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Abstract. Consider models on the lattice ΊLd with finite spin space per lattice
point and nearest-neighbor interaction. Under the condition that the transfer
matrix is invertible we use a transfer-matrix formalism to show that each Gibbs
state is determined by its restriction to any pair of adjacent (hyper)planes.
Thus we prove that (also in multiphase regions) translationally invariant states
have a global Markov property. The transfer-matrix formalism permits us to
view the correlation functions of a classical d-dimensional system as obtained
by a linear functional on a noncommutative (quantum) system in (d — \)-
dimensions. More precisely, for reflection positive classical states and an
invertible transfer matrix the linear functional is a state. For such states there
is a decomposition theory available implying statements on the ergodic
decompositions of the classical state in d dimensions. In this way we show
stability properties of Z^-ergodic states and the absence of certain types of
breaking of translational invariance.

0. Introduction

In this paper we study properties of and relations between the equilibrium states
of some models with nearest-neighbor interactions on the lattice Zd. As a main
tool we use a transfer-matrix formalism. This formalism enables us to prove a
global Markov property with respect to (hyper)planes for invariant Gibbs states.
This property entails that for such states the spins in {xeZd\x1>0} behave
independently of the spins in {xeZd x1 < 0} upon fixing the spins at the boundary

Intuitively Markov properties and transfer-matrix techniques are closely
related. The relation can be made explicit when considering a part of Zd, for instance
Λ(N) = {xεZd\ \xt\ ^N for i= l,...,d- 1} with JVel^l, which is infinite only in one
direction. In this case one is effectively considering a one-dimensional system. On
all of Zd however, the relation between the existence of finite-volume transfer
matrices and Markov properties is not immediate, although if one assumes Markov
properties the introduction of an infinite-volume transfer operator is not difficult,
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see e.g. [1]. In this paper we show how, under certain conditions, finite-volume
transfer matrices can be used to derive Markov properties for invariant states.

Proving Markov properties requires some care. Indeed for the three-
dimensional Ising model Goldstein has presented an example of a Gibbs state that
does not have a global Markov property [2], despite the existence of finite-volume
transfer matrices. (This example involves a Gibbs state that is not translationally
invariant.) When applying transfer-matrix techniques one usually starts out with
finite-volume states and studies the Gibbs state(s) arising as thermodynamic-limit
state(s) of these finite-volume states by means of the transfer-matrix formalism for
the finite volumes.

We will develop a transfer-matrix formalism which can be applied directly to
all Gibbs states. The important property we need is the invertibility of the transfer
matrix. Let q be the number of possible spin configurations per lattice point.
Because we are assuming that only nearest-neighbor interaction is present, the
invertibility of the transfer matrix is equivalent to the invertibility of a q x q matrix.
Therefore checking the invertibility is relatively easy when considering specific
models. Potts models (for nonzero coupling) have invertible transfer matrices and
can therefore be handled by the methods in this paper. Note that the methods
used are valid for arbitrary dimension d of the lattice.

Let us sketch the transfer-matrix formalism that is used. Let C0(Ω) be the space
of functions on the configuration space Ω which depend on finitely many variables
only. We construct a linear map T from C0(Ω) onto α*-algebra $10. $I0 is dense
in a C*-algebra M. The map T depends on the interaction. We show, if μ is a
Gibbs state, that there exists a unique linear functional lμ on 3ί0 such that

μ\coM = ιμ°τ. (i)
Stated as such this does not provide useful information on the Gibbs state μ.
Interesting results will be derived by studying the details of the relation between
C0(Ω) and $I0 which is given by the map T. For instance we show that every Gibbs
state is uniquely determined by its restriction to two neighboring (hyper)planes:
the expectation value of an observable in C0(Ω) can be computed as the expectation
value of another observable which depends only on variables in two (hyper)planes.
This other observable depends on the interaction but not otherwise on the Gibbs
state considered.

An important observation is that the map T depends on Φ (and thus on the
simplex of Gibbs states for Φ) but not on the state μ in the set of Gibbs states
individually. The map T by transposition maps, affinely, the Gibbs states onto a
set L of linear functionals on 9I0. Decompositions of invariant Gibbs states into
other invariant Gibbs states using the noncommutative formalism will be used in
the sequel of this paper to derive stability properties. However in case invariance
is absent we are not able to use noncommutative decomposition theory since we
lack a useful characterization of L.

In the construction of T we make use of the maps ^K06σ-^ KNσF^ ;1e2I0 for
NeN and where VN is the transfer matrix for the volume Λ(Λ° in the unbounded
direction. In particular the map α on 2Ϊ0 which arises as the N-+OO limit of the
above maps is used constructing T. This map α has been studied by Fredenhagen
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in the context of Euclidean lattice gauge theories to construct the real-time
dynamics [3]. In fact the transfer-matrix method we use has a relation to Euclidean
lattice field theories in case the Gibbs state μ is Z^-invariant. It is shown that the
state μ is reflection positive in this case. If a Gibbs state μ is Z^-invariant the
linear functional lμ on $ί0 associated with μ by (1) is a state. The Hubert space
constructed from reflection positivity of μ, i.e., the physical Hubert space, and the
G.N.S. Hubert space of lμ are canonically isomorphic [3].

This paper can be considered as a continuation of a program which was started
in a series of papers on the two-dimensional ferromagnetic Ising model. The state
/μ, where μ is the Gibbs state with magnetization zero for this model has been
obtained in [4 and 5]. The decomposition theory in the noncommutative setting
was subsequently studied in [6 and 7]. These papers however did not emphasize
the role of the relation (1), which plays a central role in this paper. In this way we
rederive the main result of Araki and Evans on the decomposition of the state lμ, [7].

Before indulging into details let us make a further remark. Note that by change
in representation a lattice system with a finite-range interaction can be viewed as
a lattice system with next-nearest-neighbor interaction. For instance one can
consider the array of spins in a (sufficiently large) block as a single spin variable.

