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Abstract. Quantization of a mechanical system with the phase space a Kahler
manifold is studied. It is shown that the calculation of the Feynman path
integral for such a system is equivalent to finding the reproducing kernel
function. The proposed approach is applied to a scalar massive conformal
particle interacting with an external field which is described by deformation of
a Hermitian line bundle structure.

1. Introduction

In the case of ordinary quantum mechanics the space of pure states is a projective
complex Hubert space. As a consequence the role of complex numbers is crucial in
the description of quantum phenomena. On the other hand, the classical
mechanical systems are described in terms of real differential geometry. However,
many leading quantized classical systems have complex differential manifolds as
phase spaces. Let us give a few examples: 1) the space of orbits of the n-dimensional
harmonic isotropic oscillator is (DΨ(n— 1) (see [6]); 2) the phase space of a spin
system is given by CP(1); 3) (CP(l)xCP(l) is the phase space of orbits
corresponding to the negative energy level in the Kepler problem (see [16]). The
twistor theory provides us also with a wide class of complex phase spaces. In
general they are realized as the orbits of the conformal group on twistor flag spaces
(see [10]). In particular, the space of positive projective twistors is the phase of the
photon with positive helicity (see [13,14]). Finally one should emphasize the
important role of the Bargmann-Fock-Segal representation in quantum mech-
anics (because of its holomorphicity).

In Sect. 2 of this paper we study the quantization of a classical mechanical
system where the phase space M is a Kahler manifold. The basic feature which
distinguishes such a system among the others is the possibility of quantization of
classical states. This means that in some special case, when the Hubert space of
quantum states satisfies some condition of ampleness (see Propositions 2 and 3),
one can embed M into <LΨ{Jί\ where Jί consists of square integrable holo-
morphic sections of a Hermitian line bundle E over M. Using this embedding one
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can calculate the transition probability amplitude from one point of M to another.
In such a way, we find the interpretation of the normalized reproducing kernel
function as the transition probability amplitude between any two points of
complex phase space M (see Sect. 2). The above interpretation is possible if and
only if the holomorphic and metric structures of E satisfy a certain geometrical
condition, which in coordinate terms becomes the complex Monge-Ampere
equation. The rules of superposition and multiplication of transition probability
amplitudes allow us to calculate them along any path. On the other hand,
summing up contributions from all paths we obtain the transition probability
amplitude between two corresponding points of phase space in terms of the
Feynman path integral.

In Sect. 3 we link this fact with the idea of Penrose that interaction can be
described as a deformation of a complex structure. Therefore, the holomorphic
structure of IE plays the role of an external field. The path integral description
provides us with a Lagrangian depending on this deformation.

The last section of this paper contains the application of the developed
formalism to the case of a conformal scalar massive particle. The phase of a
conformal scalar massive particle is taken to be an open subset M + + C G(2,TΓ) of
two-dimensional positive definite subspaces in twistor space T (see [11]). In the
free case, i.e. when the holomorphic structure is not deformed we take as the
quantum bundle IE the tensor product of the tautological Hermitian bundle over
M + +. The above theory contains a parameter which has a natural interpretation
as the Planck constant h. After introducing the external field, i.e. deforming the
holomorphic and metric structures of IE, we obtain the model of a charged
conformal scalar massive particle interacting with this field. Expanding this model
in powers of h we find that the linear approximation of it becomes a model of a
charged scalar massive particle in the electromagnetic field.

Finally, let us emphasize that the purpose of this work is to indicate some
relations between quantum mechanics and complex analysis. One of the most
interesting results of this paper seems to be the reduction of path integration to the
calculation of the reproducing kernel function for the Hubert space of states [see
(2.27) and (2.28)]. Although the explicit form of reproducing kernels is known for
some special cases only (see e.g. [5]) we believe that this approach to quantum
mechanical problems could be physically fruitful, see e.g. the formula (4.23). We
would also like to underline that complex analysis and complex differential
geometry have proved to be useful in solving many other problems in theoretical
physics, see e.g. [1, 14, 15].

2. The Quantization of Classical States

In addition to quantizing observables we also want to quantize states of the
classical physical system. By quantization of classical states we will understand an
embedding Jf: M-^Ψ<L{Ji) of classical phase space M into quantum phase space
Ψ<£(Jί) which is a complex projective Hubert space (finite or infinite dimensional
depending on the considered case). Because Ψ<L(Jί) has the canonical Kahler
structure given by the Fubini-Study metric, we assume for consistency reasons that
M is a Kahler manifold, too, and its symplectic structure ω is given by the Kahler
form.
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This section consists of two parts. In the first one we discuss some necessary
facts concerning geometric quantization in the Kahlerian case. Moreover, we find
the explicit form for the Kostant-Souriau quantization prescription. In the second
part we expose the role of the reproducing kernel function in ordinary quantum
mechanics.

Let E —• M be a differentίable complex line bundle on an ft-dimensional
complex manifold M. Let us also assume that E admits the structure of a
holomorphic vector bundle with trivializations Φa:π~1(Ωa)-+Ωa xC, where
(Ωa; z\,..., z") is a holomorphic atlas on M. Fixing a metric structure H on E one
obtains the metric connection

F:C00(M5E)->C00(M,E®Γ*M),

(i.e. the connection consistent with holomorphic and metric structures of E) on E,
see [4]. Assuming that the curvature (l,l)-form curvί7 is nonsingular, one can
consider M as a symplectic manifold with symplectic structure given by the form
ω = zcurvF. It follows that E is a quantum bundle (see [6, 9, 18]), for which the
connection and the metric structure are given by V and H respectively. The
complex structure defines the canonical Kahler polarization F: = T ( 0 ' υ M. (Let us
recall that the ft-dimensional complex involutive distribution F C TCM is called a
polarization iff: distributions FnF and F + F have constant dimension and FnF is
involutive, where F is the complex conjugation of F. If FnF = {0}, then F is called
Kahler polarization.) Hence, the space of F-stable sections

ΓF(Έ): = UeΓ(M,Έ):Vφs = 0, V }
I φeΓ(F))

is given as the vector space of holomorphic global sections H°(M, Θ(Έ)).
By the definition, the complex Hubert space of quantum states Jt will consist

of holomorphic sections sei/°(M,0(E®Γ*(π'O)M)) which satisfy <s,s><+oo,
where the scalar product <•, •> is given by

<s,t>: = iπ2f Jϊ(M), (2.1)
M

with s,teJt. By definition s and t are E-valued holomorphic ft-forms, thus, H(s, t)
is an (n, ft)-form. Therefore, because M is an oriented manifold, the integral (2.1) is
well defined. The proof of completeness of Jί can be found for example in [3], In
geometric quantization Jί is usually defined as a subspace of square integrable -
with respect to the Liouville measure - holomorphic sections of E. However the
above definition of Ji is more natural from the reproducing kernels theory point of
view.

