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The Equilibrium States of the Spin-Boson Model
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Abstract. The temperature states of the spin-boson model consisting of a
two-level atom in a Bose field are studied. It is proved that for all temperatures
there exists a unique solution, hence there is no spontaneous reflection
symmetry breaking.

1. Introduction

Spin-boson models are very popular in solid state physics, quantum chemistry as
well as in quantum tunneling. A fairly good introduction to the physics can be
found in [1].

Here we are particularly interested in the following model:

H = jd/cε(fc)αfc

+αfc + σ 3 Jd/d(fc)(αk

+ + ak) +

describing a two-level atom in a boson field. On the basis of physical arguments
one assumes that the following conditions are satisfied:

Ukλ(k)2 <ao, ^ < o o ; ε ( / c ) | / c | .
ε(k)

In this work we study the temperature states of this model in a rigorous way.
The ground state problem will be kept for a future occasion. The main aspect we
search for is whether or not there is spontaneous symmetry breaking of the reflection
symmetry: σ3-> — σ3, αfc-> — ak. Usual techniques for proving the absence of
symmetry breaking are not applicable because the group is finite.

As far as we know there exist only a few rigorous results for this model. In [2]
one discusses some results on the spectrum of the proposed Hamiltonian, in [3]
a thorough analysis is made of a finite mode approximation of the Hamiltonian.
In particular the Hartree-Fock solutions are found to show breaking of the
symmetry under the condition μ < 2j(λ(k)2/ε(k))dk. In [4] the ground state of the
model is analyzed. By functional integration techniques it is shown that no
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spontaneous symmetry breaking appears if λ/ε is square integrable (in fact in k = 0).
Otherwise if the coupling λ is large enough there is symmetry breaking.

Our contribution consists in the computation of all temperature states, and
hence in actually solving the problem for T > 0. The method we use consists in
considering the term μσ1 as a perturbation. This point of view was already presented
in [2] and [3]. Then we work towards a rigorous formulation of the KMS-equation
(equilibrium conditions) for the so-called unperturbed model, and we are able to
solve it completely. Finding the solution relies on a detailed study of the
representations of the spin-Boson algebra. Then the perturbation theory is applied
at the level of the cyclic vector of the unperturbed system.

From the Hartree-Fock computations and the spectral perturbation theory it
could be guessed that symmetry breaking occurs for a coupling which is strong
enough. Surprisingly enough it turns out that there is never spontaneous breaking
of the symmetry, irrespective of the strength of the coupling constant. In particular
we prove that for all positive temperatures there is a unique equilibrium state. We
work out the model in one dimension. Our analysis is not complete for higher
dimensions. There might be a macroscopic occupation of the ground state (k = 0)
for the Boson field, destroying the unicity of the solution in two and more
dimensions. However we are not interested in the symmetry breaking due to Bose
condensation.

2. The Model

We start with the CCR-algebra Δ(Jf0) built on a test function space jf0 which is a
dense subspace of L2(U). A reasonable choice is Jjfo = Co(M), the continuous
complex functions of compact support on IR vanishing on a neighborhood of zero.
As usual we consider the CCR-C*-algebra Δ(J^0) generated by the Weyl operators

W(f) = expί(a(f) + a + (f)); fεJT0, (1)

where a + (f) and a(f) are the usual Fock creation and annihilation operators,
which satisfy the product rule

W{f) W(g) = W(f + g) exp - i Im(/, g). (2)

The algebra of observables of the system is then the C*-algebra

the unique tensor product of Δ(j^0) and the 2 x 2 complex matrices.
A general element of 36 is of the form

Λ 12

* 2 2

and a state ω of 38 can be described by a set {ωij\ί,j= 1,2} of linear functional
of Δ(H0). A useful notation is the following:

ω 2 1

ω 2 2
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then

i, J = 1

By normalization and positivity ω is a state of 33 if and only if the functionals ωtj

satisfy

ω u ( 1 ) + ω2 2(1) = 1, c^(x*x) ^ 0; i = 1,2

I 2 (X*)>)I 2 ^ ωιι{x*x)ω22{y*y\

ω1 2(x) = ω 2 1 ( x * )

for all x, yeΔ(j^0). For the purpose of the study of the model under consideration
we will restrict our attention to the class of states that satisfy the following
conditions:

(a) Regularity of the states, i.e. for all f,geJ^0 the map

zeU^ω^Wif + zg))

is analytic. This condition implies the existence of correlation functions

where a# stands for α or α + .
(b) Continuity of the correlation functions: define the Hubert space Jf as the
closure of J^o for the scalar product

Then we suppose that the states ωu satisfy

I I

For any state ω of J we consider its GNS-triplet (Jfω,πω,ί2ω). For notational
convenience we identify the algebra and the representation (x = πω(x) for xe33) iϊ
this is clear from the context, and we denote by 33" the von Neumann algebra
generated by 33. Because of the continuity conditions (a) and (b), 33" contains the
strong limits of W(f)®ί, feJ^0, which again are Weyl operators in that they
satisfy the relation (2). This is the meaning of the operators W(f)®A with
feJ^,AeM2. The same reasoning holds true for creation and annihilation
operators

a#(f)®A

with feJΊf, as operators on j ^ ω affiliated to $". First we describe the evolution
ot® on the von Neumann algebra 3$". Denote by σhi= 1,2,3, the Pauli-matrices
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and define for ε(k) = \k\ the maps:

(4.a)

\\ wΆeitε - 1)Yσi - iσ2)

(4.b)

(4.c)

λ^(eίtε- 1) Λ l , / e ^ . (4.d)

(c) Existence of the dynamics: we assume that the dynamics {α^ίetR} extends to
a weakly continuous one-parameter group of *-automorphisms of 0b1''.

Hence the one-parameter group {α°|ίelR} defines an infinitesimal generator
δ0:oί° = expiί^o such that <50 is formally given by:

where Ho is given by

Ho = §dkε(k)a£ ak + σ3(α(2) + a+ (λ)).

We now define the full model using the Dyson expansion: for all

' Cα?M(σiX Cα^_1(
CΓi)» Eα?i(σiX αί° W ] •] (5)

for £ ^ 0, and a similar expansion for t < 0. As the perturbation [μσ1 ? •] is a bounded
derivation of ^ " the series is uniformly convergent and defines a weak ^-continuous
group of *-automorphisms of W. The infinitesimal generator δ of the group is
formally given by

where

H = H0+μσ1.

Remark that by formulae (4) and (5) we arrived at a rigorous definition of the
dynamics of the model on the appropriate C*-algebra of observables taking into
account the conditions

jλ(k)2dk< co, l
ε(k)
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3. Equilibrium States

We are interested in the equilibrium states at fixed inverse temperature β ̂  0 for
the full dynamics {αJίelR}, defined in (5). The strategy consists in constructing the
equilibrium states for the unperturbed dynamics αf, then we use the known stability
properties of KMS-states for bounded perturbations to obtain the equilibrium
states of the full dynamics.

For any state ω satisfying (a)-(c), we define ω to be a (α°, /?)-KMS-state if for
all x, ye&'άo, a weakly dense α°-invariant subalgebra of $'\ holds [6]:

We prove first that this equilibrium condition has a unique solution for the
unperturbed evolution α°.

Theorem 3.1. There exists a unique (α°, β)-KMS-state ω°β ofΊM satisfying conditions
(a)-(c). Using the notation (3\ it is given by

where ω± are the states of the CCR-algebra Δ(Jf0) given by:

In order to prove this theorem we proceed in a number of steps:

Lemma 3.2. Ifω°β is a (α°, β)-KMS-state, then it is of the form:

0
ω ' " l 0 (ί-η)ω_r

where ω+ are given by (8), ηε[0,1].

Proof First we prove that the off-diagonal components of ω°β vanish. Therefore
apply (6) with x = σί W(f) and y = σ3. Using (4.c) one gets:

ω°β{σx W(f)z?β(σ3)) = ω?(σ3σ1 W(f))

and

or
ω°t(σ2W(f)) = 0.

Analogously:

ω°β(σ1W(f)) = 0.