Although the results in this paper could be largely extended if we were able to
deal with interactions arising in such representations, we see two main difficulties.
First for next-nearest-neighbor interactions the invertibility and locality properties,
if true at all, are hard to establish. Such properties are needed in constructing T.
Even if we could find a representation that has a nearest-neighbor interaction as
for the axial-next-nearest-neighbor Ising model (ANNI-model), there remains a
second difficulty. As the reader will realize, reίlectional invariance is used often in
this paper. If in the original, finite-range-interaction, representation of the lattice
system the interaction is reflectionally invariant, this needs no longer be the case
in the (next-)nearest-neighbor-interactions representation of the system, although,
by transport of structure, in this last representation the same type of symmetry
is still maintained. However this type of symmetry does not have the property of
being associated with a plane of reflection, i.e., there is no (hyper)plane such that
observables on this plane are invariant under the symmetry action. It is precisely
such a property, for reflections, that is used in the proofs of Theorem 2 and Lemma 2
of this paper and which are basic to the results obtained. Therefore we think that
generalizations along this line of results in Theorem 2 and Lemma 2 are not
immediate.

Moreover straightforward generalizations along this line of all the results seem
impossible in view of the results on the ANNI-model in [16] compared to those in
Corollary 4.

1. Definitions

Let Ω0 be the finite set {!,...,g} c !U We equip Ω0 with the discrete topology.
For A <Ξ J-d we put ΩΛ = (Ω0)

Λ. It is assumed that d ̂  2. Write Ωzd = Ω. We equip
ΩΛ with the product topology and denote by C(ΩΛ) the space of continuous
functions on ΩA. Let αΛ A,:ΩA>->ΩA be the restriction map if A' ^ A. We write
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α/u" = XΛ Define CΛ= {/eC(β)| there exists fΛeC(ΩΛ) such that / = /Λ°αΛ}. The
map C(ί2Λ)e/Λ-*/Λ°αΛeCΛ constitutes an isomorphism of C(ΩΛ) onto CΛ.
Henceforth we identify C(ΩΛ) and CΛ by means of this isomorphism.

For A c= /d we denote by SΛ the σ-algebra generated by the sets

Λ' finite

< '̂̂ Λ'

We write 93Z</ = S. Furthermore we let 23(βΛ) denote the Borel σ-algebra on ΩΛ

For finite A <^A and ξ^eί2Λ consider the map

This map, for all finite A <^Λ and ξΛ,eΩΛ, constitutes an isomorphism of the
algebras S(ί2Λ) and SΛ. Henceforth we identify S3(ί2Λ) and 33 Λ by means of this
isomorphism. We denote by EC(Ω } the set of states on C(ΩΛ). EC(Ω, is equipped with
the weak* topology. A state μ on C(ΩΛ) is identified with a (Borel) probability
measure dμ or 23(ί2Λ) by

μ(/)= ί/dμ for /eC(βΛ).

^Λ

If μ is a probability measure on 23 Λ we denote by E^, if A cr /i, the orthogonal

projection acting on L2(μ;SΛ) with range L2(μ;SΛ,). Let Φ: \J ΩΛ^R be a
/I finite

nearest-neighbor potential: ΦooίΛ=Q unless A is a subset of a nearest-neighbor
pair. The Hamiltonian, H% for a finite volume Λ c Zd is a function in CΛ defined by

Furthermore, if Λ is finite, we define W^eC by

More generally, for Λ finite and /!' £ Zd, we define WΛ^AeCA^A>, by

For Λ,Λ c Zd with Λ n / V = φ we define, if ς;Λeί2Λ and ξΛeί2Λ, the configuration

Define for finite /I c /d and ̂ Λ

cG^Λc tne function p^^C A by

where Z(^)c~ c is determined by the normalization

Σ p<lv(^) = ι
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For finite A c Zd we introduce the operator EΛC:C(ί2)-»C(ί2) by

(££/)«)= Σ f(ξΛV*#(ξ))p*^(ξA\

^Λ^Λ

where feC(Ω) and (E^c/)(ξ) is the value of the function E%f, which is the image
of/ under E%, at the point ξeΩ. A probability measure μ on 23 is said to be a
Gibbs state for the interaction Φ if μ(f) = μ(^%(f)) for all feC(Ω) and finite
Λ c Zd. The set of Gibbs states for Φ is denoted by & φ.

Next we introduce the noncommutative *algebras that we need. Let (Cq)y be
a copy of Cq for each yeZd~ί. We number the coordinate axes of Zd~ 1 from 1 to
d—l. Let 91 be the C*-algebra defined as

21= (g) fi((C*)y),
J6Z-1

where £((0*)^) is the algebra of linear operators on (Cq)y. More generally we set

yeλ

iϊ ΛaZd~1. The C*-algebra 91̂  is considered as a subalgebra of 91. We define 910

as the *subalgebra given by

_
A finite

Define the Hubert space §f as §f = (X) (Cq)y associated with the vector
yeZ"-1

/2e — (X) eye§f , where β^e^^^ is the unit vector obtained from a unit vector

by the process of taking the copy (Cq)y of C4. Define πe as the * representation
of 91 on §f, which satisfies for each yeZd~l,

for all σe9ϊ{^ c 91 and all choices of unit vectors eye(Cq)y such that ey =£ey only
for finitely many yeZd~1.

Let Λ c Z^""1 be finite and f/Λe(ί20)Λ Then we define ^e§f by

fa= (x) <V
^eZ^1

where

ω> for

for yeλc.

Here (^)j, is the value of the configuration η% at yeΛ and (e^^ is the /-th element
of the standard basis {^i,. . . , eq} of Cq under the process of taking the copy (Cq)y

oϊCq.
Let M(Λ) be a ^f'Λ | x g | Λ i matrix with matrix elements
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for finite A c Zd~l. We also denote by M(A] the element of $ίλ a 310 c 3ί which
satisfies

for all ηχ9η'χε(Ω0)
Λ, where Λ'^Λ. Here <v>$® is the inner product of

and α '̂ is the operation of restricting configurations on A c Jά~ l to A c Zd

analogously to the restriction operator we introduced for subsets of Zd.
The operator M(/1)E3ί^ is well-defined by (2) and does not depend on

We denote by 3Xoiag the sub*-algebra of 3I0 which consists of operators in 3ί0 that
can be defined by a diagonal matrix in (2). The algebra 3Ioιag is commutative. Write
<2fdιa g_ 2jdιagngj^ jj^ se|. o£ §^a^es on <£j js denoted by £5I. E^ is equipped with

the weak* topology.

2. Formalism

For A c Zd, define 3Λ = (xeZd |<i(x,Λ) = 1}, where d(-, ) is the standard metric on
Zd x Zd c Rd x (Rd. Furthermore, for «,fceN, define

and

^^ for i= l,...,d- 1}.

Put R k(M)^(Λw + 1\^Jn^/c(^+ 1)> where /ln c Zd is for neN given by

ΛΛ = { x 6 Z d | | x f | ^ n for ΐ = 0,...,d- 1}.