In order to eliminate those cases when Jt is not sufficiently ample, let us
postulate the following condition:

V 3 such that -^ i — » Ψi,(z

1, z 2 eM
2

2 ; iφo,
z )J

where st = ψίasa ®dz*Λ...Λ dz", st = ψiβsβ (x) dz\ A ... Λ dzn

β, i = 1,2, and zx e Ωa,

z2eΩβ. Here sα:Ωα->E and dz\ A ... Adz" are holomorphic frames defined by
sα: =Φ~1(Ωαx {!}) and by holomorphic coordinates (Ωα;z*, ...,z") respectively.
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dz
Let gαy: ΩanΩy^»Θ* be the cocycle defined by sa = gaysγ, and let -—"-: ΩanΩy^Θ* be

the cocycle defined by y

dzl A ... Λ dz" = —— dzl A ... A dz".

Then, for z1 eΩar\Ωy and z2eΩβnΩδ we have

z2)Ί dz dzδ Γ φ ^ z 1 ) ,

which shows that the condition (2.2) is independent on the triviahzation of the
bundle E(χ)T* ("'0 )M.

The equality: ω_jy(/) = d/ defines a homomorphism y :(C°°(M,R), { , })
-+(H(M), [ , ]) of the Poisson Lie algebra C°°(M,R) into Lie algebra of Hamil-
tonian vector fields on M. The Lie algebra of quantizable observables is de-
fined as

The Kostant-Souriau quantization is given accordingly by

i

where the Lie derivative S£x acts on the section, of the canonical bundle T* ("'O )M.
It is merely a technical problem to show that / preserves ΓF(ΊE) and i {f g} = [/J g]
for fge CFF. For the detailed description of the geometric quantization procedure,
see for example [3, 6, 9].

Dealing with the Kahlerian case we are able to describe the space of
quantizable quantities explicitly. Namely, let us fix \_gaβ\eHγ(M, &*), where gaβ is
the cocycle providing the holomorphic structure on E. Let φ be a holomorphic
vector field on M. Acting by φ on loggaβ we remove the ambiguity due to the choice
of the logarithm branch. Thus, [<p(loggα/?)] depends only on [gα /j, and we obtain
the map τ\H°{M,Θ{T{U0)M))^Hι{M,Θl where τ(φ): = [φ(\oggaβ)~]. Let HFF

consist of Hamiltonian vector fields of the form φ + φ, where φ e Kerτ. Then we
have:

Proposition 1. The following sequence of Lie algebras

is exact.

Proof. Since O ^ R - U C°°(M)-^#(M)-+0 is an exact sequence and CF FC CG0(M)

and HFFCH(M) are subalgebras, it is enough to show that y(CFF) = HFF.
From [y(/),f]CjF and / = / we obtain y(f) = φ + φ, where

φeH°{M,Θ(T{U0)M)). Because ω = idd\ogρ^ this gives

ρ-J - idφ(\ogρ-J = df+ df (2.5)

on Ωα, where ρa^\ =H(sa,sa). Formula (2.5) is equivalent to

f=iφ(logρj + φa9 φaeΘ(ΩJ. (2.6)
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Using the transformation rule Qaa = gaβgaβQ~ββ a n d (2-6) we find

φ(^ggaβ)=-iφβ + iφa on ΩanΩβ. (2.7)

This and y(f) = φ + φ give y(CFF)cHFF.
In order to prove the inverse inclusion, let us take X = φ-\-φeHFF. By

definition, φ satisfies (2.7). Thus, there is a function fe C°°(M, (C) such that (2.6) is
satisfied. From

fij d-d)lmf (2.8)

and from £?xω = 0 we get dd I m / = δδ[i(φ + φ) logρδα] = 0. The last formula shows
that \{φ + φ)\ogρ^a is a pluriharmonic function. Thus, (see [19]), there is a
λa e Θ(Ωa) such that %[φ + φ) logρSα = i(λa - Iα). From this and from (2.6) we obtain

I m / = — (2Λα + φa - 2λa - φa) on Ωa.

Since Im/ is defined globally, one has 2λa + φa = 2λβ + φβ on ΩanΩβ which in turn
defines a holomorphic function £ Ξ 0 ( M ) . The cocycle {φa} is given up to a
holomorphic function ξ e Θ(M). Therefore, we can choose ξ in such a way that
ζ = 0, which gives I m / = 0. From this and from (2.8) we see that HFF C y(CFF). Π

Because of Proposition 1 the Kostant-Souriau quantization prescription (2.3)
takes in a holomorphic frame the following form:

?s=\ (-iφl^~i-φ^ + φ)ψa\sa®dzlΛ...Λdzn

a, (2.9)

where s = ψasa®dzl Λ ... Λ dz|J, φ = φk

ajη^, and φα, φ are given by (2.6). Using (2.9)

we obtain

dliH(s, t)^y(f)-]=H(h t)-H(sJt) (2.10)

for fe CFF. After integrating both sides of (2.10) and applying Stokes theorem we
see that / is a symmetric operator on Jί if dM = 0 or if the Hermitian metric H
vanishes on dM.

