*,

2. T(tg )= 2(T(f)),

3. T2 f)=1X(T(f)) for j=1,...,d— 1, where 1;=1"" with aVeZ*"" given by
components a =6, ;;1=0,...,d— 1.

Proof. Define o;: %, — U, for § = + 1 as the map which maps o€, onto as(s)e,

given by

5(0) = lim V61/2,n6(V¢>l/2;n)—l'
n— oo

Then, if 1 £keN,
1 = o, oo o o0 e
WP =alieaiiooa .
Since (V,,,)* =V _,,,, one obtains
(o (o))*=aZ1(c*) for oceU,.

Thus («®(6))* = «' ¥ (c*). Using the definition of T the assertions of the lemma
follow. [

Condition C, is sufficient to invoke the following theorem which can be found
in [117.

Theorem 2. Let ue% , be invariant under a subgroup of Z° with finite index in Z¢
and assume that p is O,-invariant for each keZ. Let [i be the unique state on C(£2)
that satisfies:

1. fis O -invariant for each keZ;
2. [t has the Markov property with respect to P, for each keZ;
3. 'arcpouplzﬂrcpoum‘

Then [i is a Gibbs state. []

The following definition of the Markov property with respect to P, is used. If
u is a state on B, let F4 be the orthogonal projection on L*(y; B) with range
I?(u;B ), where A = 7 The state u is said to have the Markov property with
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respect to P, if
B S = B, S
for all fel?(y B4, ), where (2% 5= {xeZ%(xy — k) = 0} and 6 = +.

Now Theorem 1 says that each Gibbs state is determined by its restriction to
Cp,.p,- Hence the states p and g which appear in Theorem 2 are equal. Note that
if u is a state which satisfies u= uct3 and p=u°0,, then u= w6, for all keZ
because 6, = 13*20,. Therefore one obtains from Theorem 1 and Theorem 2 the
next corollary.

Corollary 1. ChooseleZ. Let pe% »n Eé?}?) be 0;-invariant. Then u has the Markov
property with respect to Py for all keZ. [

Lemma 2. Choose keZ. Let u be a state on C(Q) which is 0,-invariant and which
has the Markov property with respect to P,. Then p is 0,-reflection positive, i.e.,

w0 ) )20 forall feCya .
Proof. See [8], pp. 104/105. [
Let (u,1,) be a canonical pair. Then for fe Caty,, O Co(£),

(06 f) f) = LAT(* T()).
Thus, using Proposition 1, one sees that the following assertions are equivalent:

1. wis O,-reflection positive;
2. 1, 1is a state on .

In case [, is a state on U, then [, has a unique extension to a state on 2. When
a state u on C(£2) and a state w on A satisfy

i fcmm =w°T

on, Co(£2), the pair (1, w) will be called a canonical state pair (for T). If ue% 40
Ef.;‘})) is f,-invariant, then by Corollary 1 and Lemma 2 the state u is part of a
canonical state pair. In particular this shows that the set of canonical state pairs
is nonempty.

If w is a state on A we denote by (H,,, 7,,, 2,) a G.N.S. triple for w, that is, H,,
is a Hilbert space, n,, is a *-representation of 9 as bounded operators on ,,, 2,
is a unit vector in 9, which is cyclic for ©,(2) and the triple is such that

w(0) = {2,,7,(0)82,)

for e and <-,-) is the inner product on H, x 9. Define I, = (7, (2A))", the
center 3, of M,: 3, =M, M, and INdiae = gnw(QIdi"‘g))”‘

If (u,w) 1s a state pair with ue% ;N Ef{b), one can study the effect of
decomposing w into other states on the possibilities of decomposing u. This will
be done in the subsequent part of this paper, but first we remark that the state w
on A, can be introduced slightly differently from the way this state was introduced
above starting from a 6,-reflection positive Gibbs state . Let (i, w) be a canonical
state pair with ue% 4. The Hilbert space 9, is canonically isomorphic to the Hilbert
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space $ which is constructed from the positive sesquilinear function b,(,*) on
(s Q-7’(2“')0 )X L (g %(z”)o'J given by

bo(f.9)=<bo1.97

where f,gel*(u;B @ yand (), denotes the inner product on L (1B ) %
L*(y; Ba). See Fredenhagen s paper [3]. In [3] the construction of the state w
from the 0,-reflection positive Gibbs state u uses the inverse E, of T r<o<9)“%m‘
Explicitly £, : U~ Co(2)n Cp p,, which maps a2, onto E, (0)eCo(2)NCp p,
is given by

O')(/:) _ hm (UVl 2;}1)]‘,; "7P0m[ﬂ/‘1—1(1px(,,)(:)). (8)
noe (Vo)

The state w is now introduced by

—1 sy L, z
1o Epom(Ek it 7p (&)

for ceA,, [3].

