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Abstract. Haldane predicted that the isotropic quantum Heisenberg spin chain
is in a "massive" phase if the spin is integral. The first rigorous example of an
isotropic model in such a phase is presented. The Hamiltonian has an exact
SO(3) symmetry and is translationally invariant, but we prove the model has a
unique ground state, a gap in the spectrum of the Hamiltonian immediately
above the ground state and exponential decay of the correlation functions in
the ground state. Models in two and higher dimension which are expected to
have the same properties are also presented. For these models we construct an
exact ground state, and for some of them we prove that the two-point function
decays exponentially in this ground state. In all these models exact ground
states are constructed by using valence bonds.
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1. Introduction

The ground state properties of quantum antiferromagnets not only have
important physical consequences, they also contain some fascinating surprises. In
one dimension the spin 1/2 Heisenberg antiferromagnet can be solved by the Bethe
ansatz [11]. The correlation functions have power law decay and there exist local
excitations with arbitrarily low energy, i.e., there is no gap in the spectrum
immediately above the ground state energy. One might expect similar behavior in
any one-dimensional isotropic quantum antiferromagnet. Haldane, however,
argued that if the spin is integer then the one-dimensional Heisenberg antifer-
romagnet has completely different properties [23-25]. He concluded the ground
state correlation functions have exponential decay and there is a gap in the
spectrum above the ground state energy. There is both experimental and
numerical support for these conclusions [12, 16, 36, 37 and references therein].

At first the existence of a gap in the spectrum and exponentially decaying
correlation functions is surprising in a model with a continuous symmetry.
However, there exist fairly simple models like the Majumdar-Ghosh model [31,
32] which have a translationally invariant Hamiltonian with a continuous
symmetry, but have a gap and exponentially (or faster) decaying correlation
functions. (Until now there was no proof that this model has a gap, but the proof is
supplied in this paper.) In these models, however, the ground state is degenerate
and breaks the translational symmetry while the usual Heisenberg antifer-
romagnet presumably has a unique ground state. The possibility of a quantum
antiferromagnet with a continuous symmetry, exponentially decaying correlation
functions, a gap and a unique ground state was quite unexpected. In this paper we
provide the first rigorous example of a model with all these properties. The model
is the one-dimensional spin chain with Hamiltonian

We prove this model has a unique infinite volume ground state, the correlation
functions decay exponentially in this ground state, and there is a gap in the
spectrum immediately above the ground state energy. It has been shown
rigorously that models like (1.1) do not exhibit such behavior if the spin is half-
integral [5].

In two or more dimensions one generally expects the ground states of quantum
antiferromagnets to have Neel order. There is a Goldstone theorem for quantum
spin systems which applies to a general class of isotropic Hamiltonians (which
includes the usual Heisenberg Hamiltonian and the Hamiltonians we will consider
in this paper) [44-46]. It states that if there is Nέel order then there is no gap. The
existence of Neel order in the ground state can be proven [21, 26] for the usual
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Heisenberg Hamiltonian on certain lattices if the spin is large enough, but there
may be exceptions. Anderson has argued that the spin 1/2 model on a triangular
lattice or a square lattice with a sufficiently strong next nearest neighbor coupling
has a ground state without antiferromagnetic order [7]. His "resonating valence
bond" (RVB) mechanism is the basis of a possible explanation of high Tc

superconductors [8]. We provide an example of an isotropic antiferromagnet in
two dimensions with spin 3/2 for which we can construct an exact ground state and
prove that the two point function decays exponentially in this ground state. We
expect that our model has a unique infinite volume ground state and a gap in its
spectrum, but we cannot prove either of these conjectures. As in our one-
dimensional model the Hamiltonian is isotropic, translationally invariant and can
be written as a sum over nearest neighbor pairs i, j of polynomials in Sf Sj.

The construction of a ground state and proof of exponential decay of the two
point function for our two-dimensional model can be adapted to any bipartite
lattice with coordination number three. Since such lattices exist in any dimension
greater than one, we expect that in any dimension greater than one there exist
models with all the properties that Haldane predicts for the one-dimensional
Heisenberg antiferromagnet with integer spin. It should be emphasized that in
dimensions greater than one it is not necessary that the spin be integral for this to
happen. The relevant criterion appears to involve the lattice type (especially the
coordination number), the spin and the dimension.

Our one-dimensional model (1.1) is a special case of the Hamiltonian

» = Σ [ S ί S ί + 1-i8(S i S i + 1 ) 2 ] . (1.2)
i

The model with β = 0 is, of course, the standard Heisenberg model which is
believed to have a unique massive ground state according to Haldane. We now
know rigorously that such a unique massive ground state exists for β= —1/3. The
model with β= 1, however, has been solved by the Bethe ansatz method [9,10, 28,
29, 42]. It has a unique ground state with no energy gap, and appears to have
power law decay of the correlation functions by standard field theory arguments.
We expect that the model (1.2) has a unique massive ground state for — 1 < β< 1
and undergoes a phase transition at β = 1 to a dimerized phase with two ground
states and a gap for β > 1. At β = — 1 the model has an exact S U(3) symmetry and is
very likely massless [3]. For more details and support for this picture we refer the
reader to [1] and Sect. 4.4. Finite chain calculations supporting this picture may be
found in [13,20,34,41]. A critical theory for the phase transition at β= 1 based on
the nonabelian bosonization method is given in [3, 4].

The possibility of an isotropic model with a unique massive ground state may
be understood as follows. For a quantum antiferromagnet the quantum fluctu-
ations always provide some "entropy," even in the ground state. Thus the ground
state of a quantum antiferromagnet is like a classical model at some finite
temperature. If this classical model is in a high temperature phase then the ground
state of the quantum model will be unique and have a finite correlation length, i.e.,
a mass.

The key to all our models is the idea of a valence bond. Given two spin 1/2's, a
valence bond is formed by putting them in the singlet state Tl — lΐ Now consider
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the spin 1 chain. Each spin 1 can be regarded as the symmetric part of the product
of two spin 1/2's. We construct a state with a valence bond between each pair of
adjacent sites / and i +1 by forming a singlet out of one of the spin 1/2's at site i and
one at site i+1. After doing this we must symmetrize the two spin 1/2's at each site
in order to restore spin 1 at each site. This state can be represented diagramatically
as in Fig. 2.1. We call the resulting state a valence bond solid (VBS) state since the
valence bond structure is identical to the underlying lattice. We will show in Sect. 2
that this state is a ground state of (1.1). This state was first introduced, to the best of
our knowledge, in the discussion of the large n limit of SU(ή) chains [2]. Valence
bonds have been used before to construct exact ground states [17, 18, 27, 38]. In
these previous models, however, the ground states are at least doubly degenerate.
Furthermore, these ground states can be written as a single tensor product of
states, each of which only involves a few lattice sites. The VBS state cannot be
written as such a tensor product.

Such VBS states can be constructed whenever the spin s equals 1/2 of the
coordination number, z, of the lattice. A generalized VBS state can be constructed
whenever s is an integer multiple of z/2 (see Sect. 6 for details). Hamiltonians for
which these states are ground states can also be constructed. In one dimension the
VBS states can be constructed if and only if the spin is integral. Thus these solvable
models provide a qualitative explanation of why integer and half-integer spin
chains should have such radically different behavior [2].

In two or more dimensions there are many VBS states because of the freedom
at the boundary. We conjecture that if the coordination number z and dimension d
are small enough then in the infinite volume limit there is a unique ground state
and this state has exponentially decaying correlation functions and a gap. If z and d
are large then we conjecture there is Neel order, no gap and infinitely many infinite
volume ground states.

While we have no rigorous results on the nonzero temperature behavior of
these models in two and more dimensions it is interesting to speculate on what
happens. If there is a unique ground state and a gap above the energy of this
ground state, then one would expect that for any temperature there is a unique
Gibbs state and the correlation length remains bounded as the temperature goes to
zero. In other words, it appears that in any dimension there exist isotropic
quantum antiferromagnets which do not have a phase transition even at zero
temperature.

The organization of the paper is as follows. Section 2 is devoted to the one-
dimensional model (1.1). The exact ground state is constructed in detail and the
two point function is calculated in this ground state. The existence of a gap, the
uniqueness of the ground state and the exponential decay of all truncated
correlation functions is proven. Our spin 3/2 model on a two-dimensional
hexagonal lattice is defined and studied in Sect. 3. A ground state is constructed,
and we prove that with periodic boundary conditions the two point function of the
ground state has exponential decay. In Sect. 4 we construct the VBS state for a
general lattice and speculate on how its properties depend on the dimension and
lattice type. For the VBS state on the Cayley tree we show there is Neel order if the
coordination number of the lattice exceeds four, but no Neel order when the
coordination number equals three. We also discuss some SU(ή) models for which
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we can find exact ground states which are generalizations of the VBS state, and
develop a random loop representation for these models. The Majumdar-Ghosh
model is considered in Sect. 5. This model is known to have two ground states. We
prove that these are the only two ground states in the infinite volume limit, and
that there is a gap. In Sect. 6 we briefly discuss various generalizations of our
models and the Majumdar-Ghosh model. In Appendix A we sketch how the
standard technique of Gaussian domination shows that there is Neel order in the
ground state of the usual Heisenberg antiferromagnet on the two-dimensional
hexagonal lattice if the spin is at least 3/2.

The various sections of this paper are almost independent, so it should be
possible to read any one section after a quick look at the preceding sections. Most
of the results in this paper were announced in [1].

2. The One-Dimensional Model (1.1)

2.1. The Ground State

We define our one-dimensional system, and describe its exact ground states in
some detail in this subsection. The calculation of the ground state correlation
functions, the proof of the existence of an energy gap, and the proof of the
uniqueness of the ground state will be given in the following subsections.

We denote sites in our one-dimensional lattice by i and denote the spin
operator for spin s = 1 at site i by S; = (S1

b S2

b S3

f). The restriction of a state to two
adjacent sites i and z + 1 can have spin 0, 1 or 2. We denote the orthogonal
projection onto states with spin 2 by P2(Sj + Si+1) We can express this projection
in terms of the spin operators as follows.

3. (2.1)

The Hamiltonian is the sum over ί of these projections.

H=χHi with i / ~ P 2 ( ^ + 5 i + 1 ) . (2.2)
i

Obviously H Ξ> 0, so if we could find a state Ω with HtΩ = 0 for all i then Ω would be
a ground state. Naively, one might not expect such a state to exist, but we will show
that in fact it does.

To describe the exact ground states of the above Hamiltonian, we will
introduce a special basis for the state space. First, consider the state space for a
single spin 1/2. Let ψu ψ2 denote the eigenstates of S3 with eigenvalues 1/2 and
— 1/2. The state space for spin 1 may be formed by taking the symmetric part
of the tensor product of two spin 1/2 spaces. Thus an orthogonal basis is
Ψiu Ψi2 = Ψ2uΨi2> where

ψΛβ = lψΛ®ψβ + ψβ®Ψa}/]/2- (2.3)

We emphasize that in this notation ψaβ and ψβa denote the same state. These states
do not all have norm 1. Their norms and overlaps are

(ψφ Ψyδ) = δayδβδ + δaδδβy. (2.4)
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These states may be written in terms of a more standard basis for spin 1 as
follows. Let ( + ), (0), and ( — ) denote the orthonormal basis for spin 1 consisting of
eigenstates of S3 with eigenvalues + 1 , 0, and — 1, respectively. Then

φ n = |/2( + ), Vi2 = Ψ2i=(0), V>22 = l /2(-) . (2.5)

Equation (2.4) hides the SU(2) in variance of the theory. To make the in variance
more explicit we should raise the indices of the state xpaβ in the left side of the inner
product. We accomplish this by adopting the physicists' notation ψuβ ψγδ for the
inner product (ψΛβ, ψγδ). Then (2.4) becomes

W^-Wyδ = δ%δ^ + δ%δ\. (2.6)

Both δay and δa

y equal 1 if α = γ and 0 otherwise.
There are four spin 1/2's associated with each bond on the chain. If two of these

spin 1/2's are in a singlet state, i.e., a state with total spin 0, then the four spin 1/2's
can only have total spin 0 or 1. For two spin 1/2's, a singlet pair is formed by
contracting with an ε tensor, i.e., ψΛ®ψβε

aβ is a singlet. (εaβ is the antisymmetric
tensor with ε 1 2 = l.) In this expression and throughout the paper we adopt the
convention that repeated upper and lower indices are summed. Given two spin Γs
we can form Ωaβ = ψay®"ψδβεyδ. Since two spin 1/2's are always in a singlet state in
Ωaβ, Ωaβ is a mixture of states with total spin 0 and 1. Hence Ωaβ is a ground state
(for two sites) of the projection onto spin 2.

It is now clear how we can form a ground state for a finite chain {1,2,..., L}.
For convenience we take L odd, but the definitions are essentially identical for even
L. Let

Ω*β = Ψaβι®Ψa2β2® . .®ψ a L β εβίa2εβ2*3... ε β - ^ . (2.7)

For any two adjacent sites / and i + 1 , there is a spin 1/2 at site i and a spin 1/2 at site
i + 1 which are contracted with an ε tensor to form a singlet. Thus when Ωaβ is
restricted to sites i and i + 1 , it has only spin 0 and 1. Hence HfiaP = 0, so ΩΛβ is a
ground state of H.

We can simplify our notation by introducing a raising and lowering
convention for indices and a shorthand notation for the tensor products. For spin
1/2 states we define xpΰί = εaβψβ with the convention that repeated indices are
summed. A singlet pair of spin 1/2's is then formed by contracting an upper and
lower index, i.e., ψa®ψa. For a single spin 1 we define

ψaβ = εayεβδψγδ. (2.8)

It is easily checked that

(ψ", ψ"δ) = Ψ\β • W

yδ = δ\δ\ + Pβδ\. (2.9)

For our chain of spin Γs we raise the indices on every other site and introduce the
shorthand,

Then our ground state (2.7) is compactly written as

O 1/1 α l α 2 •••0LL-20CL- 1

^β — ψ
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I <

Fig. 2.1. The VBS state Ωaβ on a finite chain. Each dot, line, and dotted circle represents a spin 1/2,
a singlet pair, and the symmetrization of two spin 1/2's to create a spin 1

We can also define the periodic extension of H in (2.2) by adding P2(S1 + $L) t o

iϊ. This is also known as periodic boundary conditions. If L is odd then Ω = Ωaβε
aβ

is a ground state. If L is even then Ω = Ωa

a is a ground state, where Ω/ is the ground
state given by the analog of (2.11) for even L.