Fixing of z e Ωa and of a holomorphic frame sα® dz\ A ... Λ dz" enables one to
define the evaluation functional Jί 9s->ψα(z), where ψa are the components of s in
the fixed frame. Because of the inequality \ψa(z)\^cjs\\ (see e.g. [3]), where ca is
some positive constant depending only on sΛ®dz], Λ ... Λ dz", this is a continuous
linear functional. Thus, by Riesz's theorem, there exists Xδ(z, ) such that

From condition (2.2) we have Xδ(z, ) + 0. In the opposite case one has for each
seJi that s(z) = 0, which is in contradiction with (2.2). Therefore, taking into
account the transformation rule

) = gaβ(z) d-p- (z)KΛ(z, ), (2.12)



582 A. Odzijewicz

we obtain, that the following

is a well defined map from the classical phase space M into the quantum phase
space <EP(J().

Writing down KJ^z, v) in a chosen frame,

K-a(z, v) = K-aβ{z, υ)Sβ®dvι

β Λ...Λdvn

β,

we obtain the reproducing kernel function K^z^v) which has the following
properties:

a) positivity

K-Jz,z)>0, (2.13)

b) reproducing property

KΛβ(z, v) = <Kβ(v, ), K-a(z, )>, (2.14)

c) transformation rule

Kh(z, v) = gaβ(z)gδy(v) ^ (z) ̂  (v)K-Jz, v), (2.15)

d) the quadratic form

jk
ί

j , k = l
CZJOZ

is invariant under changes of holomorphic frames sa and coordinates (z*, ...,z").
These properties will be crucial for the following considerations.

Proposition 2. The following statements are equivalent:
a) Jf :M-+(ΠP(Jί) is an injection,
b) for each zΐ,z2eM there exist vuv2eM such that

= 0, (2.17)

where vί e Ωγ, v2 e Ωδ, zγ e Ωa, and z2 e Ωβ. (The condition (2.17) does not depend on
the trivialization of E ® T * ( Π ' O ) M J

c) Condition (2.2) is satisfied.

Proof ifJf is an injection, then for each ZUZ2EM and for c e (C*, we have Kδ(z l 5 )
φ cKβ(z2, ). Thus, for each zuz2eM and for c e (C* there exist vuv2eM such that

Because of XSy(z, ι;) = X7α(i;, z) the last condition is equivalent to (2.17), which gives
b). Using (2.15) we find that (2.17) does not depend on the trivialization of
Fg)T* ( " ' 0 ) M. Putting sί=Ky{vu ) and s2 = Kd{v2, ), we obtain c) from the
statement b).
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In order to show that c) implies a) let us assume that J f is not an injection.
Thus, there exist zl7z2eM and ce(C* such that Kδ(z l 5 ) = cKβ(z2, ). Multiplying
the last equality by S G J we find ψa(zι) = cψβ(z2). This means that there are
ZUZ2EM such that for each sus2eJί we have

_^2α(^l)>

which is in contradiction with c). •

Proposition 3. The map Jf : M-^Ψ<L(Jί) is an anti-holomorphic embedding if and
only if the condition (2.17) is satisfied and ds2 is positive definite (in this case it is
called the Bergman metric).

Proof The proof stated here is a simple extension of the proof contained in [8] to
the case of general line bundle. Let Jίz = {φeJί \ ψ(z) = 0} and let Jίz be the
orthogonal complement of Jίz in Jί. From the condition (2.2) one has:
dim C e ^ z

1 = l. Let us choose an orthonormal base {so,sι,s2,...} in Jί consistent
with the decomposition Jί = Jίz®Jίz, i.e. (sus2, ...) = Jίz and (so) = Jίz

L.
oo

Taking Xδ(z, ) = Σ κan(z)sn a n d sn = ^ncΛ®dz* Λ ... Adz2, one concludes from

the reproducing property that κm(z) = ψna(z), which gives

dsl= Σ -

From (2.18) one sees that ds2 is positive definite at zeM if and only if for every
φz eΓ z

( 1 ) 0 ) M there exists s e Jiz such that φz(ψa) + 0, where s = ψasa ®dzι

a A ... /\ dzn

a.
But the last condition strictly means that the differential dJί of Jf : M-^PC(^#) is
nonsingular. Due to this and from Proposition 2 we have that JΓ is an embedding.
If one assumes that Jf is an embedding then according to Proposition 2 the
condition (2.17) is satisfied. For ds2 one has ds2 = jt*ds2

7S, where dsjs is the Fubini-
Study metric on Ψ<L(Jί). Thus ds2 is positive definite. •

The above propositions show that the positive definiteness of ds2 and (2.17)
ensure that the classical phase space is embedded into the quantum phase space. In
this manner, we can quantize not only observables / - > / but also the states
Jf: z->[Xδ(z, )]. In the case of the Bargmann-Fock representation [Ks(z, )] is a
so-called coherent state; hence we extend this terminology to the general case. The
reproducing property guarantees that coherent states form a linearly dense subset
in Jί.

Also some other properties of the reproducing kernel {K^β(z, υ)} are to be
mentioned here. From (2.15) we see that it is a section of the line bundle
prf(E®T : i : (0'")M)(x)prf(IE(x)T*(n'0)M), where pr£ is the projection of M x M on
the ith component. Thus, the diagonals {XSα(z,z)} define a section of

E®E®T* ( I I ' I I ) M. The transformation rule ωββ = ω ^ ~ ^ where
OZβ CZβ

n

ω a α = det [ctfyjj φ 0 is a component of the Liouville 2n-form f\ω



584 A. Odzijewicz

= — n!ω a α dz* A ... /\dzn

a/\dz], A ... Λdz", gives

This means that ———— are components of some section H of the bundle E* ® E *

written in the frame sa(g)sa. Because ω is nonsingular we have — ΦO.