Consider a canonical state pair (i, w) where p is t“-invariant with aeZ¢ .
Since T(t“f)=t“(T(f)), see Lemma 1.3, the state w is t“-invariant and there
thus exists a unique unitary operator U, on §,, such that

U,y (0) 2, = 7,(t(0)) 2

for all ceU. Now let (u, w) be a canonical state pair where u is t3"-invariant with

neN. Then there eixsts a unique operator P3” on §,, which satisfies

PV 1,(0)2, = 1,2 (0))€, 9
for all 7. By arguments in [9], see also Schor’s paper [10], Eq. (9) defines P2"
as a self-adjoint contraction with || PZ" || = 1.

Actually the paper [10] does not consider Eq. (9) precisely. This paper uses
the Hilbert space $ and also one considers the case of a reflectionally as well as
translationally invariant @. In such cases, if (u, @) is a canonical state pair with
uety = i, one can introduce the operator P, on §, by

P m,(0) 2, = 1,(2(0)€2,, (10)

where a=0,,(=2_,). Here «,; and o_, arc the maps on U, which were
introduced in the proof of Lemma 1 (and o, ; = o _, by the assumed translational
invariance of @). It is Eq. (10) to which the arguments in [10], which give that P,
is a self-adjoint contraction, immediately apply. However the case described by
(10) is completely analogous to the one given by (9).

The operator P, is called the infinite-volume transfer operator. If P2" is defined
by (9), then clearly P?"=(P_)*". Since the state p is not assumed to be
translationally invariant the “powers” of the infinite-volume transfer operator,
P2" which are defined by (9), are considered in the following.

The operator P3" is positive if and only if p is 0,-reflection positive. Moreover
7, (A, )2, is in the range of P2, Therefore 0 is not in the pomt spectrum. Hence
P?" has an (unbounded) inverse P2V, cf. [3]. Let H < 7%, ! be a group and neZ.
The group H,, < 7¢, is defined as the group generated by H and (2n,0,...,0)eZ"
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Write H, = H. Furthermore define
R,(H,,)={U,acH}U{PZ"},

when the state w on U is a part of a canonical state pair (u, w) with a state u on
C(£) that is H,,-invariant. The von Neumann algebra M, (H,,) is defined as

9t(J)(}{Zn) = (slnw o Rw(HZn))/~
Lemma 3. Let (u, ) be a canonical state pair. The following assertions are equivalent:

1. p has the Markov property with respect to Py,
2. M Q s dense in 9,

If one of these assertions is true, then
Jo =M,

Proof. The equivalence of the assertions 1. and 2. is well-known. See e.g. remarks
made in Chap. IV in [12]. If assertion 2. is true, then 9912 = (I%i28) and the last
claim of Lemma 3 immediately follows. []

In case one of the assertions in Lemma 3 holds, let 14:12(1; Bp,) > 9,, be the
unique unitary operator which maps feCp N Co(2) = L*(u;Bp,) onto I fe$H,,
given by

Iy f =m, ()9,

Henceforth, if one of the assertions in Lemma 3 is true, the Hilbert space L*(u; Bp,)
is identified with the Hilbert space $,, by means of If. Then L™ (u; Bp ) = M
when considering L (y; Bp,) as the set of bounded multiplication operators on
L*(1; Bp,). If the operators U, for aeZ:; ' and P?" are defined, the operator U,
is equal to ™ under the identification by I§ and P3” equals Ep 015", where the
last operator is considered as an operator on L*(u;Bp ). Furthermore, by this
identification, for fe Ciey, . N Co(£2) we have T (T2, =Epy )

Let (i, w) be a canonical state pair. Then for feC(£2) one has

100 f) = 100 ) = <y 0 (T(00 1)) 20> = < oo 10 (T(N))* 2>
= (., (T(/) 2 = plf).