Therefore ω« is of the form

0 ω2j>
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where

ω2(W(f)) = ω°β(Ul-σ3)W(f));

Define the automorphism groups {oc^\teU} of A(J4?0) by

*HW{f))= W{eiεtf)exp\ ± 2 i R e ( -,{eίεt - 1 ) / ) \

From (4.c) one has

i( l ± σ?)V't:(W(f)) = ̂ -(1 + σ3)α)

Remark that for all f,ge^f0,

WβW(g)) = ω°β(

and similarly ω2 is a (α~,jS)-KMS-state up to normalization.
The automorphisms α± are up to a displacement the free Bose-gas auto-

morphisms. Under our general conditions λ2/ε and A2eL1([R), (a)-(c), they yield
the unique KMS-states ω± given by (8) [5]. Hence there exists a ^e[0,1] such that

ω1 =ηω+, ω2 = (l-η)ω_,

where η = ω1(H). •

The lemma shows that all solutions of (6) are of the type given by (9)
with ^ G [ 0 , 1]. We have to prove that there exists only one solution, namely
corresponding to the value η = j . Therefore define the reflection symmetry
automorphism τ on J* by the following relations:

τ{σ1) = σί, τ ( σ 2 ) = - σ 2 , τ ( σ 3 ) = - σ 3 ,

τ(W(f))=W(-f)9 felt?, (10)

and remark that ωη°τ = ωι _η.
The state ωη with η = \ is then precisely the unique τ-invariant state in (9).
Now the strategy to finish the proof of Theorem 3.1 consists in proving that

any (α°, β)-KMS-state is τ-invariant. In order to obtain this statement we prove
that under the general conditions on the model any state of the class (9) is a factor
state. This will be a consequence of a more general study of the representations
induced by states of that type, which we present in the appendix (Sect. 4). Then
we remark that τ is an implementable automorphism, commuting with the time
evolution, implying that any solution of (6) is τ-invariant which by the argument
of above implies η = \.
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Lemma 3.3. Under the conditions

)2

y , jd/d(/c)2<oo,
ε(/c)

the states ωη of J* = Δ(J^0) (x) M2

ω+ 0

0 (ί-η)ω.

with ηe[0,1] given in (9) are factor states.

Proof If η = 0 or 1 one gets the states ω+ and ω_ which are well known to be
factor states [7].

From Proposition 4.3, ω+ and ω_ are quasi-equivalent states of Δ(J4?0) because

and A2ε"2 tanh^jSεJeL^R) because JJ/c2(/c)2ε(/c)~1 < oo, fulfilling the conditions
of Proposition 4.3 with A — coth(J/te). Hence there exists a non-zero intertwining
unitary operator between ω+ and ω_.

As ω+ and ω_ are factor states it follows now from Proposition 4.2 that also
for ηe(0,1) the states (11) are factor states. •

Lemma 3.4. Denote again by (%" the von Neumann algebra of the state ωη of ^ ,
ηe[0,1]. Under the conditions \dkλ(k)2ε(k)~x < oo and \dkλ{k)2 < oo the auto-
morphism τ of Ί% defined in (10), extends to a unitary implementable automorphism

Proof Let (Jf+, π +, Ω+) denote the GNS-representation of ω+. By the conditions
on λ we can extract from Proposition 4.3 and the proof of Lemma 3.3 the existence
of a unitary operator ί/e^(Jf+), which satisfies

ω_(x) = < UΩ+\π+(x)UΩ+ >,

Consider now the mapping

V:π(W(f))Ω+^π+(W(-f))UΩ+,

then

<π+{W(-fi))UΩ+\π+{W(-f2))UΩ+>

+\π + (W(f1)W(-f2))UΩ+ >

Therefore V extends to an isometry of Jf+ and as W{f)-> W( — f) defines an
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automorphism of 4(Jf 0) it is easy to check that V is unitary. Furthermore

π+(W(-f))=Vπ+(W(f))V*, feMT0.π+(W(-f))=Vπ+(W(f))V*,

Therefore by Proposition 4.2 and using π+=π_ and
that

= J ^ _ , one concludes

0

0

a2

0

α4

0

θ\

V
Now it is easily checked that the automorphism τ is implemented by the unitary

Q =

v
0
0
0

0

V

0

0

0

0

V

0

where πη is the representation induced by ωη. •

Combining the arguments of above we now obtain:

Proof of Theorem 3.1. By Lemma 3.4 the automorphism τ of (10) extends to an
implementable automorphism of the von Neumann algebra 0&" of ωη and we again
denote this automorphism by τ. Clearly ωη°τ = ω j _ r