Therefore, HOT —Hi when ———— is negative defines a new metric structure on

E. Everywhere below we shall assume the positivity of —.

The physical meaning of K^z, v) is determined by the following. Identifying
the classical states z e Ωa and v e Ωβ with the coherent quantum states [Kδ(z, )] and

ϋ, -)] respectively, we can calculate the transition probability amplitude

\\KΛ(z, )||' \\K0, )
After passing to a new frame [see transformation rule (2.15)] a-βa(v, z) changes only
by a phase factor. Hence, the transition probability density \a-βΛ{ΰ,z)\2 does not
depend on a choice of the bundle trivialization, but it naturally depends on points
zeΩa and veΩβ. The transition probability amplitude from z to v with the
simultaneous transition through the point w e Ωy is α?α(vv, z)a-βγ(ϋ, w), and it also
does not depend on the choice of frame s y:Ω y-»E. Rephrasing the reproducing
property (2.14) in terms of the transition probability amplitude we obtain

aβ0L{ϋ,z) = Σ j an(w,z)aβγ{vίw)Kn(w,w)ρyy(w)hγ{w)dwί

y A...Adwn

y, (2.21)
γ M

where supp/zyCΏy, Yjhy = \, and/ίyGC°°(M,R), i.e. {hy} is a partition of unity. The
y

natural measure on the phase space is the Liouville measure

dμL \=( — i)nωyydwl A ... Λ dwn

y A dw\ A ... Λ dw".

It is then physically reasonable to perform an integration in (2.21) with respect to
dμL instead of ρyy(w)Kyy(w, w)dwy

ι Λ ... Λ dw". Therefore, let us assume

dμL(w) = Cρyy(w)Kyy(w, w)dwι

y Λ ... Λ dw" A dw\ A ... Λ dw",

where 0 < C , which means that the metric H coincides, up to a real positive
constant, with the metric H,H = CH. Locally the above condition takes the form of
the complex Monge-Ampere equation

d e t P ' θ g ^ y ( v v ) 1 = C(-ίf^^ρyy(w)K,y(w,w) on Ωy. (2.22)
| dWdw J n\

In this way we obtain a differential equation for ρyy = H(sγ, sγ), because {Kyy}
depends on the holomorphic and metric structure of E . In [12] one shows that in



Reproducing Kernels 585

the case of M being biholomorphic with the bounded domain in (C", {K^β} depends
on {ρyy} analytically.

Integration of the complex Monge-Ampere equation according to its non-
linear character is a difficult problem, and the discussion of it goes beyond this
paper. Significant progress in this direction has been made by Yau (see [20]). In the
following sections we consider some cases for which one can find solutions of
(2.22).

Now, in order to describe our model in the language of path integrals we shall
calculate the transition probability amplitude along the path y for the physical
system defined by the phase space M. We shall treat this path as a piecewise
smooth curve in M, beginning at z and ending at v. Let zt = y(τ^ i = ί, ...,iV, be a
sequence of points on y such that zγ=z and zN = v. The transition probability
amplitude from the state z to the state v with its simultaneous transition through
the states z2,..., ziV_ l 5 according to the amplitude multiplication rule, will be equal

N- 1

t 0 Π aaι + ιai(Zi + i>zi) With the division {zj of y getting denser and denser we

shall find the formula for the transition probability amplitude along y,
N-l

a-βJy ,ϋ9z) = limexp £ logα-^Jz^+^Z;), (2.23)
Λ T - > o o i = i

where α = α l 9 β = oίN, and zfe£2αi. Hence, because of K^ι + iaι(zί+ί,Zi) are differenti-
able functions of their arguments, we obtain

aβa(r,v9 z) = exp \i jlm(β logKJ], (2.24)
L y J

where the 1-form Im(δlogX) is given locally by lm(d\ogKyy). The formula (2.24)
has a geometrical interpretation. Namely, one can see from (2.15) that Kyy(z,z)~ι

can be considered as the component of some Hermitian metric Hκ on the bundle
Eg)T* ( " ' 0 ) M taken in the holomorphic frame sy®dz) A ...Λdzn

r

KΊy{z,z)-1 = '.Hκ{sy®dz) A ...Adzn

vsy®dz) A ...Adzn

y).

Let us take the unitary frame

σy = Kyy(z, zγl2sy®dz) A...Adzn

r Hκ(σy, σy) = 1.

We have

Vκσy = iIm(d\ogK-y

1)®σy, (2.25)

where Vκ is the metric connection on E(x)Γ* ("'0 )M defined by Hκ. From this we
conclude that a-βa(y;ΰ, z) is the parallel transport with respect to the connection Vκ

from point z to point υ along the curve y. As a consequence of this and (2.15) we find
that after passing to a new frame, a-βa(y;v,z) changes by the phase factor which
depends on z and v only.

Let K2,..., KN_ i be a sequence of regions in M such that y(τf) = zίeKi. Then,
according to the rules of superposition and multiplication of the transition
probability amplitudes the formula

a-βa{v,z;K2,...,KN_ι):= J dμL(z2)... J dμL(zN_ι)
κ2 κN-!

(2-26)
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where for simplicity we assume KtcΩa, describes the transition probability
amplitude from state z to state v with a simultaneous transition through "the
gates" K2, ...,KN_1. While using the path integral formulation, we assume

fljjα(tJ,z;K2,...,KJV_1)=: J ^[y]expRjIm(δlogK)Ί (2.27)
*N L y J

to be the definition of the path integral of the functional expΓz JIm(dlogK)Ί over

the set Jf^, where Jf^ is the set of paths which satisfy: γ(τ1) = z, y(τ f)eK f, and
y(τN) = v. In the special case we will have

aφ, z)=:\ ®\_i\ exp Γf j Im(δ logK)Ί. (2.28)

Here we integrate over all paths which connect points z and v.
The standard metric on projective Hubert space (£Ψ(Ji\

], [ s 2 ] ) : = inf
eitlsί eίt2s2

\\s2\\
(2.29)

can be transported onto the classical phase space M by the imbedding
JΓ: M->CPM0. Putting sί = K^(zu •) and s2 = K~β(z2, ), zί e Ωa, and z2 e Ωp, after
simple calculation, we obtain

dM{zuz2) = |/2(1 - \a-aβ{zuz2ψ
2 . (2.30)

The properties oΐdM in the case when M is a bounded domain in C n are studied, e.g.
in [17]. It is shown there that the topologies induced by dM and by the Euclidean
metric are the same, and M is complete with respect to dM. From (2.30) we can see
for example that the probability of transition from z1 to z2 is nearly 1 ifz1 is close to
z2 in the sense of the metric dM. The sequence of states {zN} of the physical system is
a Cauchy sequence if starting from a certain natural number Jί the probability of
the successive transitions zN-+zN+1 is arbitrarily close to 1. In other words the
most probable physical processes are those which are described by the Cauchy
sequences.