Therefore p is O,-invariant and thus has the Markov property with respect to P,.
This means that the first assertion of Lemma 3 is true, in particular therefore

M, = 3o

Lemma 4. Let Hc 7%, ! be a group and pel\l. Assume H,, is nontrivial. Let (1, w)
be a canonical state pair with ue% N Efi;;)) Then,

a. {AQ,|AeN,(H,,) " = 9 where

Do = W eD,IPL = ¥j

and Uy = for all aeH} and X' denotes the closure of a set X < 9,,.
b. N, (Hy,) = (MGEUR,(H,,)) .
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Proof. Note that by the remarks made just prior to this lemma the state u is
fo-invariant and M, = 3.

a. Let yeH>n Then B4 018"y = YeL*(1; Bp,) = L*(u; B). But Ej, is an orthogonal
projection and 13" acts isometrically, therefore

Y=y
Furthermore 7y = for all ae H. Thus y is invariant under the action by elements
from H,,. By proposition 3.6 in [14] one obtains then
Ve ﬂd I2(1;B 40).

ACZ
A finite

If Ac7¢is finite, denote by E , the bounded operator on I*(y; B) which maps
fel?(u,B) onto E 4 fel?(u; B) where E . f is given by

(Exf)O)= 3 f€avas(l))
CAeR2y
for e
The operator E ,. is well-defined on L (u; B) since y is a Gibbs measure. One has
E 4oy =y for all A finite. Let {g, },., be a sequence in C,(£2) " Cp, which converges
in I2(u; B) to y:

Y = lim g,.
k— o0
If A is finite,
EACngCO(Q)mCPOr\AC
and
Y = lim E 4. g,.
k— o0

Hence Y e L?(1; B, . 1c). Therefore
',DE ﬂ Lz(;ua %POGAC)'

A finite
Acz?
If meN define y,,e L*(u; B) by
_ @@ it y@Qlsm
VnlS) = {0 otherwise
Then Y,,e () L*(1;%Bp,. ) and moreover 1y, =y, for acH and 13", = Y.

A finite

€ d
One readil)//‘ see that Yn€{AQ|AeN (H,,)}, and since },, converges to  in L*(i; B)
one concludes that

‘//E {Agw | Aemw(HZn)}Clos'
Since the inclusion
{AQw‘Aemw(HZn)}Clos < 552'1

is obvious, part a. of Lemma 4 has been proven.
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b. Take Ae(ME2 ¢ LR (H,,)). Then AeMi*, since (Mi2e) = INI*8. Furthermore
U,AQ, = AQ, for all aeH and P?" AQ, = AQ,. By arguments like the ones used

in the proof of part a. of this lemma it follows that AeJ,. (Note that

3o= () " %Acmpo).> Therefore AeMN,(H,,). The inclusion

Ac Zd
A finite

9,iw(IJZn) < ((Jﬁi)iagu Rw(HZn)),
being obvious, part b. of Lemma 4 has been proven. []
Lemma 5. Let (1, w) be a canonical state pair where u has the Markov property

with respect to Py. Let H< 7%, " be a nontrivial subgroup and neN. Assume yu is
H,,-invariant and P?" > 0. Then P?"e(N,,(H)).

Proof. Take AeN (H) < 3,. Then there exists a unique Be9%i*¢ such that PZ"
AQ, = BQ,. This is most easily seen by viewing P?" as Ej o73" and noting that
Ef, maps L™ functions onto L* functions (it is a conditional expectation). The

uniqueness is a consequence of Q,, being separating for M8, Moreover one easily
sees P2V A*Q = B*Q . But U ,P3" = P2" U, for all aeH. Hence

U,BQ = BQ.
Therefore BeN (H) = 3, see (the proof of) Lemma 4. Thus, if 0e?,,
CAQ,, PO 1 (0)2,> = CAQ,, 1™ (6)2,)
= (e ?(0%)) Ry A*Q, ) = (PET(0%)2, A* 2,
= (6¥)2,B*Q,> = {(BQR,n,(0)2,>={PEVAQ 7 (0)2,>.