There is a simple diagramatic representation of these VBS states. Each site in
the chain is represented by two dots which represent the two spin 1/2's at that site.
Each dot has a line coming out of it. Connecting two of these lines means that the
two spin 1/2's are put in the singlet state. After forming these singlets we must
symmetrize the two dots at each site. This symmetrization is represented by a
dotted circle around the two dots. For an open chain there are free lines at each end
of the chain corresponding to the indices a and β in Ωaβ. The resulting diagram for
the ground state of an open chain is shown in Fig. 2.1.

We refer to these Ωaβ and their (unique) infinite volume limit as Valence-Bond
Solid (VBS) ground states. This terminology comes from the observation that, in
these states, the valence bond (or singlet pair) structure exactly mimics the bond
structure of the basic lattice. In Sects. 3,4, and 6 we will discuss generalizations of
VBS states to other lattices.

The VBS ground states appear very simple and natural in the present basis, but
these states are not as trivial as they may appear. In particular, these states cannot
be written as a single tensor product of a state at each site. To emphasize the
richness of these states we will express them in terms of the usual {( + ),(0),( —)}
basis of S3 eigenstates at each site. The basis vectors for the chain are labelled by
strings of O's, + 's, and — 's. We denote such strings by A and the corresponding
state by ψA. The coefficient of ψA in the ground state Ωaβ will be denoted by Ωaβ(A),

The coefficient Ωaβ(A) is zero unless A is of a special form which depends on α
and β. The rules are as follows:

α = 1, β = 2: A must contain the same number of +'s and — 's. The first nonzero
character in A must be a + , and thereafter the nonzero characters must alternate
between — and + .

α = 2, β = 1: Same as above with + and — reversed.

α = l, β=ί: A must contain one more + than —. The first nonzero character
must be a + , and thereafter the nonzero characters must alternate between —
and + .

α = 2, β = 2: Same as above with + and — reversed.

An example of an A in the α = l, β = 2 class is 0 + 0 0 - + 0 - 0 + 0 0 0 - .
These four classes are disjoint with one exception; the string containing all O's

belongs to both the α = 1, β = 2 class and the α = 2, β = 1 class. Note that for any
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choice of α and /?, Ωaβ(A) = 0 if A contains two + 's separated only by O's or two — 's
separated only by O's.

We will give an explicit formula for Ω12(A) and leave the other cases to the
reader. Let A be a configuration in the class α = 1, β = 2. Let k be the number of
pairs of + and —. Let m be the number of odd sites at which there is a + or a —.
Then

Ωl2(A) = (-ψ2k. (2.12)

To show that this is a ground state, consider two adjacent sites / and i+1. It
suffices to show that Ωί2 is orthogonal to any state which has spin 2 on the pair of
sites i and i+1. A basis for these spin 2 states is

Obviously, Ω12 is orthogonal to eί and e 5. To see that Ω12 is orthogonal to e2, let ^
be a string with + at site i and 0 at site ΐ + 1 . Let A' be the same string except that
sites i and i + 1 are interchanged. This switch leaves k unchanged but changes m by
1. Thus Eq. (2.12) implies that Ω12(A)= —Ωί2(A'). So Ω12 is orthogonal to e2, and,
by the same argument, to e 4. Finally, to see that Ωί2 is orthogonal to e3, let A be a
configuration with O's at i and i + 1 . Let ^ and ^42 t>e t n e t w o configurations
obtained by replacing the two O's by —f- and H—, respectively. Exactly one of Aί

and A2 will have a nonzero coefficient. (Which one depends on α and β and on what
,4 looks like off of sites i and i -h1.) Assume ^ has the nonzero coefficient. Then
Eq. (2.12) yields Ω12(A1) = -2Ωί2(A). It follows that Ω12 is orthogonal to e3. Thus
Eq. (2.12) defines a ground state.

Remarks. 1. For a finite chain with open boundary conditions we have found four
ground states. In Sect. 2.2 we will calculate the norms and overlaps of these four
states (2.14). It follows immediately from this calculation that the four ground
states are nonzero and linearly independent. In Lemma 2.8 of Sect. 2.4 we will
prove that they are the only finite volume ground states. Hence the open chain has
a fourfold degenerate ground state. The total spin commutes with the Hamil-
tonian, so our four ground states must either consist of a triplet of spin 1 states and
one spin 0 state or of four spin 0 states. The states Ώ 1 2 , Ω2U Ω l l 5 Ω22 have total S3

equal to 0, 0, + 1 , —1, respectively. Hence we must have three spin 1 states (Ωlί,
Ω22, and a linear combination of Ω12 and Ω21) and one spin 0 state (another linear
combination of Ω12 and £221). It is worth remarking that in the usual Heisenberg
antiferromagnet the ground state for any L with open boundary conditions is
always nondegenerate and has total spin 0 [30].

2. We can use Remark 1 to show that the periodic chain has a unique ground
state. Suppose the periodic chain has a ground state with total spin 1. Then we can
find a ground state for the periodic chain with total S3 equal to + 1 . Any ground
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state for the periodic chain is also a ground state for the open chain, so this ground
state must be a multiple of £2 n . From the description of Ω l x in terms of O's, +'s,
and —'s, we see that Ω n contains configurations with +'s at both sites 1 and L.
Such a configuration, however, has spin 2 when restricted to sites 1 and L, and so is
not a ground state for the periodic chain. This contradiction shows that the
periodic chain only has ground states with total spin 0. The open chain has only
one such ground state, so the periodic chain has a unique ground state.

3. In Sect. 2.4 we will show that the four ground states all yield the same state in
the infinite volume limit and that the resulting infinite volume state is the only
infinite volume ground state. In particular, the infinite volume limit constructed
using periodic boundary conditions equals the infinite volume limit constructed
using open boundary conditions.

2.2. The Ground State Two-Point Correlation Function

In this subsection we will calculate the two point correlation function for the
ground state. By Remark 3 above, we need only perform the calculation for a
particular choice of boundary conditions. We will use periodic boundary
conditions. We will show that

ω(Sa

0S\) = δab( - iy(4/3)3 ~r, (2.13)

where ω(Sa

0S
b

r) denotes the limit as L-» oo of the expectation of Sa

0S
b

r in the
ground state of the chain with L sites and periodic boundary conditions.

We begin by calculating the normalization of the ground state for an open
chain of L sites. For later use we will actually calculate the inner product of any two
of our four ground states. Since the notation depends on whether L is even or odd
we assume that L is even. The basic formulae needed for this calculation are Eqs.
(2.6) and (2.9). The calculation may be done in a diagramatic fashion using the
diagrams introduced in Fig. 2.1.

We draw the state Ω twice, but label the two drawings as Ω and £2f as shown in
Fig. 2.2a. At each site the inner product is, according to (2.6) or (2.9), a sum of two
terms. We represent them by Fig. 2.2b. Inserting Fig. 2.2b at each site in Fig. 2.2a
gives a sum of 2L diagrams. For example, with two sites the inner product is given
by Fig. 2.2c. Each loop represents the trace of a product of δ tensors and so gives a
factor of <5α

α = 2. Thus Fig. 2.2c yields

β % Ωγ

δ = 2δ%δδ

β + δ%δ\ + δ%δδ

p + δ%δδ

y

z.
c

Q o( β oi β

Q t b J I + X
Z δ 2T S

ldl
Fig. 2.2a-b. Inserting b into each site in a gives the overlap Ωf Ω. c The case with two sites
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Fig. 2.3. Diagrams which appear in the overlap calculation, a A typical one, and b the special one
has no loops

For general even L all but one diagram consists of an open line from a to γ, an
open line from β to δ and some number of closed loops in between. A typical
diagram is shown in Fig. 2.3a. All these diagrams give a contribution proportional
to δa

yδ
δβ. The one other diagram consists of two lines stretching all the way across

the lattice (Fig. 2.3b) and gives simply δa

βδ
δ

y. Thus we need to perform the sum
over all loop diagrams. For each loop we get a factor of 2 from δa

a = 2. The number
of diagrams with m loops is the number of ways of choosing the (m +1) points
where the loops begin and end out of the L possible points, i.e., it is given by the

L
binomial coefficient I ). Thus the sum of all diagrams of this type is

proportional to

and so

Ω**p Ω / = δ%δδ

β(3L-1)/2 + δ%δδ

y. (2.14a)

If L is odd a similar computation yields

QW - Ωyδ = δ%δβ

δ(3L -1 )/2 + δa

δδ
β

y. (2.14b)

The normalization of the ground state with periodic boundary conditions

can be found by taking traces in (2.14) or by summing graphs on a circle.
Next we calculate the spin-spin correlation function for a chain with L sites and

periodic boundary conditions. The spin operators acting on our basis for a single
spin 1 give

on odd sites, or

on even sites, where the {σafβs are the Pauli matrices and

(Ta = Fa^F G δ

Thus acting with Sr on the periodic ground state, breaks either the link between
sites r — 1 and r or between r and r+ί and contracts the two dangling indices with
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r+1

b 0 1 r r+1

Fig. 2.4. a One of the four diagrams which represent the action of So Sr on Ω. b A typical diagram
which gives a nonzero contribution to Ω^ So SrΩ

+ (l/2)σ (for r even or odd). Acting with Sa

0S
b

r (we assume r>2) breaks the chain
up into two open lines, one running from 0 or 1 to r— 1 or r and the other running
from r or r +1 to L or 0. One of these four cases is shown in Fig. 2.4a. The dangling
indices near 0 are contracted with (l/2)σfl and those near r with ( — \)r(\β)σb.

To obtain the correlation function we need to calculate the overlap of this state
with the ground state. Again we represent the calculation by a sum of diagrams.
There now must be two lines which end on the four dangling bonds, all others
forming closed loops. These two lines can both stretch from 0 to r (+1) or one can
start and end near 0, and the other start and end near r. There are far more
diagrams of the latter type, however, they all give contributions proportional to
δa

γ(σa)a

yδβ

δ(σb)β

δ = Ύΐσa Ύrσb = 0. The former diagrams give contributions propor-
tional to (σ\yδγ

β(σb)β

δδδ

a = Ύrσaσb = 2δab. The lines from 0 to r can run around the
chain in either direction but for L-> oo with r fixed they must take the shorter path
to contribute. Apart from these two lines there are one or more closed loops (many
as L->oo) going around the chain the long way (see Fig. 2.4b). Summing over all
these diagrams as before, being careful to sum over the four possible combinations
of broken bonds and then dividing by the ground state normalization, we
obtain (2.13).

2.3. The Energy Gap

We will prove that the Hamiltonian (2.2) has a gap between the ground state
energy and the first excited state. In this subsection we begin by showing that for
a finite chain of length L the gap is bounded away from zero as L-> oo. In Sect. 2.4
we will show that the infinite volume system has a gap.

We use an open chain and assume that the four ground states we constructed in
the previous section are the only ground states. We will prove they are the only
ground states in Sect. 2.4. Bounding the gap away from zero uniformly in L is
equivalent to the following theorem.

Theorem 2.1. Consider the Hamiltonian

HltL=LΣHi. (2.16)
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There is a positive constant ε which does not depend on L such that

(ψ,HltLψ)^ε(ψ,ψ) (2.17)

for all ψ which are orthogonal to the four ground states of Hi L.

Proof. Our proof will take advantage of the following property of our model. If Ω is
a ground state then for each /, (Ω.H^Ω) equals the lowest eigenvalue of Ht.
Consequently, any ground state for Hi n is also a ground state for Hi n_1.

Let Qn be the orthogonal projection onto the subspace of states which are
ground states for H1 „, n^L. Let Pn=l—Qn. The previous paragraph implies
Qn^Qn +1>so Pn^

p

n +1 Inequality (2.17) is equivalent to H1 L^εPL. We write PL

as a sum of mutually orthogonal projections:

The integer / will be chosen later. It will be independent of L. (We assume, of course,
that L>1)

The idea of the proof is to bound Pn + ί — Pn = Qn — Qn + x by the terms Ht in the
Hamiltonian with / near n. If we restrict Qn — Qn + ί to the first n + \ sites, then it is an
8-dimensional projection. (Qn is 12-dimensional and Qn+1 is 4-dimensional.) Let
φ\ + 1 , i = 1,..., 8 be states on the first n + 1 sites which are an orthonormal basis for
the range of this projection. Each φi

n+1 is a ground state for HUn and is orthogonal
to any ground state for H1 n + ί.

Let ifπ_ ί+1>n+1 be the Hamiltonian for sites n — l+1 to n + 1, and let
Qn_ι + 1>n + 1 be the orthogonal projection onto its ground states. Define

and define

We will reduce the proof to the following three lemmas.

Lemma 2.2. Let eι+1 be the gap for H1 ι + ί , i.e., the first nonzero eigenvalue of

Hltl+1. Then

n - ι + l t Λ + 1 , (2.18)

where P(ψι

n+ x) is the orthogonal projection onto the states of the form ψι

n+1 ®χ for
any state χ on sites n + 2 to L.

Lemma 2.3. // \m — n\ ^ / + 1 then for any i and j , P(φ ι

π +ί)is orthogonal to P{ψj

m +1),

Lemma 2.4. There is a constant c such that for all I

. (2.19)
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Assuming the three lemmas we complete the proof as follows. We will sum
(2.18) from n = l to L - l . Note that

Σ (6π —6«+i) = 6/ — 6 L = ^ L —-P/j (2.20)
n — I

Σ H«-ι+ι,n+ιMl+ί)Hι,L (2.21)
n = l

In the sum

V Σ P(ψ'n + ί) (2.22)
n = l ί = 1

any two terms with n = n1 and n = n2 are orthogonal if |nx — n 2 | > /. Since any sum of
mutually orthogonal projections is less than or equal to the identity operator,
(2.22) is less than or equal to 8(/+1). Thus summing (2.18) yields

Since ex is the first positive eigenvalue of H1 h we trivially have

P^-Huι^-HUL.