3. Deformation of the Holomorphic and Metric Structure
of the Quantum Bundle and Interaction

One of the ideas of Penrose's twistor theory is the description of electromagnetic
and gravitational interactions by the deformation of the holomorphic structure of
some complex bundles over twistor flag spaces (see [13,14]). The fruitfulness of
such an approach for classical field theory was manifested in the problem of
classification of the instanton solutions of Yang-Mills equations (see [1]). Making
use of this idea, we fix the differential structure of the quantum bundle E->M and
vary its holomorphic and metric structures, interpreting them as external fields
interacting with the physical system described by M. The purpose of this section is
to show how the action functional of the system depends on the above mentioned
structures. In order to do this we will compare (2.28) with the Feynman definition
of the transition probability amplitude along the path.
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We shall start with the presentation of some necessary facts concerning the
spaces of all possible holomorphic and metric structures of the complex differential
bundle E. First of all, let us recall that holomorphic line bundles on the complex
differential manifold M are, up to isomorphism, described by elements of
H1(M,Θ*) (see e.g. [4]). The exact sequence of sheaves

defines the boundary homomorphism δ: H1(M, $*)->//2(M, Έ) (see e.g. [4]). Thus,
because the differential structure of E has been fixed, the classes of isomorphic
holomorphic structures on E are parametrized by δ~i(c1(Έ)\ where c^E) is the
Chern class of E. For a more explicit description, let us now fix a holomorphic
structure on E and let g%β€&*(ΩanΩβ) and s°:Ωα->E be the transition functions
and holomorphic frames of it respectively (we will assume that {Ωα} is an acyclic
cover of M). Let us also fix a Hermitian metric if0 on E. Now, for any holomorphic
structure of E, which is trivialized by the system of frames sα: Ώα—>E, sa = gaβsβ, one
has sa =fas%, where fa e C°°(Ώα). Any metric structure H on E is given by H = ρH°,
where ρ e C°°(M, IR+). Therefore, the system of the smooth functions {/α} taken up
to the holomorphic factors gαe$*(Ώα) and satisfying the transformation rules

fβ= - ~ / α on ΩanΩβ describes the possible holomorphic structures of E. On the
Socβ

other hand the possible metric structures are determined by positive valued
smooth functions on M. One has

0 t o = ί?l/.l 2ώ, (3-1)

where ρSα = H(sa, sa) and ρ-aa = H°(s°, s°). For the later application, it is reasonable
to introduce the following notation

and eA". = ^ . (3.2)

The functions ^4α:Ωα—>IR describe the reproducing kernel deformation resulting
from the deformation 5α:Ώα->IR of the holomorphic and metric structures.

The dependence of {Λa} on {Ba} plays the fundamental role in our theory. The
effective use of it demands the formulas that would explicitly express the potentials
Aa = Λa(z, z) in terms of Ba = Ba(z, z). The search for such formulas is equivalent to
the calculation of the reproducing kernel functions KSα(z, z), which is in the general
case an unsolved problem. However, the result obtained in [12] suggests that in
the case of a small deformation (i.e. when Ba is small) the perturbative methods can
be used in the analysis of Λa = Λa({Bβ}). In view of the dependence Λa = Aa({Bβ}) the
equation

I J
which is the consequence of imposing condition (2.22) on (s°, ρ£α) and (sα, ρaα), can
be treated as a field equation for the field {Bβ}. If {Bβ} is a solution then {Aa} can be
obtained from (3.3).
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In order to simplify further considerations we shall study the case with the
existence of coordinates (z1, ...,zn) on the domain Ω C M which covers M up to the
zero measure set. We will also assume that there exist holomorphic frames
s°:Ω->Έ and s:Ω-^Έ corresponding to holomorphic structures defined by the
1-cocycles {g^} and {gα̂ } respectively. From now on all quantities appearing
above will be denoted by the same symbols and without the indices enumerating
the frames. Let us now take the map Ω 3z->K(z, -)eJί. This allows us to consider z
as an element of a Hubert space and in such a way to calculate its norm \\K(z, )||
= K(z9z)1/2. Hence, a unitary process [τi9τf~\ 3τ->z(τ) = K(z(τ)9 -)eJί satisfies the
condition K(z(τ), z(τ)) = ko = const. Generally one can take

(3.4)

where / is a one-to-one real smooth function on IR+. The examples presented
below show that for many reasons it is reasonable to put /=log .

Let us then calculate the transition probability amplitude a(w,z) however,
under the condition that the transitions of the system from z to w will be realized by
the unitary processes z(τ), i.e. when the restriction (3.4) is taken into account and
z(τt ) = z, z(τf) = w. Unitarity of the process τ->K(z(τ)9 •) is a quantum states phase
space counterpart of the energy conservation law which is assured in the classical
phase space M, while unitarity in Ji is assumed.