Sinc_e1 (W), 1s a core for P‘fo")ﬂ, this implies that AQ  is in the domain of
P@)"" Moreover P2~ AQ, = P2" AQ_, that is, P?"* AQ, = AQ,. Since P?"
is positive this implies P2™ AQ,= AQ . But then for all o, ¢’eU,,

(Mo0)2 PEPA*T,(0)02, > = {1, (02" (0))2,y A* 1, (0)2,, >
= (AQ,m (6™ (0%))6')2, > = CAQ, P2, (0™ (0%))0)2,,>
={AQ 7 (c**"(d)Q,> = {n(0)Q2, A*PC"7 (682, .
Hence P2" A4* = 4*P2" . Tt follows that
PCYe(R (H)Y. O

Let (1, ) be a canonical state pair where u has the Markov property with respect
to Py. For Qe define w, as the linear functional on U given by

wo(0) = {2, 71,(0)02,,)

for oeW. Furthermore define y, as the linear functional on C(£2) given by

to(f)=fduQ-f
for feC(Q2): Then

to Teo) =g T.
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For results and definitions from (noncommutative) decomposition theory which
are used below the reader is referred to Chap. I'V in the book [13] and the references
to the research papers given there.

Lemma 6. Let (u,w) be a canonical state pair, where u has the Markov property
with respect to Py. Let 0 be a von Neumann subalgebra of 3,,=IM,,. Let vy, be the
orthogonal measure on Eqo which corresponds to M. Let supp vq denote the support of
the measure vy,

1. There exists a unique one-to-one continuous map T':supp vy —% o which maps
WEeSupp vy, onto T'we% 4 with

(T'w)(f) = o(T(f))

for all feCy(€2). Let v§; be the measure on E g, which is the image measure of
vy, under the map T'.
2. The measure vg is the orthogonal on E, which corresponds to M. In particular

= i,
L)
3. The support of v consists of Oy-invariant Gibbs states. There exists a subset of
E o) with v¥ measure 1, which consists of states that have the Markov property
with respect to P,,.

be the maximal set of mutually orthogonal nonzero projections in 9t. Then the
orthogonal measure vg on Ey corresponding to 9t is given by

Vi =3 wo,(1)d,,,
i=1
where ¢, is the Dirac measure at w,eE, with w; given by
1
ofo) =
wa(ﬂ)

for ;eW and i=1,...,n. Thus the map T" is readily defined on the support of vy
which is {w;|i = 1,...,n}. Explicitly.

le(O-)

1
/U)i =’__H. n
0(n"°

Therefore

vi= ), o1)d,,,
i=1
where ¢, is the Dirac measure at y;eE,, with g = 1/wq,(1) pg,- Therefore the
statements under 1. and 2. hold with 9t replaced by 9t. But v,, is the vague limit
of the net {vs} with 9t finite von Neumann algebras in 9, where the ordering of
the net is given by inclusion of the von Neumann algebras. Similarly the orthogonal
measure on E, which corresponds to 9t is the vague limit of the net {v&}
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with 9t finite von Neumann algebras in 9. It follows that the statements 1. and
2. hold for $t.

3. The fact that the support of v} is contained in the set of y-invariant states
on Ey,, is obvious. The Hilbert space $,, can be written as a direct integral
Hilbert space as

@ 4
550 = j V\)I(dw )Sjw"
Eq
Then

® ®
o= | vyldw)m, and Q,= [vy(dw)Q,, .

Let {i,},.n be a fundamental sequence of fields. In particular {i,(@')},. is a
dense sequence in ,,.. By Lemma 3 one has from the Markov property of y that
n,(AdEQ is dense in §,,. Therefore, for each neN, there exists a sequence

{601}k I AG?E such that

nc)'(o-n.k)gw’ - l//,,((i)/)

in §,, for vy-almost all . Thus one sees that 7, (A§*#)Q2,, is dense in $,, for
vg-almost all @’. Another application of Lemma 3 then gives that T'w" has the
Markov property with respect to P,. []

Let G be a subgroup of Z%. The set E¢,, is a simplex. Its set of extremal point is

denoted by Ext(EZ,). Since C(€2) is separable, Ext(E,) is a Baire set. If NeN

define a map, A%: C(2)— C(£2) which maps feC(2) onto A% feC(£2), where A§f
is defined by

ASf=- (a) £

NS |ANmG|aEZ Tf.

ANnG

Then peExt(EJ,) if and only if for all f, geCy (),
lim [u(g(A5f) — ulg)u(f) = 0. (11)

N—-w

Let H be a nontrivial group contained in 7¢ ', The set EX is a simplex. The
set of its extremal points is denoted by Ext(EL). Since 2 is separable, E¥
is a Baire set.