Adding the above two inequalities implies

V eι+ι

Since PL and HitL can be simultaneously diagonalized, this implies inequality
(2.17) provided 16 (/+ l)ε(/) < 1. By Lemma 2.4 we can make this quantity less than
1 by choosing / sufficiently large. Note that we have not assumed anything about
how eι depends on I The only information we have used about eι is that it is strictly
positive. Π

Proof of Lemma 2.2. In this proof we will abbreviate Qn_ι + l n + ί by Q. Each
operator in (2.18) acts as the identity on sites rc + 2 to L. Thus we may restrict our
attention to sites 1 to n + 1 . For any state χ on sites 1 to n + 1,

+1) \2 + 2|(χ, (1 - Q)φi

n+1)\2, (2.23)

where we have used the Cauchy-Schwarz inequality to bound the cross terms. The
first term equals
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since ψι

n + 1 is defined as the unit vector proportional to Qφί

n + 1. For the second
term the orthonormality of the φι

n+1 implies

Σ lteσ-β)^+i)l 2= Σ K(i-
i = 1 i= 1

Thus summing (2.23) from i = 1 to 8 we obtain

But | | ( l - β ) χ | | 2 = (χ , ( l-β)χ) and i-Q^Hn.l + Un + 1/el + l . The lemma
follows. Π

Proof of Lemma 2.3. In this proof we abbreviate Qn_ι+ln + 1 and β w -/ +1, w +1 by
6" and gm. We can assume m ^ n + Z+1. To show the two projections are
orthogonal, it suffices to show that the inner product (Qnφι

n+ι®χ, Qmφj

m+1®Θ)
vanishes for any state χ on sites n + 2 to L and any state Θ on sites ra + 2 to L. We
should warn the reader that the two (x)'s in this inner product mean different
things. The first (x) indicates a tensor product between a state on sites 1 to n + 1 and
a state on sites n + 2 to L. The second (x) indicates the same thing except that n is
replaced by m.

Since Q" and Qm commute the inner product equals {φι

n+ι®χ,
QmQnφj

m+x®Θ). But φj

m+1 is a ground state for Hx m and hence for i / n _ i + l j Π + 1 .
So the inner product equals {φi

n +1 ®Z, Qmφj

m+1 ® Θ). Now φ J

m + 2 is a ground state
for /fljW and so is a ground state for H1 >II + 1 . Since β m acts only on sites greater
than m — ί and m—1 ^ n + 1, Qmφj

m+1®Θ is also a ground state for H1 n + ι . But
φ',, + 1 is orthogonal to such states, so the inner product vanishes. •

Proof of Lemma 2.4. All of the states we will encounter in this proof will be linear
combinations of the states shown diagramatically in Fig. 2.5. Our notation for this
state depends on whether n and / are even or odd. For brevity we will only consider
the case that n and I are both even. In this case the state in Fig. 2.5 is denoted by
Ω/y

δ

ερ. The argument in the other three cases is the same.
Let φ be one of the states φι

n + ί. Then φ is a ground state of Hι n and so is a
linear combination of the states Ωjβ

δ

ερ, i.e.,

φ = Ω/β

δ

ερAγe. (2.24)

1 n-fl. n-H +1 π n+1

Fig. 2.5. The states Ωa

β

γ

δ

ερ which are used in the proof of the existence of a gap
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We can assume A is symmetric in ε and ρ. Since Qn + xφ = 0, φ is orthogonal to the
ground states of Hί M + 1, i.e., to the states Ωμ

y

y

σ

συ. Using Eq. (2.14) this implies

o=βt*y v . φ=Ω^ r ΩΛ W e

Thus

Aμ

δ

δv = - 2Aδ

δ

μυ/(3n - 1 ) . (2.25)

Thus whenever the second and third indices in Aa

δ

Q are contracted, the result is of
order 3~" compared with Aa

δ

β.
Our goal is to bound the square of the norm of Qn-ι + ίftι + 1φ. First, we show

that this state is a linear combination of the states Ωμσ

y

yω. To do so we must show
that Qn-ι +!,„+ ιψ is a ground state of H1 j f l_z and of Hn_ι + l n + 1. The latter case is
trivial since Qn-ι +i,n + i is the projection onto the ground states of Hn_ι+1 n+ΐ.
The former case is also immediate since φ is a ground state ofHln and so of H1 „_,
and Qw-/ + i,n + i commutes with #!,„_/.

The number of states Ωμσ

y

yω is independent of n and Z, so the preceding
paragraph implies that | | β π - / + i , n + i φ | | 2 = (Qn-z + i, n+iφ, φ) is bounded by a
constant times the sup over μ,υ,σ,ω of KΩμVyωίφJI/IIΩμVyωll To compute this
inner product we apply (2.14) twice, once for sites 1 to n — I and once for sites
n — I -f 1 to rc. This yields

3-" ι

/ ω <5 μ

ϋ . (2.26)

It is now clear how the proof works. In the first term the second and third
indices of A are contracted. By (2.25) this gives us a factor of 3 ~n. The other terms in
the above sum are smaller than the first term by a factor of 3 " ι or 3 ~". Since n ̂  Z,
the overlap in question is of order 3~ι.

To implement this intuition we need to consider the various normalizations.
Recall that φ has norm 1 by definition. This implies, after some computation using
Eqs. (2.14) and (2.24), that

(A*μ

y

εQ denotes the complex conjugate of Aμ

y

Q) The second term in the right side is
nonnegative and the first is just the sum over μ, y, ε, and ρ of \Aμ

y

ερ\
2(3n —1)/2. Thus

M / J 2 ^ 2(3"-1Γ1. (2.27)

The norm of Ωμσ

y

yω can be computed using (2.14). The result is 3n+ */4 plus
terms which are smaller by a factor of 3~n or 3~ι. Combining this calculation with
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(2.26) and (2.27) shows \{Ωμ

Ό

σ

y

yω,φ)\l\\Ωμ

υ

σ

y

yJ is bounded by a constant
times 3~'. •

2.4. The Infinite Chain

In this subsection, we prove that the infinite volume system has a unique ground
state, exponential decay of all truncated correlation functions in the ground state
and a gap. We also prove that the finite volume ground states defined in Sect. 2.1
are the only ones. In this subsection instead of the finite chain {1,2,..., L}, we use
the finite chain { —L, — L + l , ...,L}. The ground states for this finite chain are
defined by analogy to (2.11) and denoted by Ω(L)

aβ. The natural way to construct an
infinite volume ground state is to compute expectations in Ω{L)

aβ and then let
L-*oo. Surprisingly, the result of this operation can be exactly expressed in terms
of finite volume expectations as we will show in Lemma 2.6.

A local observable, A, is any polynomial in the spin operators for finitely many
spins. (The identity operator / is a local observable.) If the spins involved in A
involve only the sites {n, n + 1 , . . . , n -f m} we say that the support of A is contained
in {n,n+ί, ...,n + m}. A state ρ is a function on the local observables such that
ρ(/)=l, ρ{λA + γB) = λρ(A) + yρ(B) for all λ,yeC and ρ{A*A)^0 for all A.

Lemma 2.6. Let Abe a local observable. Then for any I such that the support of A is
contained in { — I,—l+l,...,/},

ϊ εδ> AΩ ε δ )
aβ) _ M

-
ε,δ

for any choice of oc and β. (a and β are not summed over in this equation.) In
particular, the limit in the left side of the equation exists and is independent of oc and
β. We denote this limit (which is a fortiori a state) by ω(A).

Proof. In this proof some repeated indices are not summed, so we will explicitly

(2.29)

write out all summations. We can write Ω{L)

aβ as

Σ
y,δ

where Ωa

γ, Ω(l)

yδ, and Ωδ

β are ground states on { — L,..., —/—I}, { — I,...,/}, and
{/ + 1 , . . . , L}, respectively. (We are assuming L — Us even. If it is not, some indices
must be raised or lowered.) This representation yields

β β Σ \
γ,δ,ε,ρ

By (2.14b),

tfV, Ω/) = δ%(3L ~' -1 )/2 + δ \δ\

with no summation over α or β. Thus

+ ..., (2.30)Σ
γ,δ
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where the three terms represented by ... are all smaller by at least a factor of 3L~ι.
The lemma now follows. •

Next we show that ω is the only infinite volume ground state.

Theorem 2.7. Assume that a state ρ on the infinite chain is ground state in the sense
that ρ satisfies £?(//;) = 0 for all i, where Ht is the local Hamiltonian defined in (2.2).
Then the state ρ equals the state ω defined in the previous lemma.

Remark. Note that the definition of the ground state in the above theorem differs
slightly from the "standard" definition in the mathematical physics literature. In
the standard definition, the set of ground states Go is

Go — {Q I Q(A*[H, A]) ^ 0 for an arbitrary local operator A],

while our ground state set G1 is

where Eo is the following ground state energy per site:

/ N/2 \

E0=M lim(l/JV)<? Σ HA.
ρ N-+oo \i=-N/2 J

Since some models have a state which belongs to Go but not to Gγ (e.g., the domain
wall state in the Ising chain) we cannot expect these two definitions to be
equivalent. Using the ergodic theorem [35], we can show that any translation
invariant ρ in Go also belongs to Gx. When Eo happens to be the minimum
eigenvalue of the local Hamiltonian Hi (as in our model), the standard property
[14] of Go implies G1 CG 0. In the present model, we expect that the two sets are
identical. Another definition of the ground state, which is in many cases equivalent
to Go, can be found in [6].

The proof of the theorem is based on the lemma above and the following two
lemmas.

Lemma 2.8 (Finite volume lemma). Let φ be a state for the sites — L to L which
satisfies Hιψ = 0 for i— — L, ...,L — 1. Then φ can be written as

V (2.31)

where Aaβ (a,β=l,2) are complex coefficients, and Ω(L)

α/? are the finite volume
ground states defined in (2.11).

Lemma 2.9. Let A be an arbitrary local operator. Then

}im Λ = 0 (no sum over α? & y or δ)

for any a, β, γ, δ unless oc = y, β = δ.

Proof of Theorem 2.7. Assume that a state ρ satisfies the condition. Let A be a local
operator which acts on the spins in the interval { —L, ...,L}, and denote the
restriction of ρ to {— L,..., L} by ρL. Since ρL is a state on a finite system, ρL has a
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representation

QL(A)=ΣCa(<Pa>Aφa), (2.32)
a

where ca = 0, X cα = 1, and each φa is a normalized state which satisfies H^a = 0 for
a

i= — L, ...5L— 1. By Lemma 2.8 each φfl is a linear combination of the finite
volume ground states Ω{L\β. Writing each φa in (2.32) as such a linear combination
and using Lemmas 2.6 and 2.9, the theorem follows. •

Proof of Lemma 2.8. The proof proceeds by induction in the number of sites. For
two sites the most general ground state (which must have no projection onto 5 = 2)
can be written

where Aa

γ is an arbitrary tensor. This can be checked by noting that there are four
independent states of this type, corresponding to 5 = 0 and 5 = 1 . Now let us
consider a chain of three sites with open boundary conditions. Given a ground
state Ώ, since it has no projection onto 5 = 2 for the first link, we can write it as

Ω = Ψa/yδεΛ%δε (2.33)

for some tensor Aa

γ

δε which we may assume is symmetric in δε since φ ^ is. Ώ has
no projection onto 5 = 2 for the second link, so we may also write

Ω = φ α / V ? α γ , (2.34)

for some tensor Bay

δ

ε which can be assumed to be symmetric in ay. Comparing
these two forms of Ω, we see that Aa

γ

δε = 0 unless γ = δ or y = ε, since otherwise Ω
would contain a term in which neither index on the second site was the same as
either index on the third, and this would contradict (2.34). (This term arises by
choosing β = y.) Since ψaβ

βγ

δε is symmetric in δε, (2.33) becomes

1 /jα l ε J - i n β2 A
lεΛ 1 ^Ψocβ 2εΛ

a 2 ε

2

It only remains to prove that Aa

ι

lε = Aa

2

2ε To prove this note that B can also
be reduced in a similar way so that

O — m lβ R<*1 ε

h£— ΨΛI βεD 1

Equating these two expressions we have

2\ε(A\ίε-B«2

2

ε) = 0. (2.35)

The coefficients of the first two terms must be zero, hence

A\u = Ba\\ A\2ε = BCί2

2

ε. (2.36)

The coefficient of the third term must be zero unless α = 2 and ε = 1 in which case a
contribution also arises from the fourth term,

A*2

2ε = Ba\ε (forαeφ21). (2.37)
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Finally, the coefficient of the fourth term must be zero unless α = 1 and ε = 2.

A\u = Ba2

2

ε (forαεφl2). (2.38)

Equations (2.36), (2.37), and (2.38) imply that

A\u = Aa

2

2ε (for all α,ε).

Thus we may write the most general ground state wave-function for three sites as

for some tensor Cαε.
To carry out the induction step define the following states oniV+1 sites:

Q 7δ — i n al<*2 yδ
ώ ώ α β ερ Y^ααi α 2 α 3 . . . α β ερ

Let Ω be a ground state for N +1 sites. Then it is a ground state for N sites and so
by induction

Since Ω has no projection onto spin 2 for sites N and iV+1,

O—O yδ -DCϋβ ρ

M — ^aβ δρD y

The argument for three sites can now be used to conclude

O — O Pδ Γaρ ΓΊ

^ — ^aβ δρ^ ' I—I

Proof of Lemma 2.9. The technique used to prove Lemma 2.6, namely Eq. (2.29),
can also be used to prove Lemma 2.9. The details are left to the reader. •

Next we show that any truncated correlation function for the ground state has
exponential decay.