Using the standard arguments and (2.28) we obtain

α(w, z; k0) = 1Π dz(τ)dz(τ)δ \j Q-K(z(τ\ z(τ))) -/(I)J exp[i Im(δ logK)]

_ i' ίy, |~1 fdlogK dzk δlogK dzk

τ h (tf \_2ί \ dzk dτ dzk dτ

+ λ(τ)(f(~K(z(τlz(τ))) -/(I) jldτj. (3.5)

where λ(τ\ τ e [τi9 τf~] are the Lagrange multipliers resulting from (3.4). Integration
over dλ(τ) respects the contribution to functional integral given by all the possible
parametrizations of the considered processes. Fixing λ(τ), it is natural to treat

t

t = j λ(τ)dτ as the time parameter, measured by some classical measuring instru-
ίo

ment - the clock. Therefore, taking into account the Feynman definition of the
transition probability amplitude along the path, we will define the action
functional for the system as

Γ ΆΛ i\ \Ί
t. (3.6)

While defining S we substitute K(z, z) = K0(z, z)eM*'z) and neglect the phase factor
exp [i(tf — ίi)/(l)], which has no meaning in the considerations presented here. The

expressions Im(^logX0) and I m — + / ( — X I will be interpreted as the one-

form responsible for the Legendre transformation and the Hamiltonian of the
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considered system. According to the previous interpretation of A the term \m—-
ensures the interaction of the system with the external field.

As an illustration we will consider the following:

Example. Let us take M = (C" and E = (C" x (C as the quantum bundle with the
Hermitian metric

where the holomorphic frame 5°: (C"->E is given by the s°(z): = z x {1} and h>0.
After a simple calculation one finds the reproducing kernel function

n(n+3)

The function ρ° satisfies the condition (2.22) for C = (— 1) 2 n!. Taking
zk = xk -f ί'yk, / = log and A = 0 (i.e. the external field is zero) one obtains from (3.6)
the action functional

1 '/ 1
• - ί p dxk—\{p p +x xk)dt

h it 2h

for the ^-dimensional isotropic harmonic oscillator. As a consequence (3.5) gives
the Feynman propagator for the harmonic oscillator. The quantization procedure,
described in Sect. 2, leads to the Bargmann-Fock-Segal quantization for the
physical quantities and replaces the classical state v by the corresponding coherent

state (2π/z)~"exp
LΔn J

The variation principle -r— = 0 for (3.6) leads to the following Hamiltonian

equations:

κ\ (3.7)

where the (l,l)-form ωκ = iddlogK is the curvature form of metric connection
dzk d dzk d

Vκ and X= —— —η- + —— ̂ zr. The choice of the function f influences only the
dt dzk dt dzk

time parameter rescaling.
To end this section let us make a few remarks on the invariance of the presented

theory with respect the holomorphic gauge transformation, given by replacement
of the holomorphic frame 5: Ω-+Έ by s' = gs, where g e Θ*(Ω). The transformation
rule (2.15) shows that the transition probabilities \a(v,z)\2, |α(ϋ,z;K l 5 . . . ^ J V . J 2 ,
\a(γ;v,z)\2, and the metric dM are gauge invariants. Also the Monge-Ampere
condition possesses this property. On the other hand, since, one has

K\z{τ\ z(τ)) = \g(z(τ))\2K(z(τ\ z(τ)),
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where K'(z, z) is the reproducing kernel function taken in the new frame s\ the
unitarity property (3.4) is lost after passing to the new gauge. Therefore, the
problem of physical meaning of the holomorphic gauge arises. We suppose that its
choice should be made in each individual case independently. So, it is reasonable
not to discuss this problem generally.

4. The Application to the Scalar Massive Conformal Particle Case

In this section we apply the formalism developed in two previous sections to the
phase space M + + of all possible "creations of classical scalar massive particle." By
"creations of classical scalar massive particle" we mean the separate effects of
identification of what is called an object, localized in space-time with momentum
and with both positive energy and mass. We shall not fix the mass, therefore, M + +

is an 8-dimensional manifold parametrized by four spacetime coordinates and
four-momenta. We shall assume also that M + + is an SU(2,2)-homogeneous
symplectic manifold. The conformal group S 1/(2,2) is a natural extension of the
Poincare group by dilatation and four-acceleration transformations. If we want to
obtain the phase space for the relativistic scalar massive particle, which could be
described as some trajectory in M + + localized on a constant mass hypersurface,
we should reduce the symplectic structure of M + + to the mass-shell. Hence, it is
natural to call the "creation of scalar massive particle" the conformal scalar
massive particle.

It was shown in [11] that one of the possible realizations of M + + is the
Grassmannian of two-dimensional positive definite complex subspaces in twistor
space T. Let us recall that T by definition is C 4 equipped with a Hermitian form η
with signature -M , and a two-dimensional subspace zeG(2,T) = : M is
positive definite iff the twistor form η restricted to z is positive definite, i.e. sign
η\z = + + . The conformal compactification of Minkowski space is the Grass-
mannian M 0 0 of isotropic (with respect to η) two-subspaces in T. M 0 0 and M + +

are conformally homogeneous spaces. One can consider SU(2,2)/Έ4 as the
biholomorphism group for M + + . The complexification of M 0 0 gives M and
M°°C<9M+ + . Fixing oo e M 0 0 (the point at infinity) one defines the Minkowski
space M^ as the set of points X G M 0 0 which are transversal to oo. Fixing
additionally O e M ^ (the origin of Lorentz system of coordinates) one can define
the Poincare group P^ extended by dilatations as the stabilizer 5(7(2,2)^ of
infinity; the intersection of stabilizers SU(2,2)o0nSU(2,2)0 as the Lorentz group
L0o0 extended by the dilatation group Do ^ LOjQO and Do>00 as the commutator
and centralizer of SU(2,2)o0nSU(2,2)0 respectively. The group of Minkowski
space translations T^ is defined as a set of expχ, where χe6fύtt(2,2) is such that Imχ
C oo cKerχ. The group of four-acceleration Λo is formed by expχ, where ImχCO
CKerχ. One also has the decomposition

< ^ ( 2 , 2 ) ^ ^Φ(2,2)* = ̂ * Θ ^ o * o o θ ® 5 f Q o θ ^ ? , (4.1)

where P**s/θ9 ^0*00 = ^0,00, ^ ? U = ̂ 0,00, a n d ^* = &Oo are dual spaces to
corresponding Lie subalgebras (isomorphisms are given by the Cartan-Killing
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0 E
form). Everywhere below we shall use the representation: η = ίι ,,

oo = Γ Q : ζ e <C21 e M 0 0 and 0 = U°) : C 6 (C2 j Then

7
and zeM^ iff Z+=Z, zeM+ + iff det^(Z-Z+)>0 and Tr^(Z-Z+)>0. The

ZΛ ZΛ

Lie subalgebras appearing in (4.1) will have then the form

o ) : j P = p + e M a t 2 x 2 ( C ) } '

(4.2)

The connection between Lorentz and matrix coordinates is given by Pauli

matrices σμ, where σo = E=ί I and μ = 0,1,2,3, i.e. Z = zμσμ = (xμ + ijμ)σμ,

P = pγσr M = ̂ mokσk — ckijm
kjσ^ A = ayσγ, where m f c j '= —mjk a n d m o / c = — m f e 0.