Choose ξneΩΛc-, neN. Define F^;1(^)E^I0 by means of its matrix elements defined
by

(^;»,lO™' = ̂

where η,η'e(ΩQ)p(n) and jkηe(Ω0)
PkW is, for ̂ e^p0, defined by

with y = ( j ; l J . . . , j ; d _ 1 )eP(H) c: Z d~ 1 . Furthermore define ^+ι/2Λoe^o ^Y πieans of
its matrix elements defined by

Consider a function feCΛn of the form

where fkeCpk(n) for fc= — / , . . . , ! and where /e fU In the standard plane to plane
transfer-matrix formalism one writes
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7- I +lP-/ + l'/^(£π)/-^

•^+1'>':n(£J" ^^ (3)

where

y ( t \ — (y (f \\l/2y (y it \\l/2
K / c + l/2;nVSn; ~ \y k;n,λ.\^n) ) y k+\/2;n,Q\ y k + l;n,l. \^n))

and /fcE$Ioιag is for k = — / , . . . , / defined by its matrix elements given by

for η,η'G(ΩΌ)p(m) with n^meN. The operators V f c.n l(ξΛ) and Vk+l/2.nQ can be
expressed as products of more elementary operators. Let [y, z] denote a nearest-
neighbor pair of points y, ze/d"1 (with nearest measured by the standard metric
on Zd~ 1 x Zd~ 1 c [Rd~ ! x [Rd~ x) ordered such that (z - y); - 0, 1 for i = 1, . . . 9d - 1.
The set of such ordered nearest-neighbor pairs in P(n) αZd~1 is denoted by Pn.
Then there exist operators v k^([y,z])E*$ίM for a nearest-neighbor pair [y,z] in

^ for yeZd~l and ̂ (y)e^w for yeδ/ic

n such that

vk,n^n) = Π ^ι(l>^]) Π ">k(y) Π ί̂"(
\[>',z]ePn / \yeAn J \yeoAc

n

The operators appearing in the above product form of VknL are defined by
means of their matrix elements which are given by

for η,η'ε(ΩQ)M and [y,z] a nearest-neighbor pair,

(">k(y)\,* = δw exp[ - H{* y}

for η , η f £ ( Ω 0 ) { y } and yeZd~ 1, and

for η,ηΈ(Ω0)^ and ye^/l^, and where xyedΛn is defined by d(jky,xy)= 1. The
following definitions were used. If yeZ^""1 then jky^Zd is given as

and if η^eΩ* for Λ c= Z"'1, then jkηε(Ω0)
JkΛ is defined as (hη\k^yά_ύ = ^1,...J>.d_l)

for ye A Note that all the operators that were just introduced are in 9Ioias Define
furthermore the contact operators ^k+ιi2,o(y)e^{y} ^Y their matrix elements given
by

3> = exp- yMjk + 1 y } A ^ v A + i

for η,ηΈ(Ω0)
{y}. Then Vk+l/2.nfl= γ[ vk + υ2,o(y) Henceforth the following

J>eP(/ι)

condition, Condition C1 ? is assumed to hold for the potential Φ.

Condition C α . For all /ceZ and yeZ^'1 the contact operators vk+ί/2,o(y} are

invertible.
Condition C1 implies that the operators F^4l/2.π0 are invertible for neN, /ceZ.
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Hence the operators Vk+ί/2.n(ξn) are invertible for each choice of ξneΩΛc. Define
the map α(φί;ξ":9I0-»2ί0 which maps σe2l0 onto α(/c)'n;ξ«(σ)<E2I0 by:

1) if k > 0, then

vW>n>tn(fr}— V (F \ »V (F }σ(V (f\\~l. (V (f \\~l

α \σ) ~ Y\β n\^n) yk-l/2,n\^n)σ\yk~l/2,n(^n)) \yl/2;nVW) ?

2) if k = 0, then α(/c);";^ is the identity on 2ί0;
3) if k < 0, then

α^"(σ) = ̂

Observing that [σ^,σ^]_ =0 if σ^eUl^ and σ^/eSΪ^ with yinyϊ '^φ, it readily
follows that for (7e^ί0 there exist n0eM such that the elements in the sequence

{α(fc);";ξn(<τ)} do not depend on n anymore, nor on the configurations ξneΩdλ .

Thus one can define for feeZ the map α(fe):^0 ^2l0 which maps σe^ί0 onto

α(k)(σ)eSϊ0 by

^(fe)/AT\ 1-i-KVΛ Λ/('C)'"^n/'xτ \Oί (ίTj == iim o( w/
^^—^ oo

Define

n;,,,ι=( Π.^ι(i>.2

and

uJ1/2yk+l/2,n ~ V κ / c , n , l / K k + l/2,n,OV

Define the map a(fc).n:9I0"^^o by the same formulas as used when defining α(fc);n;^
but under substituting Vkn for Ffc.rι(ξM). Then, if σeϊl^ for a finite Λ c= Z^"1,

αw(σ)-limα (/c) ;n(σ),
n— > oo

which shows the independence of α(/c)(σ) on {ξπ}n e Z explicitly. Moreover if
Λ^ΛnΞΞ{yεI_d~1\\yi\^nΐoΐ i = 1,. ..9d - 1}, then for fc>0 and

1^π + 2( Λ - l )- -^-lAn + 2^n-l^

With a similar formula for the case / c < 0 it is readily seen, by using F/c+1/2π =

(n,,α)1/2n+1/2;,o(n+ιΛJ1/2 that α<«(σ)e^+w+ι when σe^. Define T- «":
C0(ί3)-><210 for neN and ξneΩΛc as the unique linear map that maps /eC0(ί3)
onto T"'^(/)e2I0, where Tn>ξn(f) is given by

for / of the form / = /_,- 7z with /fce (J CPk(n) for k = - / , . . . , / . The map Tn^ is
w = l

well-defined. Then

'
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•(^O1/2)(y,Γ+Vαpn+lWOΛ >δ? = ιξn(τn'ξnf} (4)
for all feCΛn and lΛn is the linear functional on Ut0 given by

'&,(') ~^~φ ((J-Ci+lfXp,, (n)ζn)
Λ,

Next define the linear map T:C0(i2)->2l0 as the map which maps feC0(Ω) onto
T(/)e2ί0, where

This limit exists trivially for each /eC0(ί2): for some n0εN the sequence

{Tn*ξn(f)} is a constant sequence with elements which moreover do not depend
n;>n 0

«ef^J

on the sequence {ξn} of configurations with ξn£ΩΛc.
n ̂  ΠQ n

neN

Let μ be a Gibbs state for the potential Φ. If /eCΛ n and mef^l is taken large
enough that Γm;^(/) = Γ(/) for each ^efl^, then

This shows that one can define a linear functional /μ on the range of T by setting

/μ(Γ(/))= lim J (α^

for/eC0(ί2).
If S:X-^> Y is a map from a set X into a set Y, then for X^ a X we denote by

SX1 the image of X1 under S. Furthermore if A1 and >12 are subsets of an algebra
then A^A2 = {^|α = ̂ 1^2 with aleAl and

Proposition 1.