Theorem 2.10. Let A and B be local observables and let d be the distance between
their supports. Then

\ω(ΛB)-ω(A)ω(B)\^3-{d-2)\\A\\ \\B\\.

Proof. For this proof we also write out any summations explicitly. Assume that the
support of A is to the left of the support of B and let r be the right-most site in the
support of A and r + d the left-most site in the support of B. The argument is similar
to that for Lemma 2.6. Choose L large enough that the supports of A and B are in
{-L,...,L}. Write Ω{L)

aβ as

Ω^aβ=ΣΩJΩ'γδΩ
δ

β,
y,δ

where Ωa

y, Ω'γδ, and Ωδ

β are now ground states on { — L, ...,r}, { r+1, ...,r + d — 1},
and {r + d,...,L}5 respectively.

By Lemma 2.6 we can compute ω(AB) by computing

X φ ABC*L\β) = Σ (Ω«y, AΩa

ε)(Ω'yδ, Ω'ερ)(Ωδ

β,
a,β a, β,γ,δ,ε,ρ
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Using (2.14) to compute (Ω'y5,Ω'ερ), we see this equals

(Ωa\ΆΩaη Σ (Ωδ

β,BΩδ

β)
y β,δ

Using Lemma 2.6 again, the first term when normalized becomes
ω(A)ω(B)(l — 3~(d~1}). The second term when normalized is easily bounded by a
constant times ||,4|| | | B | | 3 " ( d ~ υ . Keeping track of the constants yields the result
stated in the theorem. •

Finally, we show that the infinite volume system has a gap. There are various
definitions of the existence of a gap for the infinite volume system. We use the
following one.

Definition 2.11. If ω is a ground state then ω has a gap ε if for every local observable
A such that ω(A) = 0we have

Theorem 2.12. The state ω defined in Lemma 2.6 has a gap.

Proof. Let A be a local observable such that ω(A) = Q. Pick some α and β. By
Lemma 2.6

Thus the overlap of AΩ{h)

aβ with Ω{L)

aβ is o(l) with respect to the norms involved as
L->oo. By Lemma 2.9, the overlap of AΩ{L)

aβ with Ω{L)

yδ is o(l) with respect to the
norms involved unless oc = y and β = δ. Thus the norm of the projection of AΩ(L)

aβ

onto the subspace of ground states of the finite chain is o(l) with respect to
\\AΩ{L\β\\. By Theorem 2.1 the finite chain has a gap ε, so

( Ω % , A*IH, AW{L\β) ^ (ε - o

The theorem follows. •

3. The Spin 3/2 Model on the Hexagonal Lattice

3.1. The Ground State

Here we describe our results on the Valence-Bond solid state on the two-
dimensional hexagonal lattice. We show that the state, which is an exact ground
state of a certain Hamiltonian, exhibits properties similar to those of the one-
dimensional VBS state. We also present models in higher dimensions which have
similar ground states. Though our rigorous results are less complete than those for
the one-dimensional model, they provide the first concrete examples in two and
higher dimensions of exact disordered ground states which appear to be unique.

In the present subsection, we describe the model and its exact ground state
precisely. Let A be the set of sites in the finite hexagonal lattice with periodic
boundary conditions. The set of bonds B consists of unordered pairs (/, j) of
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Fig. 3.1. a The cubic lattice with b decorated vertices is a three-dimensional bipartite lattice with
coordination number three

adjacent sites ί, j in A. Note that the hexagonal lattice is a bipartite lattice, i.e., it can
be decomposed into two sublattices ΛA and AB with the properties that
ΛAKJΛB = A, ΛAnΛB = 0, and for any (i, j)eB, either ieΛA, jeAB or jeAA, ieAB.

All the results in the present section can be generalized to arbitrary bipartite
lattices with coordination number three. Among the examples of such lattices are
the one-dimensional ladder lattice, the two-dimensional hexagonal lattice, and
various lattices [43] with dimensions three or higher. An example of such a lattice
in three dimensions is given in Fig. 3.1. We can modify this lattice so that all the
bonds have unit length, and any pair of sites separated by unit length are connected
by a bond. However, we note that such an example is primarily of theoretical
interest and has little direct connection with physical experiments. The importance
of these examples is that they show that isotropic antiferromagnets in dimensions
greater than one may exhibit the same properties that Haldane predicted for the
Heisenberg chain. (In Sect. 4, we discuss lattices with coordination numbers
greater than three.)

Let us associate a spin operator St with spin 5 = 3/2 with site i. Then our
Hamiltonian is

H=
(Uj)e (ί,j)eB

fly, (3.1)

where P3(S) is the orthogonal projection onto the states with S2 = 3(3 +1) (spin 3).
Note that our Hamiltonian describes antiferromagnetic pairwise interactions

with perfect SO(3) symmetry. To see that (3.1) has an antiferromagnetic character,
observe that the energy is higher when the two neighboring spins add up to the
maximum spin. This Hamiltonian is also equivalent to the following polynomial of
the spin operators.

Σ cs;
j ) B

, s/+ s/]. (3.10

To extend the VBS ground state to the hexagonal lattice, we think of spin 3/2 as
the symmetric part of the product of three spin 1/2's. For a single site, our basis
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consists of four vectors ψ l l l 5 ψ u 2 = Ψi2i=V72ii> V>i22 = V2i2 = Y>22i> and ψ222

which are defined as

Here {^i=( + )> Ψ2 = (~)} denotes the standard S3 eigenstate basis for spin 1/2,
and the summation runs over all the permutations of (α1?α2,α3). The normaliz-
ation condition for these vectors is

Therefore, our basis is related to the standard S3 eigenstate basis for s = 3/2 by the
following.

) = y>122/]/2, (-3/2) =

Again we use the following convention for raising indices

i n αiα 2 α3 _ oαi/?ipα2/?2P

α303 in

ip — ε ε ε VW203

and a summation convention for repeated upper and lower indices.
Let ί1? ι2, and i3 be the three neighboring sites of a site i. We represent a state on

site i as

if ieΛA, and as

if ieAB. Then the VBS state on the hexagonal lattice is obtained by letting each
pair of spin 1/2's on adjacent sites form a singlet pair.

ΩΛ= ® V..,,.,.,..,, ® ψ*»w>. (3.4)
ieΛA jeΛB

Note that for any (/, j) e B, both indices αl7 and αj7 appear exactly once in the above
expression. Since one of them appears as an upper index, and the other appears as a
lower index, we can sum over them by setting ocij = ocji. Then all the indices in (3.4)
are contracted, and we get a single state ΩΛ where the valence bond structure is
identical to the bond structure of the lattice (Fig. 3.2).

Fig. 3.2. The VBS state on the hexagonal lattice.
Each dot, line, and dotted circle represents a spin
1/2, a singlet pair, and the symmetrization of three
spin 1/2's to create a spin 3/2
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To see that the state ΩΛ is actually an exact ground state of the Hamiltonian
(3.1), note that the restriction of the state to an arbitrary pair of adjacent sites
contains at least one singlet pair. Therefore, the total spin of these two sites is
always 2, 1 or 0, which means HijΩΛ = 0 for any (i, j) e B. Since 0 is the minimum
eigenvalue of the local Hamiltonian Htj, ΩΛ is an exact ground state.

It is desirable to have an argument for the uniqueness of the infinite volume
ground state (like Theorem 2.7) for the hexagonal lattice model (3.1). In fact, we
expect the analog of Lemma 2.8 (finite volume lemma) to be valid for the general
class of VBS systems (which is described in Sects. 4 and 6) including the present
one. Moreover, our result on the exponential decay of the two point correlation
function suggests that the analog of Lemma 2.6 is also valid in the present model
(for a bipartite lattice with coordination number three). See note added in proof.

3.2. Properties of the Ground State

The main result of the present section is in the following theorem which establishes
the exponential decay of the correlation function in the VBS state (3.4). The proof
of the theorem will be presented in the next subsection.

Theorem 3.1. The two point correlation function of the VBS state with periodic
boundary conditions (3.4)

(ΩΛ,SrSjΩΛ)
< S ' S ^ - (ΩΛ,ΩΛ)

 ( 1 5 )

satisfies the bound

y ^ j i / ξ o ) (3.6)

for any i, jεΛ. Here C and ξ0 are positive constants which are independent of the
lattice size, (— \)ι~J = \ or — 1 according to whether i and j belong to the same
sublattice or not, and \i—j\ denotes the graph theoretic distance (i.e., the minimum
number of bonds needed to connect i and j.)

Note that ξ0 in the theorem provides an upper bound for the actual correlation
length. From our proof in the next subsection, we get ξ0 = (ln(2/|/6)} ~ ι = 4.93 . . . .
For the hexagonal lattice, we may use the "exact but nonrigorous" value [33] of
the entropy of self-avoiding random walks to get an improved upper bound
^ = 3.54....

Let us describe some physical consequences of our theorem. Consider the
following infinite volume limit of the VBS state ΩΛ,

- "» Sir- <">
(ΩΩ)

Here Λ^ denotes the infinite hexagonal lattice. By symmetry

£) = lim <Si>il = (0,0,0).
ΛA
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At the same time, since our upper bound (3.6) is uniform in A, the corresponding
bound is also valid for the correlation function ω(S, Sj) of infinite volume VBS
state (3.7). This fact strongly suggests that ω is a pure state.

Therefore, we conjecture that ω is the unique infinite volume ground state of
the Hamiltonian (3.1), and has no Neel ordering. It has been argued that ground
states of two-dimensional antiferromagnets usually have Neel order. Though
some examples of non Neel ordered exact ground states are known [27], they are
infinitely degenerate and exhibit trivial ultra short range correlation functions (see
also Sect. 6). As far as we know, the VBS states (3.4) are the first examples in two
and higher dimensions of disordered exact ground state which are presumably
unique. Note that the VBS state is qualitatively different from Anderson's
disordered ground state (resonating valence-bond) on the triangular lattice [7].
However, it is interesting that valence bonds seem to play crucial roles in both
cases.

The exponential fall-off of the correlation function also suggests the existence
of an energy gap in the Hamiltonian (3.1). However, we do not know any way of
proving (or disproving) this conjecture.

Finally, let us briefly discuss the relevance of our results and speculations to
Hamiltonians other than (3.1). First of all the (conjectured) uniqueness of the
ground state and the (conjectured) existence of an energy gap suggest that our
hexagonal lattice VBS state is in some sense stable under a perturbation of the
Hamiltonian. In particular, if we start from the Hamiltonian (3.1) and add some
"small" perturbation, the resulting ground state is expected to have the same
properties as the VBS state, i.e., exponentially decaying correlation functions, an
energy gap, and no Neel order. We say that such a ground state is in the VBS phase.
Then a natural question is whether a system with the most standard (and realistic)
purely bilinear Heisenberg Hamiltonian

H= Σ Si'Sj (3.8)
(i,j)eB

is in the VBS phase or not. As we discuss in the appendix, the reflection positivity
argument of [21, 26] is strong enough to prove the existence of Neel order in the
ground state of an 5 = 3/2 antiferromagnet on the hexagonal lattice with bilinear
Hamiltonian (3.8). Thus as we change the Hamiltonian continuously from (3.Γ) to
(3.8), a (second order?) phase transition from the VBS phase to the Neel ordered
phase takes place at a certain Hamiltonian. Moreover, it is also possible that the
VBS phase is realized in Hamiltonians which are not at all close to (3.1). For
example, a bilinear Hamiltonian with nonnearest neighbor couplings sufficiently
large to destroy Neel order could be in the VBS phase.

3.3. Proof of Exponential Decay

The present subsection is devoted to the proof of Theorem 3.1. The starting point
of our proof is the following polymer representation of the VBS state (3.4). Note that
in (3.4), there is a one-to-one correspondence between the lattice bonds and the
pairs of repeated upper and lower indices. Therefore, each term in (3.4) can be
represented by assigning the values atj =1 or 2 to every bond in the lattice. By
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denoting the set of bonds with oĉ  = 1 by G, we can rewrite (3.4) as

ΩΛ= Σ Φ({nk(G)}keΛ), (3-9)
GBGcB

where G runs over all the subsets of the lattice bonds. nk(G) denotes the number of
the bonds in G incident to a site /c, and the basis states are given by

Φ({nk(G)}keΛ)= ® V»l(G)mg ΨnrniG) (3 1 0 )

Here ψn (respectively, ψn) (rc = 0,1,2) denotes the basis vector ψΆιa2(X3 (respectively,
ψa 1*2*3^ w n e r e n of the three indices are 1.

Remark. The polymer representation (3.9) is also valid for the 5 = 1 VBS state on
the one dimensional chain where our basis is related to the standard S3 eigenstate
basis as

Inserting this relation into (3.9) and rewriting each term in the standard basis, we
get the representation of the 5 = 1 VBS state presented at the end of Sect. 2.1.

Consider the norm (ΩΛ, ΩΛ) of the VBS state (3.4). From (3.9) and the inner
product formula (3.3), we easily find that

(ΩΛ9ΩΛ)= Σ mnk(G')}keΛ\Φ({nk(G)}keΛ))
G',GcB

= Σ Π Λ ( G ' ) = MG)K(G)!(3-n»(G))!, (3.11)
G',GcB keΛ

where the characteristic function χ(Λ) is 1 if A is true, and 0 if A is false. It is useful to
represent the above expression geometrically. For a given pair G', G, we draw a
graph like Fig. 3.3a by putting a straight segment on each bond in G, and a wavy
segment on each bond in G'. From (3.11), we find that a graph contributes to the
norm (ΩΛ, ΩΛ) if and only if for each site the number of straight segments incident
to the site equals the number of wavy segments incident to the site.