If NeN, define a map A¥: A — A which maps g onto A¥(c)e, where AX(a)

is given by
1
Aoy = ——— (o).
N lAan'aeA%ﬁH
Then weExt(EY) if and only if for all ¢, 0,1,

I}im l(a,AR(0)) — w(oy)o(e,)] = 0. (12)
Let (u,w) be a canonical state pair. Let H< Z% ' be a nontrivial subgroup.
Then weEl, if and only if weEj{. Moreover peExt(El,) if and only if
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weExt(EH). This is most easily seen by observing that for aeZ¢, we have

T(f(x99)) = T(f)*T(g)
assoon as min |a] is larger than some constant (which depends on f and ¢)
and then usmg the characterization of H-extremality as stated above. Now assume
furthermore that p has the Markov property with respect to P,. Write 3 = 9t (H).
Let v, bc the orthogonal measure on E, corresponding to 9t and v
the orthogonal measure on E.,, corresponding to ¥i. By standard theory
v (Ext (EX)) = 1. Therefore by the foregoing remarks and Lemma 6,
VE(EXU(EL o)) = 1.

Therefore v is the measure on Ef,, which gives the H-ergodic decomposition of
w, ie., v¥ is the unique maximal measure on Ef, which represents p. Write 9,
as the direct integral

@
g)w = j vﬂ?(dw/)gjw"

Assume PZ" > 0. Then, since P?" e, this operator is decomposable. Hence one
can write

® ®
PZ" = [ vy(dw)PZ,. Now note, if g€ | vy(dw)m, (22" (0))2,,

XL.o

®
=7,(e?"(0))Q2,, = P7"1,(0)2, = | vy(dw)PZ", 7,(0)02

-
Hence
P (02, = 1, (27" (0))82,,
for vy-almost all w'. Therefore for vy-almost all o',
W =0" on A,.
This implies that for v§-almost all /e El!,, . the state y' is invariant under 73"
Corollary 2. Take [ie¥ ,n E?fb). Then i is Oy-invariant.

Proof. Tt dis sufficient to prove this under the further assumption that
feExt(E C(O)) Consider pt = 3(fi + fi°0,). Assume, ad absurdum, that fi # fi°0,. Then
fi is disjoint from fi60,. Let H< 7%, ' be a nontrivial group. Then there exists
S c E\,, such that

1
= H(dp)es 13
f v*(S)SV(“)“ (13)
where v* is the unique maximal measure on Ef, which represents . Now g is a
Oo-invariant and Z¢ -invariant Gibbs state. Therefore u has the Markov property
with respect to P, (Corollary 1). Let (i, w) be the canonical state pair which can
be constructed from p. Write 9t = 9t (H). Then

vE =13,
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where notation is used which has been introduced just prior to Corollary 2. But

vE is concentrated on f-invariant states by Lemma 6, part 3. Hence by (13) it

follows that j is 6 -invariant. This is in contradiction with [ # fic6,. Therefore
= ﬂo@o. D

From Corollary 2 one obtains that Z¢ -invariant Gibbs states have the following
properties:

1. O, -invariance for each keZ,
2. the Markov property with respect to P, for each keZ,
3. f,-reflection positivity for each keZ.

If je{0,....d —1} denote by G'? the subgroup of Z¢, generated by aeZ* where
a;=26;;fori=0,....d—1.

Corollary 3. Take pe% ,n Ext(E ))- Then ,ueExt(E for all j=0,...,d—1.

Proof Consider the group G'® and let v* be the unique maximal measure on
(’(\

E(‘Q, which represents p. Then the support of v* is contained in the set E[,
by the remarks made prior to Corollary 2. (Note that P2 > 0, since u is 6, -reflection
positive.) But the 0-direction plays no particular role to the 1-direction: one could
have done a transfer-matrix formalism in the k-direction, where ke{2,....d—1},
with the result that the support of v* is contained in EC(Q) Hence the support
of v* is contained in ch}z) Since ,ueExt(EaQ) one obtains v*=o¢,, where J,
is the Dirac measure at ueEgq,. Hence ueExt(Egm) But the l—direction plays
no special role. Therefore peExt (EC(Q) for each je{0,...,d —1}. [

Corollary 3 is strengthened in part 2 of Theorem 3.

Theorem 3. Let ,uegd,mExt(EC(m) Then
1. the state p is strongly clustering for 7¢,, i.e., for all f, geC(2) one has

lim [ u(g(zf)) — wlg)u(f) =0,

aeley
laj—x
where | | is the standard norm of 74 < RY;
2. for each je{0,...,d—1} the state p is clustering of all orders for G, i.e., for each

neN and f1,... f,,eCO(Q) one has
lim L7 ) (35 ) — u(f1) - s f) | = 0.