Proof, Take nef^l. It will be shown that

9ίP(n) c linear span of 31̂ % 1)α

(1)(SIpjβ

πf ). (5)

Then the proposition easily follows. Indeed, note that

linear span of W$$f+1)x™(W$$) = T(CPo(ll+1)upι(Λ)).
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Hence, using (5),

«o = U 8ίp(») c U {linear span of
«ef^J Hef^j

= U

In order to prove (5) it is useful to consider 5ϊP(n) and 3ίP(π + υ as the matrix algebras
by which they were introduced. The linear span of 2IP(*f ^ι/2;n,o^p(n) equals 9IP(M)5

because 9IP(*f is the full algebra of diagonal matrices in 91P(I1) and K1/2 n 0 is a matrix
that has strictly positive matrix elements. Therefore,

l inear ςnan of 9fdias V S)ldιag(V }~1 — 9ίlinear span 01 <αP(n) M/^O^P^VM/^O/ ~~~ ^-P(n)

On the other hand,

^(l)/oirdiag\ _ /IT U/2 T/ ordiag/i/ \ - 1 /]/ ϊ" 1 / 2

α V^P(n); — l^O π + 1,1^ K l/2,n,0 ^P(») V Kl/2,«,0^ V K 0 ; π + l,lJ

Thus,

ordiag ( l)/ordiag\ _ ordiag y oτdiag/τ/ \~1(V "l" 1/ 2

^-P(«+l)α l^P(«)J— ^P(w + l) M/2;n,O^P(«)VM/2;n,o; lK0;n + l,lJ

Hence, by furthermore noting that

(^0;n + l,l)"1/2ElineaΓ SPaΠ °f ^P(n+l)\P(n)^P(n)

we obtain,

linear snan of 9ίdia§ r/( 1V9ϊ d i a g Nliiπcdi span 01 <αp(n + 1)α i^ip(M)J

^linear span of ^^^p^V^^Γ112

= linear span of 3l^1AP(n)9Ip(n) ̂  9IP(B). Π

As a corollary of Proposition 1 one obtains that for each-Gibbs state μ there exists
a unique linear functional lμ on 2I0 such that

Such a pair (μ, lμ) with μ a state on C(Ω) and /μ a linear functional on 2I0 which
are related as in (6) will be called a canonical pair (for T). Note that T \c nCo(β) is
a *-isomorphism onto 9ίoιag Thus the plane P0 plays a special role. However one
could also consider a formalism in which this role is played by the plane Pk. In
such a formalism one would, instead of considering the functional lμ associated
with a Gibbs state μ by T, consider the functional L°a(k} associated with μ by
α ( feΓ loT.

Part b. of the next theorem is for fe = 0 an immediate consequence of Proposition
1, but in view of the remarks just made it holds for each feeZ.

Theorem 1.
a. If μ is a Gίbbs state then there exists a unique linear functional lμ on 31 0 such that

μ\c0(Ω) = lμ°T. (7)

b. For each keZ a Gibbs state is determined by its restriction to CP f c U p f t + j .
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Remark. Proposition 1 implies that for each gεCQ(Ω) there exists an
C0(Ω) such that T(f — g) = Q. Apart from g the function / only depends on Φ.
Hence for each Gibbs state μ,

An explicit formula for / given g can be obtained by applying Eq. (8) in the next
section.

3. Decompositions

In order to exploit the relation μ \c (Ω} = lμ°T between a Gibbs state μ and a linear
functional lμ on 9I0 further, it is useful to assume that Φand μ have some invariance.
Let θk be the reflection of Zd in the plane {xe(Rd |x0 = fc} where fceZ. Furthermore
let τ(fl) be the action of translating Zd over a αeZd. These actions, τ(a} and Θk9 act
in a natural way on the spaces Ω, C(Ω\ EC(Ω), and on potentials. These actions are
also denoted by τ(fl) and θk. If G c Zd is a subgroup of Zd, then E^(Ω] denotes the
set of G-invariant states on C(Ω). Furthermore, if αeZ^"1 then the automorphism
of tyi which gives translation by αeZd~1 is also denoted by τ(α\ If H c Z_d~l is a
subgroup then E" denotes the set of jFί-invariant states on 21. In the following
Z^"1 is identified with {xeZd\x0 = 0} by the correspondence

In particular subgroups of Zd~1 are in this way viewed as subgroups of Zd.
Henceforth we assume the potential Φ meets Condition C2 .

Condition C2 . The potential Φ is reflectionally invariant with respect to reflections

in the planes {xeZd\Xj = h} , and the potential Φ has an invertible contact

je{Q,...,d-ί}

operator in each coordinate direction of Zd.
Note that Condition C1 expresses that Φhas invertible contact matrices in the

0-direction. Condition C2 therefore includes Condition C1. Also note that
Θ0oθl=τ^ where τ0 = τ((1'0'-'0)) with (l,0,...,0)eZd. Thus Condition C2 implies
that Φ is Z^-invariant, where Zev is the set of even integers. The Z^-invariance of
Φ implies

2,o(y) = ^k+ι/2,o(y} fora11

and

n+ 1/2,000 = ̂ +ι/2,o(y + /) for all /ceZ, y^Zd~1 and

Reflectional invariance implies furthermore

^ι/2,oω* = ̂ -ι/2.oϋ') for all yeΈd'\

Similarly for all fee Z and [>,z]e(J Pπ,
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and

τ(α)(n,ι(M)) = n,ι(D> + a,z + a])

for all aeZd

e~
l. Also for all fceZ, yeZ^1 and

Furthermore ^fcl([y,z])* = ι>kl_([y,z\) and £&k(y)* = t^k(y). The following lemma
states some properties of the map Γ:C0(/2)->$ί0 which are easy consequences of
the above stated properties of the operators which constitute the transfer matrix.