Let S+ =(S1 +ίS2)/2 and S~ =(S1-iS2)/2 be the usual raising and lowering
operators, respectively. It is easy to check that these operators acting on our basis
give

S + ψn = (3-n)ψn + ί , S-ψ^nψn-i. (3.12)

ω

Fig. 3.3. a A graph which contributes to (ΩΛ, ΩΛ). b A graph which contributes to (ΩΛ,S
 +

tS~ jΩΛ).
The thicker lines represent the self-avoiding walk ω
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Let i and j be sites in ΛB. Then from (3.10) and (3.12), we find

SV-;Φ(WG)}ΛeJ = P^^

This formula and (3.9) imply the following expression for the unnormalized
correlation function:

G',GcJB

°''GkeΛ (3.13)

Again we represent the above formula geometrically. This time, the same number
of straight and wavy segments must be incident to each site in A except i and j . At
site i we must have one extra wavy segment, and at site j we must have one extra
straight segment (Fig. 3.3b). This observation allows us to construct a self-
avoiding random walk connecting i and j as follows.

Consider an arbitrary pair of G',G which contributes to (3.13), and the
corresponding graph of straight and wavy segments. Then from the above
property we can find at least one bond (/, kγ) which is occupied only by a wavy
segment (Fig. 3.3b). [If there exist more than one (i.e., two) such bonds, we choose
one of them by a suitable convention.] If kx Φy, there are equal numbers of straight
and wavy segments incident to kx. Since the bond (fcl5 i) is occupied only by a wavy
segment, this implies that there exists a unique bond (kϊ,k2) occupied only by a
straight segment. By repeating the same procedure, we get a sequence of bonds
(z, fcj, (kuk2), (fe2, fc3),... occupied only by straight or wavy segments in an
alternating way (Fig. 3.3b). Clearly, this sequence terminates only when we hit the
site j , and thus it forms a self-avoiding walk ω = {k0, k1,..., kn}, where k0 = i, kn=j,
(kb kt + J 6 IB for any /, and kx φ km if / φ m. We stress that such a self-avoiding walk is
always determined uniquely from any pair G', G which contributes to (3.13), if we fix
a convention for the choice of the first step of the walk at site i. Let us denote this
unique self-avoiding walk by ω(G', G).

Now from (3.11), (3.13), and the above construction, we can write down the
following random walk representation for the two point correlation function:

< ^ - , > = ~ P £ ^ = Σ W{ω). (3.14)
\hdM) ij

Here ω runs over all the self-avoiding walks on the lattice connecting i and j , and
the statistical weight W(ω) is defined by

W(ω)

Σ χ(ω(G',G) = ω) f] χ(nk(G') = n
_ G ' , G c B k e A .

Σ n k
G\GcB keA

(3.15)
When i and j are not both in AB, we can also carry out the same construction and
get similar random walk representations. Here the weight W(ω) has an overall
factor ( — l)ι~j which comes from the analog of (3.12) for sites in AA.
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In the following we will show that for any ω this statistical weight can be
bounded as

W(ω)SCί(]/6ylωK (3.16)

where |ω| denotes the length of the walk ω (i.e., the number of bonds in ω), and Cί is
a finite constant independent of the lattice size.

Combining (3.14) and (3.16) we get

(s^s-jy^c, Σ (j/βy^sc, f ΛΓ(0(J/6ΓZ,
ω .i^j l=\i-j\

where N(l) denotes the number of distinct self-avoiding walks with length /. Since
the coordination number of the lattice is three, N(l) can be bounded by its mean
field behavior as N(l)^2ι. Inserting this bound in the above inequality and
summing over /, we get

where ξ0 = {ln(2/j/6)} ~1 = 4.93 ..., and 0 < C 2 < oo is independent of the lattice
size. Since <S +

 tS~, > = ((Sί

ίS
ι ;> + <S2

iS
2

i/»/4, the SO(3) symmetry of the system
implies the desired bound (3.6) for the correlation function <S; Sj>. For the
hexagonal lattice, the exact (but nonrigorous) behavior oϊN(l) is known to be N(ΐ)
= (|/2 + |/2y + o ( 0 [33]. Using this instead of the above crude mean field upper
bound, we get an improved upper bound ξ1 = 3.54 ... for the correlation length.

Now let us turn to the proof of the bound (3.16) for the statistical weight of the
random walks. Fix a random walk ω. Denote the numerator and denominator of
(3.15) by Z ω and Z, respectively. We will construct a lower bound for Z in terms of
Z ω . Consider a graph for a pair G', G which contributes to Z ω . If we eliminate all
the segments in the graph which are on the walk ω, we will get a graph in which the
same numbers of straight and wavy segments are incident to any site. Moreover,
this property is preserved if we put both a straight and a wavy segment on any
bond in the trajectory of the eliminated walk ω. In this way, we get 2 | ω | distinct
graphs which contribute to the norm Z (Fig. 3.4a-c). Note that given any one of
these 2 | ω | graphs we can recover G', G. (Recall that ω is fixed.) Thus each term in Z
appears at most once as one of these 2 | ω | graphs for some G', G.

Fig. 3.4. a A typical term in Z ω . b The result of deleting the lines in ω. c One of the 2 | ω | terms in Z
which are associated with a
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We have shown that with each term G\ G in Zω we may associate 2 | ω | terms in
Z. These 2 | ω | terms need not have the same weight as the original term in Z ω . To
compare the weights, first note that the local weights nk(G)\(3 — nk(G))\ and
(nk(G) + δkf ι)! (3 — nk(G) + δκ 3)! only take on the values 3! and 2! for sites k φ /, j . For
a site fcφί,j which belongs to ω, nk(G) must be 1 or 2, so the local weight
nk(G)! (3 — nk(G))! equals 2!. Thus the weight appearing in Zω is always less than or
equal to the weight appearing in Z. This yields the bound

Z ^ const 2 H Z ω .

To obtain the stronger bound (3.16) we need to take advantage of the fact that
the local weight in Z is sometimes 3!. At the sites fc2, fc4, k6,... we simply bound the
local weight in Z below by 2!. Let k be one of the sites fc3, /c5,... other than j . The
bond incident to k which does not belong to ω must either be empty or contain
both a straight and a wavy segment. Suppose it is empty. Then when both of the
bonds in ω incident to k are empty, the local weight at k for the term in Z is 3!. If at
least one of the bonds in ω incident to k has both a straight and wavy segment, then
the local weight is 2!. Thus out of the four possibilities for the two bonds in ω
incident to fc, exactly three have a local weight of 2! and exactly one has a local
weight of 3!. If the bond incident to k which is not on ω contains both a straight
and a wavy segment, then we find the same conclusion is true. Hence for every two
bonds in ω, we obtain a factor of 3 + 3 1 =6, instead of just 2-2 = 4. Inequality
(3.16) follows.

4. VBS States on an Arbitrary Lattice

4.1. The Ground States

In the present section, we extend the VBS state to an arbitrary lattice, and discuss
its properties.

Let A be the set of sites in a translation invariant finite lattice with periodic
boundary conditions and coordination number z. The set of bonds B consists of
unordered pairs (i, j) of adjacent sites i, j in A. We also assume that the lattice is
bipartite, i.e., it can be decomposed into two sublattices AA, AB with the properties
AAvAB = A, AAnAB = Φ and for any (i,j)eB, either ieAA, jeAB or jeAA, ieAB.

Let us associate a spin operator Sf with spin 5 = z/2 with site i. Consider the
50(3) symmetric antiferromagnetic Hamiltonian

H= Σ ^ S , + S ; )= Σ Htj, (4.1)
(i,i)eB (i.j)eJB

where PZ(S) is the orthogonal projection onto the states with S 2 = z(z +1) (spin z).
The VBS ground state is again constructed by first regarding spin z/2 as the

symmetric part of the product of z spin 1/2's, and then letting each pair of spin 1/2's
on the adjacent sites form a singlet pair. In this way, the valence bond structure
again becomes identical to the bond structure B of the lattice.

To describe the VBS state precisely, we again make use of an SU(2) notation.
For a single spin with s = z/2, our basis consists of the following vectors with αf = 1
or 2: ^

V β l . . . « s = Σ Ψβi®...(8)ψβjyzl. (4.2)
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Here {ψ ί = (+), ψ2{ —)} denotes the standard S3 eigenstate basis for an s = 1/2 spin,
and the summation runs over all the permutations of (αl9 ...,αz). These states
satisfy the following normalization condition:

(ψΛι...Λa,Ψβι...β.)= Σ δ«iyA2y2 - δ«.y. ( 4 3 )
{βi,...,βz)^(yi,.-.,yz)

Let iu ..., iz denote the z neighboring sites of a site ί. We represent a state on site
i as

τaii1*iι2 -'Cliι!t

if ieAA, and as

β. Here the state with the raised indices is defined as before. Then the VBS
state on the general lattice A can be expressed as

Ω Λ = ® ΨaιlίΛιti...*ιla (8) V)αjJ>αj>>' α'J: (4.4)
ieΛΛ jeΛB

As in Sect. 3.1, we identify (xtj with txjh and sum over all the repeated upper and
lower indices. Then all the indices in (4.4) are contracted, and we get a single state
ΩΛ. Again it is quite easy to check that the VBS state (4.4) is an exact ground state
of the Hamiltonian (4.1) in the sense that HijΩΛ = 0 holds for any (i,j)eB.

As in the hexagonal lattice VBS state, we do not have any uniqueness argument
like Theorem 2.7. Though we believe that an analog of Lemma 2.8 (finite volume
lemma) is true, the uniqueness in the infinite volume limit seems not to be true in
general. We return to this point later.

In Sects. 2 and 3, we have seen that the VBS state on the one-dimensional chain
and two-dimensional hexagonal lattice seem to share common properties, namely,
the exponential decay of correlations, the absence of Neel order, and the existence
of an energy gap. Thus one might well conclude that these are general features of all
VBS states. However, in the following subsections we will present a Cayley tree
model and a stochastic geometric argument which suggest this is not the case. As
we summarize in the following conjecture, the VBS state on certain lattices may be
in a completely different phase.

Conjecture. If the coordination number z and the dimension d are sufficiently
small, the system (4.1) is in the VBS phase, i.e., it has a unique (infinite volume)
ground state with exponentially decaying correlation functions, no Neel order,
and a finite energy gap. However, if z and d are sufficiently large, the system (4.1) is
in the Neel ordered phase.

As we have noted in the previous section, we expect (but cannot prove) that the
VBS state does not have Neel order if the coordination number of the lattice is
three. Since we can construct a lattice with coordination number three in any
dimension d9 not only large d but also large z is actually necessary for the existence
of Neel order.

When the system is in the Neel ordered phase, the infinite volume limit of the
VBS state (4.4) constructed using periodic boundary conditions cannot be a pure
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state since this VBS state has no SO(3) symmetry breaking. A pure state with
explicit Neel order may be obtained by the following procedure. Consider a finite
lattice A with boundary dΛ, and construct the VBS state on A. The only difference
from the periodic boundary condition case (4.4) is that at each site in dΛ several
spin 1/2's remain uncontracted. It is clear that for any choice of these boundary
spin 1/2's, the VBS state is an exact ground state in the sense that HtpA = 0 for any
bond (ί, j). Consider the boundary conditions where we fix the boundary spin 1/2's
to ( + ) for the sites in dAnAA, and to ( —) for the sites in dAnAB. By taking the
infinite volume limit of the VBS states with these boundary conditions, we should
get a pure ground state with nonzero staggered magnetization, provided that the
system is in the Neel ordered phase. In the next subsection, we will carry out this
procedure for the Cayley tree and show that there is Neel order when the
coordination number exceeds four.

The existence of Neel order in valence bond states is not as surprising as it
appears. Though a valence bond carries strong quantum fluctuations, it also has a
tendency to make the two spins "point" in opposite directions. The behavior of the
VBS (or other valence bond) states in the infinite volume limit is determined by the
competition of these two effects.

4.2. The VBS State on the Cayley Tree

In the present subsection, we describe our results on the VBS state on the Cayley
tree. Let CN be the ΛΓ-th order Cayley tree with coordination number z (Fig. 4.1a),
and dCN be its boundary. We assume N is even. Again we decompose CN into two
sublattices ΛA and ΛB, so that the boundary dCN and the origin are contained in
the sublattice ΛB. Then the VBS state on the Cayley tree is

(X)
ieΛA

z jeΛB\dCN

• ®
feeacΛ

, , α k k i 2 2 . . . 2 (4.5)

In order to test for the existence of Neel order, we have set the boundary 5=1/2
spins to ( + ).

Fig. 4.1. a The fourth order Cayley tree C4 with coordination number three, and b
corresponding branch £ 4

the
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Let us define the Neel order parameter by

where So

3 is the third (z-) component of the spin operator at the origin (center of the
Cayley tree). As we describe later, we find that the Neel order parameter m is
vanishing for z = 3, and is strictly positive for z>4. For z = 4 numerical
calculations indicate the order parameter vanishes, but we have not produced a
rigorous proof from these calculations. Note that this is consistent with our
conjecture in the previous subsection.

It is also not difficult to show that in the infinite Cayley tree with any z and free
boundary conditions, the two point function always decays exponentially as

<S0 S J C >-(-3)- | j c | , (4.7)

where |x| is the graph theoretic distance (the number of the bonds between 0 and x).
It may seem that this is inconsistent with the above mentioned Neel order for z > 4.
However, this exponential decay for free boundary conditions is nothing but a
pathological feature commonly found in Cayley tree systems. It is due to the
exponential increase of the number of neighbors within a fixed distance, and has
nothing to do with the existence or absence of Neel order. Moreover, the following
quantity indicates the marginality of z = 4.

γ( I V ^ S s > ί < 0 ° f o r z < 4 ?

U ~ l ) <S° S*> j = oo for z = 4.
Finally, we consider the mixed boundary conditions as in Fig. 4.2 which favor

the existence of a domain wall between two regions which have opposite Neel orders.
The VBS state with these boundary conditions also satisfies the condition
HijΩΛ = 0 for any bond (i,j). Unlike the standard models (e.g., Ising or usual
Heisenberg models) the domain wall (in the finite system) in the VBS state does not
cost any energy.