From the formulas (4.a)-(4.d) it follows furthermore that oί?°τ = τ°(χ?, teU. Let
now ω°β=ωη be an (α^/O-KMS-state (Lemma 3.2), then also ωί-η has to be
(αt°5|8)-KMS and ω ^ , , is a normal state of 8t" by the arguments of above. As by
Lemma 3.3 $" is a factor we conclude by [6, Prop. 5.3.29] that ωη = ω1-η or
equivalently that η =^. This proves that there exists a unique (α^/^-KMS-state
of ί% explicitly given by formula (7). •

The equilibrium states of the full model can now be computed by a perturbation
of the equlibrium states of the solvable model {αf°|ίe[R}. In order to do this we
need the perturbation technique on von Neumann algebras developed in the context
of stability theory for KMS-states.

Theorem 3.5. Under the conditions jd/d 2 ^" 1 < oo and \dkλ2 < oo the full model
defined in (5) admits for every positive β a unique (α, β)-KMS-state ωβ which satisfies
(a)-(c). Furthermore ωβ is normal with respect to the unique (α°,/J)-KMS-state ω°β

and is given by the following strongly convergent perturbation expansion:
Let (Jf o,π o,ί2 o) be the GNS triplet of ω°β, then

(Ω\πo(x)Ω>
ωβ(x) = -

\\Ω\\2 (11)

where

J dsι---dsπafβSn(σ1)---afβSί{σ1)Ω0.

It follows that ωβ is τ-invariant where τ is defined in (10), in particular ωβ(σ3) — 0.
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Proof. Using [6, Theorem 5.4.4] one constructs a KMS-state ωβ for a perturbed
dynamics α (5) from the unperturbed one αυ (4). The full dynamics α is obtained
by adding a bounded operator μσx to the Hamiltonian.

The state ωβ is given by its cyclic vector which is constructed in terms of a
series expansion (11). As the unperturbed state ω°β is a factor state, ωβ is the unique
(α, β)-KMS-state which is normal with respect to ω°β. As ω°β is unique (Theorem 3.1)
also ωβ is unique. In particular ωβ is τ-invariant. •

4. Appendix

A. Consider the C*-algebra J* = stf®M2, where si is a C*-algebra. Hence a
general element of 0& can be written in the matrix form

Suppose that ωx and ω 2 are states of si, then

^ ^ ^) + (1 - >7)ω2(x22)

is a state of J* for all ηe[0,1]. Let (^f i9πi9Ωt\ ί = 1,2 be the GNS-representations
of J / defined by the states ωhi= 1,2, then we have:

Proposition 4.1. For all ηe(0,1),
where

induces the GNS-representation

\

πη (x) =

(\-nfl2Ω2

o
0

0 71 2 (X 2 2 )

ίx,i) 0

π 2 (x 1 2 )

π i ( x 1 2 )

0 π 2 (x 2

0

πι(x22) 0

0 π 2 ( x n ]

Proo/. A straightforward computation yields

(Ωη\πη(x)Ωη) = ω(x\

πη(x)πη(y) = πη(xy),

and the cyclicity of Ωη for πη follows from 0 < η < 1.

x,

Denote by Jί\ = πj(j/)/r the von Neumann algebras defined by the states ωt of
si for / = 1,2, by Ml the commutants of the M{ and by 5"" the set of operators
from Jf̂  to Jf2, intertwining the representations πγ and π 2 , i.e. if te£Γ then
t€^{^u ^2) such that for all y e j / holds tπ^y) = π2(y)t. In the next proposition

of the state ωη.we characterize the von Neumann algebra
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Proposition 4.2. With the notations of above we have that Jί^ is the set of operators
in B(jeη):

y\

0

0

r,

0

ή

ί?

0

0

yΊ
0

tϊ
0

0

V-

where y\e (f = 1,2); furthermore, Mn is given by

{ 0 a2 0\

b4 0 ί

, 0 a± 1

0 b2 0

where a^Jl^b
The center

ail* = for i= 1,2,3,4
is then

/

0

0

0

0

Z l

0

where '^ (i= 1,2) and satisfy tzι = z2t and z xί* = ί*z2 for all

Proof Using the matrix representation of Proposition 4.1 one computes explicitly
the commutant M\ by solving for X the matrix equations

πη(x)X = Xπη(x) for all x e J

with XeόSfflη). The computation of the von Neumann algebra Jίn is obtained in
a similar way. The center Jin n JCn is then immediately recognized. •