Lemma 1. TakefeC0(Ω). The map Γ:C0(ί2)->2ί0 has the following properties.

1. T(WJ))=T(f)*,

3. T(τ?/) = τ?(T(/)) for j = l , . . . ,d- 1, where τj = τ ( a ( J ) ] with aPeZ.*'1 given by
components a\j) = δitp i = 0,..., d — 1.

Proof. Define ttδ M0 -»2ί0 f°
r ^ = ± 1 as tne maP which maps cr65I0 onto αδ(σ)

given by

)= lim
AI-» GO

Then, if 1 g

Since (Fl/2n)* = F_1/2>M, one obtains

(α+1(σ))* = α:}(σ*) for

Thus (α(k)(σ))* = α(~k)(σ*). Using the definition of T the assertions of the lemma
follow. Π

Condition C2 is sufficient to invoke the following theorem which can be found
in [11].

Theorem 2. Let μe^φbe invariant under a subgroup off with finite index in Zd

and assume that μ is θk-invariant for each feeZ. Let μ be the unique state on C(Ω)
that satisfies:

1. μ is θk-invariant for each keZ;
2. μ has the Markov property with respect to Pkfor each fceZ;3 ^rc^^^fc,^.
Then μ is a Gibbs state. Π

The following definition of the Markov property with respect to Pk is used. If
μ is a state on 23, let E^ be the orthogonal projection on L2(μ;23) with range
L2(μ;93Λ), where A c Zd. The state μ is said to have the Markov property with



Markov and Stability Properties 541

respect to Pk if

for all /eL2(μ;SΛ + ), where (Z\δ = {xeZd\δ(x0 - k) ̂  0} and δ = ±.
Now Theorem 1 says that each Gibbs state is determined by its restriction to

CpoU?ι. Hence the states μ and μ which appear in Theorem 2 are equal. Note that
if μ is a state which satisfies μ = μ°τl and μ = μ°θ0, then μ = μ°θk for all fceZ
because Θk = τlk°θ0. Therefore one obtains from Theorem 1 and Theorem 2 the
next corollary.

jCorollary 1. Choose /eZ. Let μ^ φr\E^Ω] be θ^invariant. Then μ has the Markov
property with respect to Pkfor all fceZ. Π

Lemma 2. Choose fceZ. Let μ be a state on C(Ω) which is θk-invariant and which
has the Markov property with respect to Pk. Then μ is θk-reflection positive, i.e.,

μ ( ( θ k f ) f ) Z O for all /eC(z

Proof. See [8], pp. 104/105. Π

Let (μ,/μ) be a canonical pair. Then for /eC(2<()o +

Thus, using Proposition 1, one sees that the following assertions are equivalent:

1. μ is Θ0-reflection positive;
2. /„ is a state on 9ln.

In case lμ is a state on 91 0 then lμ has a unique extension to a state on 91. When
a state μ on C(ί2) and a state ω on 91 satisfy

ondC0(/2), the pair (μ, ω) will be called a canonical state pair (for T). If
^πβ) is 00-invariant5 trιen by Corollary 1 and Lemma 2 the state μ is part of a
canonical state pair. In particular this shows that the set of canonical state pairs
is nonempty.

If ω is a state on 91 we denote by (§ω, πω,Ωω) a G.N.S. triple for ω, that is, §ω

is a Hubert space, πω is a ^-representation of 91 as bounded operators on §ω,ί2ω

is a unit vector in §ω which is cyclic for πω(9l) and the triple is such that

for σe9ί and < , •> is the inner product on §ω x §ω. Define 5Wω = (πω(9ί))", the
center 3ω of 9Jϊω:3ω - aRωnaR'ω, and OR^ - ίπω(9ίdi^))".

/
If (μ,ω) is a state pair with μe<gφr\Ec^ΩΓ one can study the effect of

decomposing ω into other states on the possibilities of decomposing μ. This will
be done in the subsequent part of this paper, but first we remark that the state ω
on 9I0 can be introduced slightly differently from the way this state was introduced
above starting from a $0-reflection positive Gibbs state μ. Let (μ, ω) be a canonical
state pair with μe^ φ. The Hubert space §ω is canonically isomorphic to the Hubert
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space § which is constructed from the positive sesquilinear function i?0(v) on
L2(μ;23(zV + ) x L2 (μ; 23^ + ) given by

bo(f,g) = < θ Q f 9 g y μ 9

where /,geL2(μ;33(Zd)o +) and <v>μ denotes the inner product on L2(μ;33z<ι)x
L2(μ;33zd). See Fredenhagen's paper [3]. In [3] the construction of the state ω
from the #0-reflection positive Gibbs state μ uses the inverse E+ of T \c (β)nC

Explicitly £+:2I0-» GO (β)nGp oP , which maps σe$I0 onto £ + (σ)eC0 (ί2)nCp uP

is given by

£ + (σ)(ς)= lιm(^?2:"^'^°^^^ g. (8)
«-»*> (^1/2,J,0 Vpo^m/i Vp^ζ))

The state ω is now introduced by

for σεK0, [3].
Consider a canonical state pair (μ, ω) where μ is τ(α)-invariant with aeZf t,

 1.
Since T(τ(a)f) = τ(a}(T(f)), see Lemma 1.3, the state ω is τ(α)-invariant and there
thus exists a unique unitary operator Ua on §ω such that

for all σe^ί. Now let (μ, ω) be a canonical state pair where μ is τ^-invariant with
. Then there eixsts a unique operator P(^n) on §ω which satisfies

(9)

for all <7e$ί0. By arguments in [9], see also Schor's paper [10], Eq. (9) defines Pi2/0

as a self-adjoint contraction with || P(^n) || = 1 .
Actually the paper [10] does not consider Eq. (9) precisely. This paper uses

the Hubert space § and also one considers the case of a reflectionally as well as
translationally invariant Φ. In such cases, if (μ, ω) is a canonical state pair with
μ°τ0 = μ, one can introduce the operator P^ on §ω by

P00πω(σ)βω = πω(α(σ))βω, (10)

where α = α + 1 ( = α _ 1 ) . Here α + 1 and α _ x are the maps on ^ί0 which were
introduced in the proof of Lemma 1 (and α+ j = α_ : by the assumed translational
invariance of Φ). It is Eq. (10) to which the arguments in [10], which give that P^
is a self-adjoint contraction, immediately apply. However the case described by
(10) is completely analogous to the one given by (9).