Let us denote the infinite volume limit of the above state (Fig. 4.2) by ρ±. We
can show that, for an even z>4, ρ± contains a domain wall in the sense that
(—l)Iρ+(5'/

3)<0 when i is in a branch with the plus boundaries, and
(— l)Iρ+(Sί

3)>0 when ί is in a branch with the minus boundaries. Since the state
satisfies ρ+(HtJ) = 0 for any bond (i, j), the domain wall costs no energy. This raises
the possibility that the VBS state with such a zero energy domain wall exists in the
regular lattice when the system is in the Neel ordered phase and the dimension is
sufficiently high.

Fig. 4.2. Boundary conditions which favor the existence of a
domain wall. + (or —) stands for the three spin 1/2's at the
boundary
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Derivation of the Results. We now show that the Neel order parameter vanishes for
z = 3 and is strictly positive for z > 4.

Note that the formula (3.11) for the norm of the VBS state can be easily
extended to the general VBS state as follows:

(ΩΛ, ΩΛ)= Σ Π %K(G') = nk(G))nk(G)! (z - nk(G))!.
G',GcB keΛ

Since the Cayley tree contains no loops, the only way to satisfy nk(Gr) = nk(G) for all
k is to set G' = G. Thus the above formula simplifies to

(ΩN,ΩN)= Σ Π nk(G)l(z-nk(G))l, (4.8)
GcB keCN

where G runs over all subsets of the bonds in CN, and nk(G) is the number of bonds
in G which are incident to k.

Let BM be a branch in the Cayley tree CM where M is an arbitrary integer
(Fig. 4.1b). To evaluate the sum (4.8), let us define the following quantities:

YM=Σ(no(G)+ί)\(z-no(G)-\)\ Π nk(G)l (z-nk(G))\,
G keBM\0

ZM=Σ ΐl nk(G)\(z~nk(G))U
G keBM

where 0 denotes the origin of the branch BM (see Fig. 4.1b). Note that YM and ZM

represent the norms of the VBS states on BM which have plus boundary condition
and minus boundary condition, respectively, at the origin. Both states have minus
(respectively plus) boundary conditions at all the other boundary sites when M is
even (respectively odd). Their "initial values" are given by Y1 = (z — 1)! and Zί=z\.

The lattice BM+ι can be constructed by gluing together one bond and (z — 1)
copies of BM at a vertex order z. Noting that we can assign either YM or Z M to each
JBM, we get the following recursion equation:

The recursion equation for Z can be obtained in a similar way,

1 = 0

Let us define a new quantity WM by WM=YM/ZM. From the recursion
equations for YM and Z M , we get

, (4.9)

where

(4-9')

Σ (z-ΐ)W'
i = 0
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Therefore, we can find the value of WM by starting from the initial value W1 = ί/z,
and applying the above one-dimensional map fz( ) M — ί times. In the infinite
volume limit the calculation reduces to the following elementary fixed point
analysis.

Note that the map fz(W) satisfies the following properties:
i) fz(W) is continuous for W>0.

ii) fz(W) is monotone nondecreasing for W>0. (To see this, note that fz'(W)

= C Σ (ί2-ίj)Wi+j=C X {(i-j)2/2}Wi+j^0, where C is a
i,j=l,...,z-l i j l l

positive quantity.^

iii) ί/z^fz(W)^z for W>0. /This follows from i) and fz(0) = ί/z,

lim fχw) = zλ ^
W-+co " J

From i)—iii), it follows that the limit

W^ lim WM= lim/z

M(l/z)
M-> oo M-> oo

always exists and is determined by the fixed point to which the initial value W— ί/z
is attracted. [Proof. Let W1 = ί/z. By iii), W2^W1. Because of ii) we then have
W3^W2 => W4.^W3 => etc. Therefore, {FFM} is a bounded increasing sequence
and hence has a limit.]

Clearly, the map fz(W) has W= 1 as a fixed point. Since the gradient of fz(W) at
W= 1 is /z'(l) = (z —1)/3, this fixed point is stable if z<4, and unstable if z>4. Thus
for z>4, the initial value W=ί/z cannot be deriven to the fixed point W=ί.
Moreover, from the properties i)—iii), we can conclude the following:

0<Wao<l for z>4. (4.10)

For z = 3, we can show the following property of fz(W) (by a brute force
calculation).

iv) f3"(W)^0 holds for ίβ^W^ί.
Therefore, the initial value W= 1/3 must be attracted to the fixed point W=ί.

Thus we have

WO0 = ί for z = 3. (4.11)

For z = 4, the fixed point W= 1 is marginally stable. We expect (based on numerical
calculations) that the initial value W= 1/4 is driven to this fixed point, and W^ = 1
holds.

It is not difficult to find that the expectation value for So

3 can be expressed in
terms of W^ as

Σo(z/2-ί)(Wj
mz— lim (S0

3yz N= ι—^ .

Σ (wj
1 = 0
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Substituting the values of W^ (4.10), (4.11) into the above formula, we get the
desired result:

m = 0 if z = 3,

m > 0 if z > 4.

Numerical calculations yield the following values of the (normalized) Neel order
parameters:

m/s = 0, z = 4,

= 0.814..., z = 5,

= 0.902..., z = 6.

To get the estimate (4.7) for the correlation function, note that, for free
boundary conditions, we have W1 = l and thus WM = 1 for any M and z. Therefore,
the formula for correlation functions becomes quite simple. Then the desired (4.7)
can be derived from a representation similar to (3.14) and a little calculation.

Finally, the result on the zero energy domain wall is a simple consequence of
the fact that W^ < 1 for the plus boundary conditions, and W^ > 1 for the minus
boundary conditions if z > 4.

43. SU(N) VBS State and Random Loop Representation

Here we will describe a set of heuristic and rigorous results which provide further
support for our conjecture (that there is Neel order in the VBS state if the
coordination number and dimension are both large and there is none if they are
both small) in Sect. 4.1. Two keys for the arguments developed here are SU(N)
generalizations of the VBS states, and a random loop representation for the
correlation functions. This random loop representation should not be confused
with the random walk representation in Sect. 3.3. It is interesting that the VBS
state has two natural geometric representations.

First, let us formally extend the VBS state (4.4) to the SU(n) quantum "spin"
system [2]. More detailed discussion about the SU(ή) generalizations will be given
in the next subsection. To get the SU(n) VBS state, we simply let the indices atj in
(4.4) run from 1 to n, instead of 1 to 2. The basis vectors φ α i α 2 . . . α z still satisfy the
normalization condition (4.3) where δaβ should be regarded as the n by n unit
matrix.

In the one-dimensional model, the calculation of the correlation function
presented in Sect. 2.2 generalizes easily to arbitrary n. The basic formula for the
action of the spin operators (2.15) is still valid for the SU(n) model, if we regard σ/
as the SU(n) generalization of the Pauli matrices, i.e., a basis of the Lie algebra
chosen so that Ύrσaσb = (σa)Λ

β(σb)β

a = 2δab. Then everything is the same as before
but now there is a factor of n for each loop instead of 2 as for SU(2). Thus the
normalization of the open chain of length L becomes

Ω % - Ωy

δ = δ%δδ

β{(n + 1)L - 1 }/n + δ%δδ

y.
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For the closed chain we obtain (n + l)L — 1 +n2. The correlation function is

+ iyr (for r > l )

for a,b = \, ...,n2 — 1. Note that the correlation length, l/ln(n+l), is finite for all
n>0, and diverges as n^>0. Thus the SU(n) VBS state in the one-dimensional
lattice is in the VBS phase for all n > 0.

In the Cayley tree model, we can again construct recursion equations for the n
quantities corresponding to 7M, Z M , and carry out a fixed point analysis similar to
(but a little more complicated than) the SU(2) case. Then we find that the trivial
fixed point representing the VBS phase [like W= 1 in the SU(2) case] is stable in
the region (z - 1 )/(n +1) < 1. Therefore, the S U(n) VBS state is in the VBS phase for
z ̂  n + 2, and in the Neel ordered phase for z < n + 2. This is consistent with the
one-dimensional case where z = 2 and the critical value of n is zero.

In order to get some idea of the phase diagram for the SU(n) VBS state on
regular lattices, we construct a stochastic geometric representation for the
correlation functions. The representation is essentially a straightforward extension
of the diagramatic method used in Sect. 2.2.

Let A be an arbitrary finite bipartite lattice with coordination number z. To
compute the norm of the SU(n) VBS state ΩΛ we apply (4.3) to each site in the
representation (4.4) of ΩΛ. The result is that (ΩΛ,ΩΛ) = ΩΛ

f ΩΛ is a sum of (z !) μ ι

terms. To obtain a diagramatic representation of this sum we first represent ΩΛ as
shown in Fig. 4.3, where we have assigned a direction to each bond in such a way
that the bond points from a site in AA to a site in AB. We represent ΩΛ^ by the same
graph with the direction of every bond reversed. We now place the graphs for ΩΛ

and ΩΛ

f on top of each other. One term in the sum (4.3) is represented by pairing
each bond coming into the vertex with a bond going out of the vertex. Two bonds
that hit a vertex are considered to be attached only if they are paired together. For
example, with z = 3 the 3! terms for a single vertex are represented by Fig. 4.4. In
this way each term in (ΩΛ, ΩΛ) = ΩΛ

f ΩΛ is represented by a collection of loops on
the lattice. The contribution from a single loop is <5αi

α2(5α2

α3... δarn

aί = n. Thus

(4.12)— v M # c

\/ Λ

Λ V

Fig. 4.3. Fig. 4.4.

Fig. 4.3. Diagramatic representation of ΩΛ

Fig. 4.4. Diagramatic rule used in calculating the overlaps
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where # C is the number of distinct loops in the configuration C, and the sum is
over all configurations of loops on the lattice with the property that each bond in
the lattice is covered exactly twice by C.

To get the expression for the correlation functions, we generalize (2.15) to
general spin 5 as

i 2 z o Σ k I 2 k z β
I fc=l

where άtk is an omitted index, and σ/ again denotes the SU(n) version of the Pauli
matrices. Combining this formula with (4.4), we can again express the un-
normalized correlation functions in terms of the random loop configurations as

~j/4 £ £χ(b and V belong to the same loop)rc#c
Ωj Si SjΩΛ = (~l)i~j/4 £ £χ(b and V belong to the same loop)rc

b 3 i C (Λ 4O\

b sj (4.13)

Here the characteristic function χ(A) equals 1 if A is true, and 0 if A is false, b
(respectively b') runs over the bonds in the graph of ΩΛ which contain i (respectively
j). The prefactor (— l)ι~j is 1 if i and j belong to the same sublattice, and —1
otherwise. We have assumed that / and j are separated by a distance > 1 .

From (4.12) and (4.13) we get the following random loop representation for the
correlation function.

(SrSjXi n = (-l) i~ i/4 X Prob^ n(b and V belong to the same loop).

ϊϊj ' (4.14)

Here the probability for the basic event that a particular random loop
configuration C is present is defined to be

PtobA JQ = n*c jΣn*c'. (4.15)

Note that, in the above definition, the logarithm of n can be regarded as the
chemical potential for the loops in our stochastic geometric system. By (4.14) and
(4.15), we are now able to extend the correlation function for SU(n) VBS state to
noninteger (complex!) values of n. In the following analysis, we regard (4.14) and
(4.15) as our starting points, and consider positive but not necessarily integer n.

For large values of n, the configurations with many loops (as in Fig. 4.5a) are
favored by (4.15). We expect that the random loop system is in the nonpercolating
phase where the loops are localized and have finite size (with probability one). In
particular, the probability that two sufficiently separated bonds belong to the same
loop is expected to decay exponentially with the distance between the bonds. Thus
the SU(n) VBS state should be in the VBS phase which has short range
correlations.

For small values of n, the configurations with large loops (as in Fig. 4.5b) are
the main contribution to (4.13), (4.14). Then the random loop system (in the infinite
volume limit) may be in the percolating phase where a (unique) infinite loop
appears in the configuration (with probability one). If the probability that a bond
belongs to the infinite loop is strictly positive, (4.14) suggests that the two point
correlation function |<S, Sy>| is bounded below by this probability squared.
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Fig. 4.5. Typical diagrams which contribute to ΩΛ^ ΩΛ for a large n (nonpercolating phase) and b
small n (percolating phase)

VBS

Neel
-> d Fig. 4.6. Conjectured phase diagram for the SU(n) VBS states

Therefore, the SU(n) VBS state is expected to be in the Neel ordered phase. Of
course, this is not true for the one-dimensional chain, where the VBS phase exist for
all n > 0. However, this simply reflects the special character of the marginal one-
dimensional lattice, where there are relatively few infinite loops.

In the general infinite lattice, therefore, we conjecture that there exists a critical
value nc (^0). The SU(n) VBS state is in the VBS phase (which corresponds to the
nonpercolating phase) for n>nc, and is in the Neel ordered phase (which
corresponds to the percolating phase) for n<nc. The critical value nc is exactly
known only for the Cayley tree model where nc = z — 2 and for the one-dimensional
lattice where nc = 0. We expect that this Cayley tree value becomes reliable in
higher dimensions. In Fig. 4.6, we summarize our conjectured phase diagram for
the SU(n) VBS state on the d-dimensional hypercubic lattice. This phase diagram,
when restricted to n = 2, again suggests the existence of a transition from the VBS
phase to the Neel ordered phase as the dimension is increased. Thus it provides
further support for our conjecture in Sect. 4.1.

It is desirable to have rigorous arguments which support the above heuristic
discussion about the SU(n) VBS state. At present we can only prove the following
proposition which confirms our picture for sufficiently large values of n. The proof
of the existence of Neel order for sufficiently small n is probably difficult since it
involves continuous symmetry breaking. We also note that Theorem 3.1 proves
the upper bound nc < 2 for any bipartite lattice with coordination number three.

Proposition 4.1. Consider an arbitrary (infinite) bipartite lattice with coordination
number z.Ifn>(zl)2(z~ ι\ the SU(n) VBS state on the lattice is in the VBS phase, i.e.,
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every truncated correlation function decays exponentially, and there is no Neel
order.