The exhaustive discussion of phase space M + + on the classical mechanical
level is to be found in [11]. Here, let us only mention that the symplectic form is
given by

dl^ξζ (4.3)

and the momentum map Jλ is of the form

l ( Z - Z + ) " 1 , - 2 Z ( Z - Z + ) ~ 1 Z +

where z G M + + . After decomposing Jλ(z) according to (4.1) and passing to Lorentz
coordinates, one obtains the four-momentum, angular momentum, dilatation and
four-acceleration

p 2 j p V 2 U (z-z-)2 '
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respectively. From (4.5) one has yμ = λ-j a n d ωλ = dxμ Λ dpμ, and then (xμ, pv)

becomes the canonical system of coordinates on M + + .
In order to find the quantum mechanical description of the scalar massive

j 2

conformal particle let us assume the tautological bundle EJ': = (x) /\ §-> M + + as a
quantum bundle E, where S z : = z. The restriction of twistor form η to S z defines
the metric structure on S, thus Έj is a Hermitian line bundle. For the explicit
calculations let us fix in S the holomorphic frame

ei(z> =

Z

/

ΛYi

W
o \

,e2(z): =

and define the holomorphic frame s0: =(R)βi Λe2:

mitian metric on Έj, expressed in s0 is given by

>EJ in EJ. The Her-

Thus the scalar product (2.1) in the Hubert space of quantum states Jίj0

the form

M +

attains

(4.6)

where s = ψso(S)dz0 A ... Adz3, t = φso(S)dz0 A ... Adz3, and c>0 is a constant
introduced for technical reasons. The condition of ampleness (2.2) for Jt h$ is
satisfied when j > —3 (see [7]): therefore, in this case we can use the formalism
developed in two the previous sections.

First of all let us observe that if one puts - =j, then the symplectic form ωλ is

equal to the curvature form of the metric connection of the bundle Έj. Because the
parameter λ has the dimension of the action we introduce the elementary unit h,
which will be interpreted as the Planck constant. The momentum map compo-
nents (4.5) are quantizable quantities, i.e. belong to CFF. Hence, from (2.9) one finds

(4.7)

α v = - ih(z2δξ - 2zvz
β) —β + 2ih{j + 4)zv
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The conformal group SU(2,2) acts on E / - > M + + , preserving its holomorphic and
metric structure. This enables us to define the unitary representation 7}: SU(2,2)
-+U(Jίίji0) of the conformal group:

where g~1=( ) eSU(2,2) and A,B,C,De Mat 2 x 2((C) (see [7]). It is easy to

check that (4.7) taken without the factor —ίh gives the generators of 7}. Thus, by
Stone's theorem (see [21]), pμ, mμv, S, and άv are selfadjoint operators.

The reproducing kernel function for Jίj0 is calculated in [7]. For c = 2" 3 ( J + 4 )

it has the form

— + 1
2 ) 2 eιkz

jyφ)ψk(z)d*k9

(4.8)
+1

where C+ denotes the future cone and ψk(z): = Cj(k2)2 eιkz is the generalized
eigenvector of the four-momentum operator, pyψk(z) = hkγψk(z). In order to have

<Ψk>Ψk'>j,o = δΛk-k% we put

Γ/πV
Cj=2J[\2

The Laplace transform

ψ(z)= J φ(k)ψk(z)d4k, (4.9)
c +

where φeI}(C^,dAk) plays here a similar role as the Fourier transform in
Schrόdinger quantum mechanics, i.e. it allows us to pass from momentum to
holomorphic representation. Using the momentum representation it is easy to
compute the average values of quantities in coherent states Kjt 0(z, ). In this way
one obtains

where / is an element of the conformal Poisson algebra, i.e. / is a linear
combination of generators (4.5).

As one would expect, the weight function ρ7- 0 fulfills the condition (2.22) for a
suitably chosen constant C Therefore,

Γίz - +4

is the probability amplitude that the scalar massive conformal particle after
detection in the coherent state z will be detected in the other coherent state w.
According to (4.8) the ψk(z), where keC+, form a complete system of generalized
states. Hence, one can interpret

1-1/2 j , , r/rr ^\2-]~-

(4.12)
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as the transition probability amplitude from the state with a given four-
momentum hk to the coherent state z. Using (4.12) one can rewrite (4.8) in the
physically more transparent form

aj0(w,z)= J aj0(z,k)aj0(w,k)dk. (4.13)

Consequently, the transition probability amplitude for a scalar massive relativistic
particle, i.e. a particle which in all processes satisfy (hk)2 =p2 = (me)2 = const is
given by

H o, ™(w>z): = J α7, o(z> fe) αi, o(w

? fc) 5 I fc'
2

/mcV

"W
4 J e*c-

It is remarkable that the condition of mass constancy p(τ)2 = (me)2 = const defining
the relativistic process

[τi9Ϊ J B T Λ K j t 0 ( f ( τ ) , )e Jtu0

is equivalent to the unitarity condition \\Kj>0{z(τ), )ll = const. Specifying the
formula (2.24) to the case considered here one finds that

ajιO(γ;w,z) = exp\ --\πμdxμ\ (4.15)
L n y J

is the probability amplitude of transition of the scalar massive conformal particle

along the path y beginning at z = y(τt) and ending at w = y(τX where the

ί \ί 4\
πμ: = I 1 + T \pμ is the average four-momentum obtained from (4.10).