The operator P^ is called the infinite- volume transfer operator. If P(^n) is defined
by (9), then clearly P(£n) = (Px)

2n. Since the state μ is not assumed to be
translationally invariant the "powers" of the infinite-volume transfer operator,
P(^n\ which are defined by (9), are considered in the following.

The operator P(J"} is positive if and only if μ is ^-reflection positive. Moreover
πω(tyί0)Ωω is in the range of P(^n\ Therefore 0 is not in the point spectrum. Hence
P%n} has an (unbounded) inverse P^"1, cf. [3]. Let H ̂  Z^1 be a group and neZ.
The group H2n £ Zd

ev is defined as the group generated by H and (2n, 0, . . . , 0)eZd.
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Write HQ = H. Furthermore define

when the state ω on $ί is a part of a canonical state pair (μ, ω) with a state μ on
C(ί2) that is jF/2n-invariant. The von Neumann algebra 9lω(H2n) is defined as

Lemma 3. Let (μ, ω) foe α canonical state pair. The following assertions are equivalent:

1. μ /ιαs the Markov property with respect to P0,
2. 2R^iagΛω is ί/ense m $ω.

If one of these assertions is true, then

Proof. The equivalence of the assertions 1. and 2. is well-known. See e.g. remarks
made in Chap. IV in [12]. If assertion 2. is true, then 2R£ag - (Sffl^*8)' and the last
claim of Lemma 3 immediately follows. Π

In case one of the assertions in Lemma 3 holds, let /g:L2(μ;23Po)-»§ω be the
unique unitary operator which maps /eCPonC0(/2) c= L2(μ;33Po) onto /g/e§ω

given by

Henceforth, if one of the assertions in Lemma 3 is true, the Hubert space L2(μ;33Po)
is identified with the Hubert space §>ω by means of 7g. Then L°°(μ;SPo) - 9Jί^ia8

when considering L°°(μ;93Po) as the set of bounded multiplication operators on
L2(μ;23Po). If the operators Ua for αeZf" 1 and P(J"} are defined, the operator Ua

is equal to τ(a] under the identification by /g and P(^"} equals EPo°τ
(

0

2"), where the
last operator is considered as an operator on L2(μ;33Po). Furthermore, by this
identification, for /eC(Z^ + n C0(Ω) we have πω(T(f))Ωω = EPo(/).

Let (μ, ω) be a canonical state pair. Then for feC0(Ω) one has

μ(θ0f) =

Therefore μ is (90-invariant and thus has the Markov property with respect to P0.
This means that the first assertion of Lemma 3 is true, in particular therefore

Lemma 4. Let H c J_d~l be a group and nεM. Assume H2n is nontrivial Let (μ,ω)
-nil

be a canonical state pair with μe^ φnEc"Ω} Then,

a. {AΩ0\AeMa>(H2n)Ylm = %%*->, where

and Uaψ = ψ for all aeH} and Xclos denotes the closure of a set X c
b. Kω(Hn) = (W



544 R Kuik

Proof. Note that by the remarks made just prior to this lemma the state μ is
00-invariant and Wω = 3ω

a. Let \l/eξ>Z 2". Then E£ 0°τgΛι/r = ψεL2(μ; $Po) c L2(μ; 93). But E£0 is an orthogonal
projection and τ2," acts isometrically, therefore

Furthermore τ(a]ψ = ψ for all aeH . Thus ψ is invariant under the action by elements
from H2n By proposition 3.6 in [14] one obtains then

A finite

If A c= Zd is finite, denote by £ΛC the bounded operator on L2(μ;53) which maps
/eL2(μ, S) onto £ΛC/eL2(μ;S) where £ΛC/ is given by

(JW)(f)= Σ /«Λvα Λ c (0)
<?Λ^Λ

for ξεΩ.
The operator £Λc is well-defined on L2(μ; S) since μ is a Gibbs measure. One has

EΛcφ = φ for all Λ finite. Let {gk}keN be a sequence in C0(ί2)n CPo which converges
in L2(μ;S) to ψ:

= lim g f .

If /I is finite,

and

Hence n/lc). Therefore

Λ finite

If meM define ^eL00^;®) by

if

[0 otherwise

Then ψmE P| U°(μι$$P n/1c) and moreover τ(α)ι^m = φm for aeH and τQnψm = \l/m.
A finite

One readily see that ψm£{AΩ\AEyiω(H2n)}, and since \l/m converges to ψ in L2(μ; 93)
one concludes that

Since the inclusion

is obvious, part a. of Lemma 4 has been proven.
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b. Take Ae(W^^Rω(H2n)}'. Then AeWά™\ since (9Jl£ag)' - 9J^iag. Furthermore
UaAΩω = AΩω for allaeH and P%n)AΩω = AΩω. By arguments like the ones used

in the proof of part a. of this lemma it follows that Ae^ω. ( Note that

3ω = Π ^(μ; SΛWJ. Therefore AEMω(H2n). The inclusion
Λ c Z d

y\ finite

being obvious, part b. of Lemma 4 has been proven. Π

Lemma 5. Let (μ, ω) be 0 canonical state pair where μ has the Markov property
with respect to P0. Let H^Z*'1 be a nontrivial subgroup and rceN. Assume μ is
H2n-invariant and P£n) ̂  0. Then P%n)e(9lω(H))'.

Proof. Take Aε9lω(H) <= 3ω. τhen there exists a unique 5eSER*iag such that P£n)

,4/2ω = 5ί2ω. This is most easily seen by viewing P(^n} as ^pQ°τ\n and noting that
E£0 maps L°° functions onto L00 functions (it is a conditional expectation). The
uniqueness is a consequence of Ωω being separating for 9Jl^ιag. Moreover one easily
sees P£"U*βω - J5*βω. But ί/αP

(^n) - P%n} Ua for all aeH. Hence

Therefore JB6Ϊlω(/ί) c 3ω? see (tne proof of) Lemma 4. Thus, if

Since πω(^ί0)ί2ω is a core for PίJ) , this implies that AΩω is in the domain of
P^~\ Moreover P^'1 AΩω = P™ AΩω, that is, P(^n)2 AΩω = AΩω. Since P(^n)

is positive this implies P(^Π) AΩω = AΩω. But then for all σ, σ'e^lo,

Hence P(^A* = A*P%n}. It follows that

Let (μ, ω) be a canonical state pair where μ has the Markov property with respect
to P0. For Qe3ω define ωQ as the linear functional on 31 given by

for σeSI. Furthermore define μQ as the linear functional on C(Ω) given by

for /eC(β): Then
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For results and definitions from (noncommutative) decomposition theory which
are used below the reader is referred to Chap. IV in the book [13] and the references
to the research papers given there.