Proof. Consider a finite lattice, and let / be a loop which contains a fixed bond b0 in
the graph of ΩΛ. The statistical weight for a single loop / is defined as

ω(0= Σ«*c/Σ»*c

C3i I c

In the following we prove that ω(ί) can be bounded uniformly in the lattice size as

where |/| is the length (number of bonds) of /. From this bound and the
representation (4.14), we get the following upper bound for the two point
correlation function provided that n>(z\)2{z~1):

^ Σ zkn{(z-l)\(z\f~2/]/n}k =
k = 2(\i-j\-2)

Here 0 < C , ξ0<oo are independent of the lattice size. We have bounded the
number of the loops with |/| = k by zk in the above.

To prove the asserted bound for ω(l), consider an arbitrary loop / and denote by
Γthe set of all the lattice bonds which belong to or are incident to /. Given a loop
configuration Csl, we replace the loop configuration on Γ by a collection of
minimum single bond loops to construct a new configuration C. Clearly, C
contains at least |/|/2 —1 more loops than C does. Noting that at most
(z —l)! | z |(z!) ( z~ 2 ) | / | different C can be mapped into a single C (because of the
redundant freedom in ί), we get

n\ι\/2-i y n*
c/(z—U\\ι\(z\γz-2)\ι\<yn*

c

CBI ~ C

which implies the desired bound for ω(l). The exponential decay of every truncated
correlation function and the absence of Neel order can be proved by the same
estimates. •

4.4. SU(n) Quantum "Spin" System

In the present subsection we amplify the discussions of the SU(n) VBS state in the
previous subsection by presenting some details of the SU(n) quantum "spin"
systems which were first introduced in [2].

Consider the simplest s = 1/2 case. As we have noted several times, we denote
the standard S3 eigenstates ( + ) and ( —) by ψa,a = ί,2, respectively. To generalize
this basis from SU(2) to SU(n), we simply let the index α run from 1 to n. Then the
basis for a finite bipartite lattice again consists of the simple tensor product of ψa

on one sublattice and ψa on the other sublattice. This corresponds to putting the
fundamental representation of SU(n) on one sublattice, and its conjugate
representation on the other. Again the SU(ή) singlet (valence bond) can be simply
represented as ψa

a ( = ψa0ψιx).
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To get the SU(n) generalization of the Hamiltonian, it is useful to represent the
action of the Hamiltonian in terms of the valence bond basis. Note that in the
SU(2) case, the s = ί/2 Heisenberg Hamiltonian (with convenient constants
inserted),

H = 2SS'-\/2

acting on a pair of neighboring spins gives

Written in this way an obvious generalization from SU(2) to SU(n) suggests itself.
The Hamiltonian for the SU(n) model is still defined by the above equation if we
allow the indices α to run from 1 to n. The action of H on a valence bond state can
be obtained by observing that

Hψa«=-nψa« and if23V>«β/=-V>«V-

(In the latter equation H2?> denotes the term in H acting on the second and third
sites.) This can be represented graphically as the following:

H

I* —
H

In the s = 1 case, we again let the indices in the basis vector ψaβ run from 1 to n.
We now have the symmetric tensor representation ψaβ on odd sites and its
conjugate representation ψaβ on even sites. The Heisenberg Hamiltonian

H1=2SS'-2

acting on ψ gives

nlΨ*ιa2 —~°a1 Ψβa.2 ~ °aί Ψβa2

£ α 3 i n βcc4 ζ aA a3β
— °<X2 Ψaiβ ~°<X2 Ψoϋβ

We may again generalize the Hamiltonian to SU(n) by simply letting the indices
run from 1 to n. The action of Hί on the VBS state can be represented graphically
as follows.

f
In the SU(2) case the biquadratic Hamiltonian

H 2 Ξ 2 ( S S ' ) 2 - 2

produces double bonds on nearest neighbor links
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Again we extend this definition of H2 to SU(ή). The action on the VBS state can be
represented as follows:

H2

Consider the one-dimensional SU(n) quantum "spin" system with "s = 1" and
the general bilinear-biquadratic Hamiltonian

i / = Σ - ί ί i ( S ( , S ( + 1 ) - 4 ^ 2 ( S ί , S l + 1 ) . (4.16)
i Yl Yl

(The factors of n are inserted so that the spacing of eigenvalues of H remains finite
as w-> oo.) The SU(n) VBS state introduced in the previous subsection becomes the
exact ground state at β = — n/(n +1). This can be seen by considering the action of
H using the above graphical rules, or by observing that this Hamiltonian is a
projection operator onto the SU(n) representation which generalizes s = 1, namely
the symmetrized traceless tensor with two upper and two lower indices. It is worth
noting that, in the limit n->oo, the exact ground states of (4.16) can be constructed
entirely out of nearest neighbor valence-bonds for arbitrary β. For β^O the
ground state is the VBS state, and for β^O the ground state is the two dimerized
states which have double valence-bonds on every other bond. This provides a
support for the phase transition picture for the ordinary spin 1 chain described in
the introduction and [1].

SU(n) quantum "spin" systems with higher "s" can be defined in a similar way
by putting a variable φα i α 2...α 2 s, which transforms under the symmetric 2s-tensor
representation of S[/(«), on one sublattice and its conjugate representation
^ociα2...α2s o n ^ e Qthgj. sublattice. When the coordination number z equals 2s, a
Hamiltonian in which the SU(n) VBS state is an exact ground state can be
constructed. It is a projection onto the "maximal" representation contained in the
product of these two representations, namely the symmetric, traceless tensor with
z-upper and z-lower indices.

5. Energy Gap in the Majumdar-Ghosh Model

5.1. The Model and the Ground States

As in Sect. 2, we consider a one-dimensional lattice, but St now denotes the spin
operator for spin s=l/2 at site i. The Hamiltonian for the Majumdar-Ghosh
model is

H=lHt withi/ i = P3/2(Si + S i + 1 + S i + 2 ) , (5.1)
i

where P3/2(S) is the orthogonal projection onto the subspace with
S2 = (3/2)(1 + 3/2) (spin 3/2). This Hamiltonian can be written as the usual spin 1/2
Heisenberg model plus a next nearest neighbor term by using the identity

S i + 1 + S f SI. + 2 + S/ + 1 Si + 2) + i . (5.2)
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In order to describe the ground states of the system, we again make use of an
SU(2) notation similar to that of the previous sections. For a single site we denote
the standard S3= ±1/2 basis {( + ),(-)} by

Ψl=( + )> ψ2=(-)

We also make use of the raising convention ψa = ε<xβψβ and the summation
convention for repeated upper and lower indices. For a system on a finite chain
{1,2, ...,L}, we use the basis which consists of simple tensor products of ψa's as in
Sect. 2. In particular, the following choice is convenient for our purposes.

v C 2 α " Λ . = <pαi®φα2(8) ••• ®waL~l®w«L- (5.3)

Each αf can be 1 or 2. This equation applies for the case of odd L. If L is even the
α L _ ! should be a lower index and the αL should be an upper indice. These states
provide us with a complete set of states for the finite chain.

The ground states of the Majumdar-Ghosh model are easily written in this
notation. For odd L there are four linearly independent ground states given by

i y . αi α2 <*(^-D/2
a Ψaί α 2 " <x(L-1)/2 a > .

Q{2) _ αi α2 α(i.-i)/2
α Ψa αi <x2 " ' < X ( i , - i ) / 2 '

with α = 1 or 2. For even L there are five linearly independent ground states given
by

O(2) ^ _ 1 αi α2 Λ(L-2)/2 β

a Ψa a1 a2' <*(L-2)/2 '

with α, j8 = l or 2.
As is clear from the formulae, we get two different infinite volume ground states

from these states. If we again denote the singlet pairs by line segments, the ground
states (5.4) and (5.5) can be represented diagramatically as shown in Fig. 5.1.
Unlike the valence-bond solid states, the valence bonds now cover only half of the
lattice. Moreover, the ground states have period 2, and thus break the translational
symmetry of the Hamiltonian.

Also note that these dimerized ground states are mere tensor products of local
singlet pairs. Therefore, correlation functions for these dimerized states are just

0 ( 2 ) , . . . . . . .

-
Fig. 5.1. The ground states of the Majumdar-Ghosh model
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trivial combinations of singlet pair correlation functions. In particular, the two
point correlation function <Sf S7 > vanishes whenever \ί—j\^2.

To see that the states in (5.4) and (5.5) are ground states of (5.1), observe that the
restriction of each state to any three adjacent sites contains a singlet pair.
Therefore, the total spin of these three sites is always 1/2. Then the projection
operator representation (5.1) of the Hamiltonian immediately implies that the state
has energy zero.

This model and the above states were first discovered by Majumdar and Ghosh
[31,32], and in [15] it was proved that these states were ground states. Some exact
excited states were constructed in [19, 39]. For some related results see [40]. We
will show that the states in (5.4) and (5.5) are the only ground states and that there is
a gap in the spectrum of the Hamiltonian.

5.2. The Energy Gap

The techniques used in Sect. 2.3 can also be used to prove there is a gap in the
spectrum of the Majumdar-Ghosh Hamiltonian. This subsection is devoted to the
existence of the gap in finite chains. The infinite volume result appears at the end of
Sect. 5.3.

Theorem 5.1. Consider the Hamiltonian

L-2

HUL= Σ Hi

with Hi defined by (5.1). There is a positive constant ε which does not depend on L such
that

where PL is the projection onto the orthogonal complement of the ground states
of HUL.

As in Sect. 2 we define Qn to be the projection onto the subspace of states which
are ground states for Hίtn, and define Pn to be 1 — Qn. Any ground state for H1 n+ί

is also a ground state for Hγ n. Thus the Qn are a decreasing sequence of projections
and the Pn are an increasing sequence of projections. This was the only property of
the model that we used in proving Lemmas 2.2 and 2.3 and in using Lemmas 2.2,
2.3, and 2.4 to prove Theorem 2.1. Thus all we have to do in the present case is to
prove an analog of Lemma 2.4.

There is one minor difference between Sect. 2.3 and the present model, namely
the dimension of Qn — Qn + x. As we will show in Sect. 5.3 the ground states defined
by (5.4) and (5.5) are the only ground states. Hence Qn restricted to sites 1 to n has
dimension 5 if n is even and 4 if n is odd. Thus Qn — Qn + \ restricted to sites 1 to n + 1
has dimension 5 x 2 — 4 = 6 if n is even and 4 x 2 — 5 = 3 if n is odd. As in Sect. 2 we
let φ\ + x be an orthonormal basis for Qn — Qn + ί on sites 1 to n + 1 and define ε(l) as
before:
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Note that in Sect. 2.3 it would have been sufficient to prove Lemma 2.4 only for
even /. Here we will only prove the lemma for even / since it reduces the number of
cases we must consider. The analog of Lemma 2.4 is the following.

Lemma 5.2. There is a constant c such that for all even I

/2. (5.6)

Proof. We begin by computing the norms and overlaps of the various ground
states. As in Sect. 2 this computation may be done in a diagramatic fashion, but
here each calculation only involves one diagram. For example, the overlap of Ω(1)

α

and Ωi2)

β is given by the diagram in Fig. 5.2. This diagram simply equals δβ

a. The
norm of £2(1)

α is given by a sequence of small loops with one loop for every two sites.
Since each loop gives a factor of 2, the square of the norm of Ω (1)

α is 2 ( L~ 1 ) / 2. The
other norms and overlaps may be computed in the same fashion.

We consider first the case that n is odd. Every state we encounter in the proof
will be a ground state for H1 n_t and a ground state for Hn_ι+ί n. Thus it is
convenient to introduce the states Ω ( 1 2 ) / / , Ω ( 2 1 ) /, Ω ( 1 1 ) /, and Ω ( 2 2 ) / / which are
defined diagramatically by Fig. 5.3.

Let φ be one of the φι

n+ι. Then φ is a ground state of Hltfl and so is a linear
combination of Ω ( 1 2 )

β

α / and Ω ( 2 1 ) / :

B V (5.7)

The norms of the states in Fig. 5.3 are either 2 ( π " 1 ) / 4 or 2 ( / ί" 3 ) / 4. The overlap of
Ω( 1 2 )

β

α / and Ω(2 * \δ is either 0 or 1. Since φ is defined so that it has norm 1, it follows
that

\Ay

δ\ = O(2-nl*) for any 7,5, (5.8a)

\By

δ\ = O(2-n/4) for a n y γ,δ. (5.8b)

φ is orthogonal to any state which is a ground state for Hί n + ί. These ground
states include Ω ( 1 2 )

α

α / and Ω ( 2 1 ) / . We compute their inner products with φ and

Fig. 5.2. The one diagram which contributes to the overlap of Ωa)

a and Ω{2)

β

Q(12)J 8 . . _ . _ . ξ , . . §

1 n-fi. n-H+1 n n+1
Fig. 5.3. The states which are used in the proof of the existence of a gap
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find
(5.9)

. (5.10)

Equations (5.9) and (5.8a) imply

| £ ^ | = O ( 2 - 3 " / 4 ) for any 7,(5. (5.11)

Equations (5.10) and (5.11) imply

(5.12)

O u r goal is to show that \\Qn_ι + lfn + 1φ\\2 is 0(2 " ι / 2 ) . By (5.7) φ is a sum of two
terms. The norm of the second term is

γ,δ

where we have used (5.11) and \\Ω(21\δ\\=2~(n~ίy4. Since n^l this implies the
square of the norm is O(2~ι). Thus letting φ' denote the first term in (5.7), i.e.,
φ' = Ωil2\%δA\, it suffices to show \\QH-ι+ltn+1φ'\\2 = (φ'9QH-ι + Un+1φ

f) is
0(2 ~ / / 2).