Let us now make some remarks about the coherent states Kjt 0(z, ) e Jίit 0,
where z e M + + . The average values of all kinematic quantities / computed in

4
Kjj0(z, ), see (4.10), are equal to their classical counterparts up to factor 1 + τ . On

the other hand it is a matter of simple calculation to show that the probability
density \ajfO(z,w)\2 to detect the scalar massive conformal particle in the state
Kj 0(z, ) in the point w e M + + is concentrated around the point z and attains in it
the maximal value. As a consequence of this one can consider the scalar massive

h πμ

conformal particle as the object localized at the point zμ = xμ + i(j + 4) ,
me me

h πμ

where (me)2 = π2. If the Compton wavelength — and average four-velocity — are
me me

small, i.e. in the case of low energy, the scalar massive conformal particle is
localized in a region of M + + closed to Minkowski spacetime (yμ&0). It is
interesting to mention that M 0 0 is the Shilov boundary of M + + (see [15]) and the
maximal value of KjtQ(z9 ) is attained at the spacetime point X = RQZGMO0. Let us
also notice that because of

det(/t-Z+C)Ί-^4 Kjjgz,-)

J K(p;gz)1 / 2 ' l " '\\Tfe)Kh0{z,'
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the imbedding Jf}> 0:M
+ + ->(CP(e^/ >0) is the conformally equivariant map of

classical phase space into quantum phase space.
We shall now discuss the interaction of the scalar massive conformal particle

with the external field. In accordance with Sect. 3, the external field is described by
the deformation (3.2) of the holomorphic and metric structure of the bundle Έj.
Applying the definition (3.6) to the present case we find the Lagrangian dL which,
expressed in the canonical coordinates (xμ, πv), is given by

j 2 7

dL= -nμdX»+ 2 » « > 8 ^ * +

( 4 i 7 )

1 [me ~]2U+4)

—rrlog and ko= °
1 [me ]

where we put / = ——rrlog and ko= ° . Since the deformation of

the reproducing kernel A = A(x, π) results from the deformation B = B(x, π) of the
structure of the Hermitian vector bundle Έj [see (3.3)] we shall interpret the three
last parts of (4.17) as the interaction Lagrangian dLv The remaining two parts will
form the Lagrangian dL0 for the free scalar massive conformal particle. From the

• 1 c Λ ϊ τ ^ dx Ί π
μ

 Λ dπμ

 Λ ^

vanational principle ό\dL0 = υ one obtains -—=h—2 and ——=0. Thus, it is

reasonable to assume that s: = — t is the particle proper time measured in natural

units given by the Compton wavelength.
In order to study the Lagrangian (4.17) in the low energy region (yμ&0) one

needs the expansion.

Λ(x9 y) = A(x) + Aμ(x)yμ + Aμv(x)yμf + .... (4.18)

Substituting (4.18) into (4.17) one finds

dL=- πμdxμ + \ log j£^ dt + 2 ^ Λ(x)dt + h- Aμ{x)dxμ + Θ(h2),

(4.19)

where Θ(h2)dt is the part of the Lagrangian which contains the second and further
orders of the Planck constant. Neglecting Θ(h2)dt and assuming that the average
relativistic mass m of the particle does not change during the interaction and that
m = m0 (such an assumption seems to be acceptable if the low energy case is
considered), we obtain the Lagrangian for the charged scalar massive particle in

he
the external electromagnetic field of the four-potential — —-Aμ{x\ where e is the

electric charge of the particle. The term — — A(x) can be interpreted as a

scalar potential for some additional (nonelectromagnetic) force acting on the
particle. According to the assumption π 2 = (m0c)2, the second term in dL
disappears. Hence we see that the interaction with the electromagnetic field is a
linear approximation - in the sense of expansion (4.18) - of the interaction with the
holomorphic field. The effects that would expose the difference between the
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holomorphic theory and Maxwell electrodynamics depend on the higher order
terms of the expansion (4.18), and because of that they can be noticeably large only
in the high energy region. Therefore, for the low energy case it is reasonable to seek
an approximate calculus that would relate the low order terms of the expansion

B(x, y) = B(x) + Bμ(x)y» + Bμv(x)yY + . . . (4.20)

and such of (4.18). The expansion of the field equation (3.3) with respect to yμ gives
the infinite sequence

x) = 0, (4.21)

Bμv(x) + Aμv(x) =j Lμ v(iDχ*(x) + Bl{x)) - ^ β - Bμv(x)\,

of equations on the fields B(x), Bμ(x), Bμv(x),.... The above interpretation of Aμ(x)
raises a fundamental question. Namely, is there any relation between the first order
approximation of (3.3) and Maxwell equations?

Finally let us calculate the probability amplitude cij B(kf, kt) of the transition of
the scalar massive conformal particle from the state ψk. to the state ψkf in the
external field B(x, π). In order to attain it, we shall consider the case when the field
B(x, π) is concentrated in the bounded region of phase space. In accordance with
the above considerations, the transition probability amplitude is given by

«;,#/Λ) = <V*,,%Aβ = 2-2<;+4> J Vφ)Ψkf{z){y2)Wxd*y.
M + +

(4.22)

Substituting (4.20) into (4.22), one obtains

2,B(k f, kt) = δt(k, - kd + 22J+ 5(j + 2) lkf^l)2 Bμ(kf - kd (M + k})
LlΛi ~r κf) J

(4.23)

where Bμ, BμBv + 2Bμv,... are Fourier transforms of the corresponding quantities.
Θ(h3) denotes the terms in the Planck constant of the order higher than two and
they are negligible when only a low energy process is considered. The ah B(kf, k^)
depends also on the index j>—3, which could be interpreted here as a

regularization parameter. Considering the singular case j = — 3 for which

πμ = h-^\ of (4.22), and postulating that the mass of the scalar massive conformal

particle does not change as the result of interaction, one obtains up to the constant
factor the standard formula for the transition probability amplitude, see (9.24) in
[2] as the linear approximation of (4.23).
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