Lemma 6. Let (μ, ω) be a canonical state pair, where μ has the Markov property

with respect to PQ. Let $1 be a von Neumann subalgebra o/3ω = Wω Let v^ be the
orthogonal measure on E^ which corresponds to 91. Let supp v^ denote the support of
the measure v^

1. There exists a unique one-to-one continuous map T : supp v9l -» ̂  φ which maps
ωesupp% onto T'ωe^ φ with

for all feC0(Ω). Let v$ be the measure on EC(Ω) which is the image measure of

v,n under the map T f .
2. The measure v j j j is the orthogonal on EC(Ω) which corresponds to 91. In particular

μ = J v*(dμ')μ'
EC(Ω)

3. The support o/vs* consists of On-invariant Gibbs states. There exists a subset of
EC(Ω} with v* measure 1, which consists of states that have the Markov property
with respect to P0.

Proof. 1. and 2. Let 91 be a finite dimensional subalgebra of 3ω Let {βi}ί= !,...,«
be the maximal set of mutually orthogonal nonzero projections in 91. Then the
orthogonal measure v^ on E^ corresponding to 91 is given by

where δω. is the Dirac measure at ωteE^ with oji given by

for σe9I and i = 1, . . . ,n. Thus the map T' is readily defined on the support of v$,

which is {ω f | i= l,...,n}. Explicitly,

Therefore

«
4= Σ

ί= 1

where δμι is the Dirac measure at μίeEC{Ω) with μt= l/ωQ ι(D) μQι. Therefore the
statements under 1. and 2. hold with 91 replaced by 91. But vsjί is the vague limit
of the net {v^} with 91 finite von Neumann algebras in 91, where the ordering of
the net is given by inclusion of the von Neumann algebras. Similarly the orthogonal

measure on EC(Ω} which corresponds to 91 is the vague limit of the net {v|}
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with yi finite von Neumann algebras in $1. It follows that the statements 1. and
2. hold for 91.

3. The fact that the support of v| is contained in the set of 00-invariant states
on EC(Ω), is obvious. The Hubert space §ω can be written as a direct integral
Hubert space as

Then

e e
πω = ί v9l(dω')πω, and Ωω = J Vgβωr)Ωω. .

Let {ψn}neN be a fundamental sequence of fields. In particular {ψn(ω')}ne^ is a
dense sequence in §ω,. By Lemma 3 one has from the Markov property of μ that
πω(<UQίaB)Ωω is dense in §ω. Therefore, for each n e f \ l , there exists a sequence
{σΛ,k}teN in 9lgίβ« such that

πω,(σΛtk)Ωω, -> ι/^(ω')

in 9)ω, for v^-almost all ω'. Thus one sees that π^(tyi^}Ωω, is dense in §ω, for
VgΓalmost all ω'. Another application of Lemma 3 then gives that T'ωf has the
Markov property with respect to P0. Π

Let G be a subgroup of Zd. The set E^(Ω] is a simplex. Its set of extremal point is
denoted by Ext(Eg(β)). Since C(ί3) is separable, Ext(£;^β)) is a Baire set. If
define a map, AG

N\ C(Ω)-+C(Ω) which maps feC(Ω) onto ^g/GC(ί2), where
is defined by

Then μeExt(£(^) if and only if for all /, geC0(Ω\

\ i m \ μ ( g ( A G

N f ) ) ~ μ ( g ) μ ( f ) \ = Q. (11)
N^GO

Let H be a nontrivial group contained in Zd~1. The set E^ is a simplex. The
set of its extremal points is denoted by Ext(£$) Since S2ί is separable, E^
is a Baire set.

If Ne f\l, define a map A^: 91 -> ̂ l which maps σe^ί onto A^(σ)e^I, where A^(σ)
is given by

^(σ) = Σ τ(fl)(σ)

Then ωEExt(£^) if and only if for all σ 1 ? σ2E%l0,

lim ω(σ2^(σ1)) - ω(σ2)ω(σ1)| = 0. (12)
N^c»

Let (μ, ω) be a canonical state pair. Let H <Ξ /ev~
 x be a nontrivial subgroup.

Then μe£^{β) if and only if OJE£^. Moreover μGExt(£^(β)) if and only if
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^). This is most easily seen by observing that for αe/g v we have

as soon as min \at\ is larger than some constant (which depends on /and g)
ί=l,...,d-l

and then using the characterization of //-extremality as stated above. Now assume
furthermore that μ has the Markov property with respect to P0. Write 91 = 9lω(H).
Let vsjί be the orthogonal measure on E,2l corresponding to 91 and vj
the orthogonal measure on EaΩ) corresponding to 91. By standard theory
vgί(Ext(£^)) = 1. Therefore by the foregoing remarks and Lemma 6,

Therefore v,* is the measure on E^(Ω) which gives the H-ergodic decomposition of
μ, i.e., vs* is the unique maximal measure on E^(Ω) which represents μ. Write §ω

as the direct integral

Assume P(£n) ^ 0. Then, since P(Jn)e9Γ, this operator is decomposable. Hence one
can write

»> - Vχ(dω')P%r!l. Now note, if σe<HQ. v^(dω')πω.(oί(2n)(σ))Ωω.

ω = J v^^ωOP^l^,^)^,

Hence

for vsjralmost all ω'. Therefore for v^-almosl all ω',

ω'oα ( 2 n ) = c/y on 2I0.

This implies that for v^-almost all μΈE^(ΩΓ the state μ' is invariant under TO".

Corollary 2. Γα/ce μe^φn£^Γ TTien μ is 00-inυariant.

Proof. It ^is sufficient to prove this under the further assumption that
μeExt (E^Ω}). Consider μ = ̂ (μ + μ°Θ0). Assume, ad absurdum, that μ Φ μ°θ0. Then
μ is disjoint from μ°Θ0. Let H ^ Z f " 1 be a nontrivial group. Then there exists
S c £^β such that

where v* is the unique maximal measure on E"(Ω] which represents μ. Now μ is a
^0-invariant and /fv-invariant Gibbs state. Therefore μ has the Markov property
with respect to PQ (Corollary!). Let (μ, ω) be the canonical state pair which can
be constructed from μ. Write 91 = 9lω(H). Then

v* = v*,
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where notation is used which has been introduced just prior to Corollary 2. But
v$ is concentrated on 00-invariant states by Lemma 6, part 3. Hence by (13) it
follows that μ is Θ0-invariant. This is in contradiction with μ^μ°Θ0. Therefore

From Corollary 2 one obtains that /^-invariant Gibbs states have the following
properties:

1. θfc-invariance for each /ceZ,
2. the Markov property with respect to Pk for each fceZ,
3. ^-reflection positivity for each fceZ.