φ' is a ground state of Ht n_ι and Qn_ι+ln + ι commutes with this Hamiltonian,
so Qn-ι + lrfl+ ιψ' is a ground state of H1 w_/. The vector Qn-ι + i,n + 1φ

f is trivially a
ground state of Hn _ ι +1 y n + x, so it is a linear combination of Ω{12)//, Ω{21}/, Ω ( 1 1 } /,
Ω(22)

a

β

y

γ. Each of these states has norm 2 ( n~ 1 ) / 4 and their overlaps are 0 or 1. Hence
the coefficients in the linear combination must all be 0(2 ~n/4). Thus it suffices to
show the inner product of φ' with each of these states is O(2~ι/2+n/4).

The inner product with Ω ( 1 2 ) / / is δβ

aA
yy2in'3)/2 = O(2-3n/4)SO(2~ι/2+n/4) by

(5.11). The inner product with Ω{22)

a

β

y

γ also involves Aγ

y and is sufficiently small.
The inner product with Ω ( 1 1 ) / is Aj2(n-l~1)/2 = O(2ni4-~l/2) by (5.8a). The overlap
with Ω{21\β is A/ = O(2-n/4)SO(2nl4-l/2) since n^l.

If n is even the proof is essentially the same. We simply modify Fig. 5.3 by
adding a site on the left in an obvious way. •

5.J. The Infinite Chain

In this section we show that in the infinite volume limit there are exactly two
ground states and each of them has a gap. We denote the four ground states on
{-L, - L + l , ...,L} by Ω^L\ and Ω ( 2 'L )

α 5 α = l , 2 .

Theorem 5.3. Let A be a local operator. Then for i = ί,2, the expectation value

W t W (no sum over a) (5.13)

is independent of L and a provided that L is large enough that the support of A is
contained in the interval { — L + l , —L + 2, ...,L—1}. Equation (5.13) defines two
distinct infinite volume ground states ω1 and ω2. If ρ is an infinite volume state which
is a ground state in the sense that ρ(Ht) = 0 for all i, then ρ = cω1 + (1 — c)ω2 for some
constant c, O ^ c f g l .

The key ingredient in the proof is a finite volume result.
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Lemma 5.4. Let φ be a state on {— L, — I
i = — L, . . . ,L—2. 77i£?2 φ can be written as

521

Lemma 5.4. Let φ be a state on { —L, — L + l , ...,L} which satisfies H^ = 0 for

for some complex coefficients Aa and Ba.

Proof of Theorem 5.3. Since the states Ω{UL)

a are tensor products of states on two
sites, the first claim in the theorem is trivial. The states ω 1 and ω2 are clearly
distinct.

Let ρ be an infinite volume ground state. Choose a local observable B with
ω\B) = 1 and ω2(B) = 0, e.g., B= -(4/3)8! S 2 . Let c = ρ(B). It is easily shown that

_ (5.15)

for any local observable A unless i=j and α = β. Lemma 5.4 and Eq. (5.15) imply
ρ = cωι +(1 — c)ω2 by an argument similar to the proof of Theorem 2.7. •

Proof of Lemma 5.4. We proceed by induction in the length of the chain. For 3 sites
the ground state must be of the form

(This can be seen by counting dimensions. The above equation yields four linearly
independent ground states, and the subspace of total spin 1/2 for the tensor
product of three spin 1/2's has dimension four.) For 4 sites any ground state Ω can
be written

since it is a ground state for the first three sites, and

Q — 1 n β y PP γΓia

β U
 ys

since it is a ground state for the last three sites.
We need to show that

We again establish these equations by considering various components of Ω. We
list the component considered and the corresponding equation.

ViY

ViV

ViY

1 2
2

yl 1

2 =0.

C 1

2 = 0 .

C 2

1 = 0 .
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The first five equations imply Λι

1 = C 1

1 = A2

2 = C2

2. Thus the most general
ground state for 4 sites is

As in the proof of Lemma 2.8 the general inductive step can be reduced to the
above argument. Π

We defined the existence of a gap for an infinite volume ground state in
Definition 2.11.

Theorem 5.5. Each of the ground states ω1 and ω2 has a gap.

Proof. Given Theorem 5.1 and Eq. (5.15), the proof is identical to that of
Theorem 2.12. •

6. Other Valence Bond Ground States

There exist generalizations of the VBS states of Sects. 2-4 and the dimerized states
of Sect. 5 and Hamiltonians for which these states are exact ground states. We
present these states and Hamiltonians here. We do not have any general rigorous
results, so this section should be viewed primarily as a list of open questions.

The generalized VBS state may be defined for any lattice with coordination
number z and spin s at each site provided s = nz/2 for some integer n. The
generalized VBS state is formed by constructing n valence bonds at each bond in
the lattice. We do this by thinking of the spin 5 at each site as the symmetrization
of 2s = nz spin 1/2's. For example, this generalized VBS state for the one-
dimensional lattice with spin 2 is shown in Fig. 6.1.

A Hamiltonian for which this state is an exact ground state is

H = Σ Σ a^PASi + Sj)] (6.1)
(i, j)eB s' = 2s-n+l

where the as, are positive constants. The generalized VBS state is a ground state
since the restriction of the state to any two adjacent sites contains at least n pairs of
spin 1/2's in the singlet state, and so has a total spin of at most 2s —n. We expect
that the nature of the generalized VBS state depends crucially on the dimension,
the coordination number and the multiplicity n.

All our rigorous results were for lattices that were bipartite, but we should
emphasize that the VBS state and the generalized VBS state can be constructed for
lattices which are not bipartite. For example, we may define a VBS state for the
triangular lattice with spin 3 at each site. We do not know what properties such a
state has, in particular, whether or not the correlation functions decay
exponentially.

We can generalize the Majumdar-Ghosh model [31, 32] and some models
discovered by Klein [27] as follows. For a lattice with coordination number z and

Fig. 6.1. A generalized VBS state
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spin s at each site let

H=Σ (Z+ΣS a.PASi + S^ + S ^ ... + S J , (6.2)
i s' = (z-l)s+l

where iu z2,..., iz are the nearest neighbors of the site i, and i is summed over the
sites in the lattice. Again the as, are positive constants. Now suppose that we have a
state in which every site has 2s valence bonds coming out of it and going to some
nearest neighbor of that site. (Such states are easily constructed.) Then the
restriction of that state to a site ί and its z nearest neighbors contains 2s valence
bonds and so has a maximum spin of (z + l)s — 2s = (z — l)s. Thus, such a state is a
ground state of the above Hamiltonian. For the one-dimensional lattice with spin
1/2 at each site we recover the Majumdar-Ghosh Hamiltonian.

If s is an integral multiple of z/2 then the generalized VBS state is a ground state
of (6.2). However, the above construction of ground states for (6.2) works even if s is
not an integral multiple of z/2. In dimensions greater than one this construction of
dimerized ground states yields infinitely many infinite volume ground states. For
example, with spin s= 1/2 any covering of the lattice by non-overlapping dimers
gives a ground state.

In one dimension, however, we expect that there are only a finite number of
ground states for (6.2). For example, some ground states of (6.2) on the one-
dimensional lattice with spin 3/2 are shown in Fig. 6.2. We refer to the first two
states as fully dimerized and the last two as partially dimerized. In the partially
dimerized states any pair of adjacent sites always contains at least one valence
bond, and so this pair cannot have total spin 3. Thus a Hamiltonian for which the
partially dimerized states are ground states, but the fully dimerized states are not,
can be constructed by adding to (6.2) the projections onto spin 3 for each pair of
adjacent sites. In the fully dimerized state any two sites which are connected by
three valence bonds have a total spin of 0. Thus any three adjacent sites have a
total spin of 3/2, and we can form a Hamiltonian for which the fully dimerized
states are ground states but the partially dimerized states are not by adding to
(6.2) the projection onto spin 1/2 for each group of three adjacent sites. More
generally, if we let the sum over s' in (6.2) range over all values except s, then the

~\^ I

Fig. 6.2. Two fully dimerized ground states and two partially dimerized ground states for the
Hamiltonian (6.2)
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resulting Hamiltonian will have the fully dimerized states as ground states, and
we expect they are the only ground states.

Appendix A. Neel Order in the Hexagonal Lattice Heisenberg Model

In Sect. 3 we showed that in the ground state of a particular Hamiltonian on the
two-dimensional hexagonal lattice with spin 3/2 at each site the two-point function
has exponential decay, and hence there is no Neel order. This raises the possibility
that the usual Heisenberg Hamiltonian on the two-dimensional hexagonal lattice
does not have Neel order in its ground state. In this appendix we will use the
technique of Gaussian domination to rule out this possibility, i.e., to show that the
usual Heisenberg Hamiltonian on this lattice does have Neel order provided the
spin is at least 3/2.

Gaussian domination was first proven for classical spin systems by Frόhlich et
al. [22]. Dyson, Lieb, and Simon then proved the property for quantum
antiferromagnets and used it to show the existence of Neel order at low
temperature in the usual Heisenberg antiferromagnet on the cubic lattice for spin
^ 1 in dimension ^ 3 and for spin ^ 1/2 in dimension ^ 4 [21]. In two dimensions
there is no Neel order at finite temperature, but for antiferromagnets it is a
nontrivial question whether or not there is Neel order in the ground state. Jordao
Neves and Fernando Perez [26] observed that the techniques of Dyson, Lieb, and
Simon could be used to prove the existence of Neel order in the ground state for
two dimensions if the spin is large enough. For the two-dimensional cubic lattice
they claimed that the method proved Neel order if the spin is at least 3/2.
Unfortunately, there is a mistake in their calculations. The correct version of
inequality (9) of [26] should have a 3/2 in place of the 2 inside the square root in the
denominator in the left side of this inequality. One then finds that there is Neel
order for the two-dimensional square lattice if the spin is at least 1.

Dyson, Lieb, and Simon pointed out in [21] that their proof of Gaussian
domination applies to the two-dimensional hexagonal lattice. Thus it is clear that
one can show the ground state for this lattice has Neel order if the spin is large
enough. Following [21] and [26], it is a routine calculation to show that 5 = 3/2 is
indeed large enough, so we will only present a few highlights of the calculation.

The only significant difference between the present case and those in [21] and
[26] is that we must consider the lattice Laplacian on the hexagonal lattice rather
than the usual cubic lattice. This hexagonal lattice Laplacian is defined by

(-Aψ)(x) = 3ψ(x)- Σ ψ(y), (A.1)
y : | x - y | = l

where y is summed over the three nearest neighbors of x. To find the eigenvalues
and eigenvectors of this operator recall that the two-dimensional hexagonal lattice
is bipartite, i.e., it can be written as the disjoint union of two sublattices with any
two nearest neighbors belonging to different sublattices. We refer to the sublattices
as "even" and "odd."

Let δh ί= 1, 2, 3 be unit vectors such that for every even site x, the nearest
neighbors of x are given by x + δt. The nearest neighbors of an odd site y are then
given by y — δt. For a finite lattice A with periodic boundary conditions the
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eigenvalues of — A are then

E±

k = 3±\ε{k)\ with ε(fc) = £ exp(i/c ^ ) , (A.2)
£ = 1

where fe ranges over the Brillouin zone for one of the two sublattices. The
corresponding eigenvectors are

h±

k(x) = ( + )xexpVk'X + K-)xφ(k)/2-]\Λ\~1/2, (A.3)

where ( — )x equals + 1 for even x and — 1 for odd x. ( + )* is always + 1 . φ(k) is
defined by

ε(k) = \ε(k)\exp(iφ(k)).

\Λ\ denotes the number of sites in the lattice. Note that the number of allowed fc's is
Ml/2, so that we have the correct number of eigenvalues and eigenvectors.

Following [21] we note that there is a unitary transformation (rotation by π
about the 2-axis at each odd site) which sends S1

X^>( — )S1

X, S2

X-+S2

X,
S3

x->( — )xS3

x. The argument of [21], in particular Lemma 6.1, then proves the
Gaussian domination inequality

, (A.4)

where (,) is the Duhamel two-point function, the bar denotes complex conju-
gation, and h(x) is any function on the lattice.

Define
± ± \ (A.5)

We caution the reader that the S±

k should not be confused with the raising and
lowering operators. S±

k is a linear combination only of S3

X. We now insert one of
the eigenvectors h±

k for h in (A.4). Since ( — )xh±

k(x) = h+

k(x), this yields

(A.6)

As in [21], Anderson's lower bound on the ground state energy and some
calculation gives an upper bound on the expectation of the double commutator

/3.

Following [26], the Gaussian domination inequality (A.6), the Falk-Bruch
inequality, the usual sum rule and <S3

XS3

X> = {S^ S^/3 = S(S +1)/3 imply there
is Neel order in the ground state if

2S(S+l)β> lim ~ X Π2S(S+l/3)£-y(3£ s

f t)] 1 / 2. (A.8)

Define

1=
->oo \Λ\ s = - , + k
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where B is the Brillouin zone for one of the sublattices and \B\ is its area. Then (A.8)

becomes

(S+l)[2S/(3S+l)] 1 / 2>7. (A.9)

For S = 3/2 the left side is 1.846 . . . , and numerical evaluation of the integral yields

7 = 1.52 + 0.01. Thus there is Neel order for spin 3/2 and higher.

Our calculation has been for the two-dimensional hexagonal lattice, but there

is an analogous calculation for any bipartite lattice for which Gaussian

domination holds. The integral I depends on the lattice type and the dimension,

but I is always at least 1 because of the trivial inequality x~\-l/x^2. As the

dimension d increases, 7 typically decreases to 1. For example, for the cubic lattice

7=1 +O(l/d) [21]. The coordination number z enters the above calculation only

in the bound on the double commutator (A.7). Condition (A.9) then becomes

Acknowledgement. It is a pleasure to thank Mariko Tasaki for drawing the figures.
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Note added in proof. After the completion of this work we received a preprint [47] by D.P.
Arovas, A. Auerbach and F.D.M. Haldane which contains a new representation of the VBS
state. Using this representation we have proved some of the conjectures of the present paper
including the uniqueness of the infinite volume ground state (and hence the absence of Neel
order) for the hexagonal lattice model of Sect. 3. These results are now being prepared for
publication.