(ky, . k2"
nf{|k; - k Hz#}dnd
Lye{l, },ﬂoo

Proof. From the fact that ueExt (E ) one obtains that the sequence

B
P m
N w=o NeN

converges weakly to P, , where P, is the orthogonal projection on $,, with range

- (This is a restatement of the cluster property characterizing the state u as
an element of Ext( )) Since P'? is a positive contraction, the sequence
{P2"},cn has P, as strong limit.
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1. For aeZ?, write

t(a) = u(g(rf)).

Let {t(a™)},., be a convergent subsequence of {t(a)},,« . Then at least one of
the following statements a. and b. is true:

a. There exists je{0,...,d — 1} and a subsequence {t(b")} ., of {t(a®)},.. such
that b\’ - — o0 as [ tends to infinity.

b. There exists je{0,...,d — 1} and a subsequence {#(c?)}, of {t(a®)},. such
that ¢’ — oo as [ tends to infinity.

Assume that statements a. is true. There is no loss of generality in assuming
that j=0. (Otherwise one should employ a transfer-matrix formalism in the
j-direction in the following.) Also without loss of generality we may assume that
geCyi . Then

k k .
1(b%) = u(grsy ot 10 f) = u(gEpy ot ot ol ).
2)b&)2=

By the invariance of u under Z% and the strong convergence of P?
Ep, ot %’ to P, one obtains that

llkm 1(b®) = u(g)u(f).

blk)

This proves case a. However by reflectional invariance case b. is easily reduced to
case a. So part 1 of the theorem has been proven.

2. There is no loss of generality in assuming j = 0. If

Gis--»9u€Co(€2), consider the sequence {s(/)}

lez" ’

ly<ly< -y
21l

where s() = u((z3" g,) - (13" g,))-

Using that the strong limit of {P?™} . is P, one easily sees

me

lim  s(D) = ulgy) - ulg,)-

Liv1—li=o
fori=1,..., n—1

t(k) = u((z3" f1) -+ (1)),

where ke Z". Then it is readily seen that each convergent subsequence of {#(k) } ,.,»

contains a subsequence of the type {s()}.,» with (gy,...,g,) a permutation of

(f1s-...fu)- Therefore each convergent subsequence of {1(k)}, ,» has the limit
(fl) u(f,). Hence {t(k)},.,» itself has this limit. [

Corollary 4. Let ue% , be invariant under a subgroup G < 7¢, with finite index in
78,. Then p is Z¢ -invariant.

Define

Proof. Without losing generality one may assume that peExt (E¢,). Choose
M < 7Z¢, such that {a + M}, is a partition of Z¢, and choose M = M as a maximal
set in M with the property that ,uor(x) # uet? for all x, ye M with x # y. Consider

fi= pet (14)
IMI ZM
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Then fi is Z¢ -invariant and moreover fieExt (Efjf}))). By Theorem 3, part 1. the
state i is in Ext (E‘C;(Q,).~But (14) establishes a decomposition of i into G-invariant
state. It follows that |[M| =1, i.e.,

per =

for all xeM. Hence u is Z% -invariant. [

4. Two-Dimensional Ising Model

Consider the two-dimensional Ising model in zero external field (and with nonzero
coupling constants in both directions of the lattice 7). First suppose that the
temperature is below the critical temperature. Let u be a Gibbs state with zero
magnetization. Then by Aizenman’s result [157], g =3(u, + u_ ), where u, and p_
are extremal Gibbs states. Moreover the states y, and u_ are Z%invariant.

Let w be the state on U associated with p:(u, @) is a canonical state pair. Then
there exists a projection Qe J3,, such that

1 1
=——u, and pu_=———u, ,.
e = e 1 _me

Write w, = (1/wy(1)wg and o = (1w, ,(1))wy. Then () and (p-,w_)are
canonical state pairs. And w =%w, + w_) is a decomposition of w in disjoint
states. Furthermore w, and w _ are irreducible states since u, and p_ are extremal
Gibbs states. (If w, or w_ were not irreducible one could by Lemma 6 construct
a nontrivial decomposition of u, or u_ into other Gibbs states.)

Now consider the case where the temperature is equal or greater than the
critical temperature. Then there is a unique Gibbs state . Hence the state w on
A associated with p is irreducible. In this way one has re-obtained the main result
of the paper [7] by Araki and Evans.

Acknowledgement. The author gratefully acknowledges several discussions with M. Winnink.
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