If je{0, . . .,d — 1} denote by G f } the subgroup of Zfv generated by aeZd where
a,. = 2<5ίti/ for i = 0,...,d-l.

Corollary 3. Take μe0φnExt(£^)) τ/ϊ^ μeExt(E^) /or α//; = 0,...,d-l.

Proof. Consider the group G(

1

2) and let v* be the unique maximal measure on

£qβ) which represents μ. Then the support of v* is contained in the set E^(Ω)

by the remarks made prior to Corollary 2. (Note that P(J} ̂  0, since μ is θl -reflection
positive.) But the 0-direction plays no particular role to the 1 -direction: one could
have done a transfer-matrix formalism in the /c-direction, where fce{2,...,d— 1},
with the result that the support of v* is contained in £qβ). Hence the support
of v* is contained in E1^. Since μeExt(£^β)), one obtains v* = δμ, where δμ

is the Dirac measure at μeEc{Ω). He2nce μeExt^^). But the 1-direction plays
no special role. Therefore μeExt(E^) for each je{0, . . . , a— 1}. Q

Corollary 3 is strengthened in part 2 of Theorem 3.

Theorem 3. Let μe^φnExt(E*Jβ)). Then:
1. the state μ is strongly clustering for Zd

ev, i.e., for allf, geC0(Ω) one has

lim

where \\ \\ is the standard norm ofJ_a c ίRd;
2. for eachje{0, ...,d—l} the state μ is clustering of all orders for Gf\ i.e., for each

andflί...,fneC0(Ω) one has

lim I μ((τf %•) - - - (τf «/„)) - μ(Λ) - - - μ(/J | - 0.
n

°Pr<9(9/ From the fact that μeExt(£^° ) one obtains that the sequence

N-l
V

converges weakly to Pβω, where PΩ^ is the orthogonal projection on §ω with range
CΩω. (This is a restatement of the cluster property characterizing the state μ as
an element of Ext(£^(°β))). Since P(^} is a positive contraction, the sequence

}n^ has PΩω as strong limit.



550 R. Kuik

1. For <2EZeV write

t(a) = μ(g(τ(a)f)).

Let {t(a(k})}keN be a convergent subsequence of {t(a)}aeld . Then at least one of
the following statements a. and b. is true:

a. There exists ye{0,.. .,d — 1} and a subsequence {t(b(l))}le^ of {t(a(k})}keN such
that b( } -> — oo as / tends to infinity.

b. There exists je{0, .. .9d— 1} and a subsequence {ί(c(/))}te^ of {t(a(k})}keM such
that cf -» oo as / tends to infinity.

Assume that statements a. is true. There is no loss of generality in assuming
that j = 0. (Otherwise one should employ a transfer-matrix formalism in the
y'-direction in the following.) Also without loss of generality we may assume that

. Then

By the invariance of μ under ZgV and the strong convergence of P(^b°'2 =
EPO°TO° ) to PΩω one obtains that

This proves case a. However by reίlectional invariance case b. is easily reduced to
case a. So part 1 of the theorem has been proven.

2. There is no loss of generality in assuming j = 0. If

0!,...,0neC0(/2), consider the sequence (s(l)} n ,
1\<12< Λi

where s(ΐ) = μ ( ( τ Q l ί g ι ) ' - ( τ : Q l n g n ) } .
Using that the strong limit of {P(Jr}me^, is Pβ, one easily sees

lim s(l) = μ ( g ί ) ' μ(gn).
h + i —/;-* oo

for ί= !,...,«— 1

Define

where feeZ". Then it is readily seen that each convergent subsequence of {t(k}}k&In
contains a subsequence of the type {s(/)}/eZ« with (g1,...,gn) a permutation of
(/u •>/«)• Therefore each convergent subsequence of {^(/c)}^^ has the limit
μ(fι)'-μ(fn)' Hence {t(k)}k^n itself has this limit. D

Corollary 4 Let μe^ φ be invariant under a subgroup G c Z^v with finite index in
Zf v. T/z^n μ is ^-invariant.

Proof. Without losing generality one may assume that μGE\t(E^(Ω)). Choose
M d ZgV such that (α + M}αeG is a partition of Z^v and choose M c M as a maximal
set in M with the property that μ°τ(x) ̂  ̂ o^y) for all x, yeM with x ^ j;. Consider

μoτw. (14)
V
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Then μ is Z^-invariant and moreover μeExi(E^Ω)\ By Theorem 3, part 1. the
state μ is in Ext (E^(Ω)). But (14) establishes a decomposition of μ into G-invariant
state. It follows that |M| = 1, i.e.,

for all xeM. Hence μ is /^-invariant. Π

4. Two-Dimensional Ising Model

Consider the two-dimensional Ising model in zero external field (and with nonzero
coupling constants in both directions of the lattice I2}. First suppose that the
temperature is below the critical temperature. Let μ be a Gibbs state with zero
magnetization. Then by Aizenman's result [15], μ = τ(μ+ + μ-), where μ+ and μ_
are extremal Gibbs states. Moreover the states μ+ and μ_ are /^invariant.

Let ω be the state on $1 associated with μ:(μ, ω) is a canonical state pair. Then
there exists a projection Qe3ω sucn that

, 1
< and μ- = -

Write ω+ = (l/ωβ(U))ωQ and ω_ = (l/ω f l _ e(U))ωβ. Then (μ + ,ω +) and ( μ _ , ω _ ) are
canonical state pairs. And ω = ̂ (ω+ + ω _ ) is a decomposition of ω in disjoint
states. Furthermore ω+ and ω_ are irreducible states since μ+ and μ_ are extremal
Gibbs states. (If ω+ or ω_ were not irreducible one could by Lemma 6 construct
a nontrivial decomposition of μ+ or μ_ into other Gibbs states.)

Now consider the case where the temperature is equal or greater than the
critical temperature. Then there is a unique Gibbs state μ. Hence the state ω on
$ί associated with μ is irreducible. In this way one has re-obtained the main result
of the paper [7] by Araki and Evans.

Acknowledgement. The author gratefully acknowledges several discussions with M. Winnink.
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