B. Consider J>f, a complex Hubert space with scalar product (-,-)> and /I a
self-adjoint operator on Jf7 such that 4^11. Let Jf7

0 be a dense subspace of ffl
contained in the domain of A112 and consider the CCR-C*-algebra Δ(3tf0). It is
well known that for each linear functional χ on J^0,ωAχ defined by

cθΛ,x(W(f)) = exp { - ! (/ , Af) + i Im χ(f)}

extends to a state of Δ(J^0). The GNS-representation of ωAχ is given by:

—the representation space is a subspace of 3tfF® J-fF, where JfF is the usual
Fock space;

—the representation

/

where means complex conjugation;
—the cyclic vector: ΩAχ = ΩF®ΩF,ΩF is the Fock vacuum.
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It is also well known that πAtX is a factor representation [7].
Here we are interested in the necessary and sufficient condition in order that

two states ωA Xί and coAtX2 are quasi-equivalent. The case A = H and χ1 = 0 is treated
in [8]. In order to formulate the condition we introduce the Hubert space

with norm | | / L = M 1 / 2 / | | .

Proposition 4.3. The states coAfXι and coAtX2 of Δ(J^0) are quasi-equivalent if and
only if l\~li extends continuously to 34?A. Moreover quasi-equivalence implies
unitary equivalence.

Proof. Suppose first that χλ — χ2 extends continuously to J-f A, then there exists a
heJfA such that

(12)

Take the element

A ' 2A ^ h.

As he9{A112) and (A/A + 1 ) 1 / 2 g D, one has f̂E f̂? clearly W%)®1 is a unitary
operator on the representation space and

ωA,χi(W(f))

using (12) and (13). Hence ωAχ^ and ω ^ are quasi-equivalent.
Conversely suppose that χx — χ2 does not extend continuously to 3^A, then

there exists a sequence (/„)„ of elements /„ in Jf0, such that \\fn\\ ^(1/n) and
i - X2X/JI = π, and for every geJ?0 one has

ωAJW(-g) Wig)) - ωAχi \\ ^ \ωAχι{W(-g)W{fn)W{g)) - ωAJW(fn))\

-expiImχ2(fn)\exp-$(fn,Afn)

-+2 if n^ 00. (14)

Suppose now that there exists a non-zero intertwining operator Te&(h2i h^ for
the representations π ^ Z 2 and π^> X l 5 such that for all XEΔ(3^0)

πAtXι{x)T = TπAiX2(x).

It follows that 0 < Γ* TeπAtX2(Δ(J0Ό))' and that a state η oϊΔ(jeo) can be defined by:

η(x) =
<ΩΛtX2\T*TπΛ9X2(x)ΩAtX2> = <TΩΛtX2,πAtXί(x)TΩAtX2

<ΩAtX2\T*TΩAtX2> \\TΩAtX2\
|2
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such that

η( )^cωAtX2( ) (15)

for some ce(R + . From (14) it follows that for any ε > 0 one can find a selfadjoint x,

\\x\\S 1, such that

ωA,χι(W(-g)xW(g)) - ωAtX2(x) ^ 2 - ε.
Hence

ωAai(x) ^ 1 - ε; ωΛχ2(x) ^ - 1 + ε
and with (15)

0 ^ η(ί + x) ̂  cωAtXβ + x) = cε.
Now it follows that

\\coAtXί(W(-g)'W{g))-η(')\\=2. (16)

For any two normalized vectors φx and </>2 in a Hilbertspace one has in general

l l < 0 i l - 0 i > - < 0 2 l - 0 2 > l l ^ 2 ( i - « 0 1 | 0 2 > | 2 ) 1 / 2 .

Take now φ1 = πi4>;fl(W^(gf))ί2i4jχi and 0 2 = TΩAtX2, then from (16)

< Γ β ( W t e ) ) β > 0

As β^, z i is cyclic for πAtXι(Δ(J^0)) and β,4,X2 is separating for πAχ2(Δ(Jt0))\ we can
conclude that Γ = 0. Therefore ω A > χ i and ω^ χ 2 cannot be quasiequivalent. •

Acknowledgement. One of us (A.V.) thanks Herbert Spohn for bringing the model to his attention.
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