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Rarefactions and Large Time Behavior for Parabolic
Equations and Monotone Schemes*
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Abstract. We consider the large time behavior of monotone semigroups
associated with degenerate parabolic equations and monotone difference
schemes. For an appropriate class of initial data the solution is shown to
converge to rarefaction waves at a determined asymptotic rate.

1. Introduction

Our main point of interest is the large time behavior of two solution operators,
one continuous, the other discrete, when acting on a certain class of initial data.

The continuous example is the solution to the class of degenerate parabolic
equations of the type

ut + f(u)x = A(u)xx9 (1.1)

where u is scalar, / is convex and A\u) ^ 0. When A(u) = |u | y u, y > 0, we have the
convective porous medium equation.

The discrete example is the class of monotone difference schemes for the scalar
conservation law ((1.1) with A = 0). We write the scheme in the following way:

un + 1{x) = un(x) - λΔd(g(un(x - Pod),. , un(x + qod)\ (1.2)

where we chose xeR rather than on a mesh

Δx

2 = — , (Δdu)(x) = u(x)-u(x-d\ p o ^0, 4 0 >0, d>0,

and several conditions on the numerical flux g will be specified. The parameter d
is not necessarily small.

* Supported by NSF Postdoctoral Fellowship Grant No. DMS 85-11476

This research was supported in part by the Institute for Math and its Applications with funds provided

by the National Science Foundation

** Current address: Department of Mathematics, The University of Michigan, Ann Arbor, Michigan

48109-1003, USA



528 E. Harabetian

The scalar conservation law

Ut + f(u)x = 0

is invariant under the transformation

x = —, £ = -, v > 0 ,
V V

and it has continuous, self-similar solutions of the form

(1.3)

(1.4)

u_

(1.5)

where a(u) = f'{u) and w_ < u+ are the values at + oo; these solutions are called
rarefactions. With respect to the variables x,t defined in (1.4) Eq. (1.1) changes to

and its solutions are close to solutions of (1.3) when v is small.
For the monotone schemes in (1.2) this scaling procedure, in effect, changes d

to vd, and the consistency with (1.3) is merely a consequence of the consistency of
g with /.

We will prove that for a fairly large class of initial data, the error
between solutions in (1.1) and (1.2) and the appropriate rarefactions
tends to zero in LP,1 <p^oo. More specifically u = R + K and \K\LP(dx)^
c(lntyil2) + il/2p)Γill2) + il/2p\l^p^oo, and the rate of decay for K, without the
In t term, is the real rate for Burger's equation (when f(u) = l/2u2 and A(u) = u).

In the next section we will prove a proposition which states the result in the
more general framework of monotone semigroups that satisfy a consistency
condition.

In L1, the example of Burger's equation shows that we stay at a positive distance
from rarefactions.

The complementary situation, when u_>u+ and (1.1), (1.2) admit travelling
waves, was treated in Ref. [3] and [1]. It was shown there that these travelling wave
solutions attract in L1 a large class of initial data.

In [4], there are results about the L00 behavior of the equation ut + f(u)x = cuxx,
c>0, without a rate.

2. Monotone Semigroups

For u_ < u+ we define U a U°{R) by

x < 0
supw(z)- dx < oo,
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ί inf u(z) — u +
dx < oo

As in [1] we consider a semigroup T(ί), teR + or Z + , defined on U, and
satisfying:

(1) u^v a.e.=> T(ί)w ^ T ( φ a.e. (monotone),
(2) M — veL1 => T(t)u — veL1 (preserves L1),

+ 00 +00

(3) u-veL1^ j T(t)u-T(t)v= J w - 1 ; (conservative),
— oo — oo

(4) T(ί)τΛ = τhT(t), τhu = u(x — h) (translation invariant).

A Lemma of Crandall and Tartar [9] shows that, given (2) and (3), the property
(1) is equivalent to

(5) I T(ήu - T(t)v\Li ^\u-υ\Lι9 if u- veL1 (L1 - contractive).

With this we form Ta

θ = δ1/hT(oc)δh, where 0 < α ̂  1, δhu = u(hx) and note that T«h

is also an //-contraction. If £ e Z + , then α is by definition equal to 1.
The next condition makes T(t) consistent with a self-similar solution. Suppose

there exists p(x)eU which is Lipschitz continuous, p' ^ 0, \p'\L* < oo, and such that

(6) \Tlp-δ1/il+ah)p\Ll^Ch2.

Then,

Proposition. | T(t)u - δ1/tp\LP ^ C(ln t)d/2) + d/2p) r d/2) + d/2p)91 ̂  i? i ^ p ^ oo,

weί/.

Remark. The constants C are not the same and they don't depend on h or t etc.
Before proving the proposition, a few remarks about (6): We note that an equation
which is invariant under (1.4) has a solution operator T(t) which satisfies
δljhT(v)δh= T(oίh\ and therefore the left-hand side of (6) is identically zero if
T(t)ρ = δ1/a+h)p. For Eq. (1.1), (6) represents the following local condition:

Let v satisfy

v(0, x) = R(x) - r(x91) (see 1.5). (2.1)

Then

Here p(x) = R(x).
For (1.2), to be consistent, we take

Condition (6) now amounts to the requirement that the local truncation error
for consistent monotone schemes is of O(h2) in L1, where h is the mesh-size. Since
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rarefactions are Lipschitz continuous with bounded derivatives, we will be able to
prove this in Sect. 4.

Proof of Proposition. First, let p = 1 and define:

u\x) = (T(t)u)(tx) = δtT(t)u. (2.3)

We then have the identity:

\ut-p\Li=-\T(t)u-δ1/tρ\9

and what we need to show is:

| u ' - p | L l ^ C ^ . (2.4)

It suffices to consider t = neZ + , since, with t = n + α, for some 0 < α < 1,

I T(n + φ - <51/(π + α )p|Li S I T ( φ - <51/πp|Li + I T(oc)δί/np - δ1/{n + a)p\Lί

= \T(n)u - δι/nρ\Li + n\δnT{(x)δ1/np - δn/in + a)ρ\Li

C

ύ\Άn)u-δ1/np\Li+-.

Next, dropping the L1 subscript, and by (2.3),

\u» + 1-p\ = \δn+1T(n+l)u-p\

/nδnT(n)u- δn/in + 1)ρ\

n + 1 nz

Assume that | uj - ρ\ ^ C(ln ;)/ ; for 2 ̂  7 ̂  n with C independent of M0, where
Iu0 — p |Li ̂  M. This is true for n = 2,

π + l

V + 1 +l\ \n+l\n \ nJJJ- n+1

and the induction step is complete.
To prove the case p = 00, we first observe that we can restrict our attention to

ueU,u increasing, since for any ueU, our definition of U allows for two functions
φl9φueU9 increasing, such that φι ^u^φu. The monotonicity of T{t) then yields

I T(t)u - r\L* £ I T(ήφι - r\L* + | T(t)u -
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^ I T{t)φι - r|Loo + I T{t)φu - T(t)φz|Lco, by Condition (1)

r\Loo + I T(t)φu - r\L*. (15)

To continue the proof for p = oo, we fix xx and let / = p(xχ) — M^XJ and without
loss of generality let / ̂  0. We also let M = |p'|L«> and x0 = xx — l/M. Then,

p(x) ̂  M^XJ + M(x - x0), xo<^x^xu

since they are equal at x = xγ and the derivative of the function on the right side
of the equality is always bigger.

Since u\x) is increasing (T(ί) preserves monotonicity),

i φ j + M(x - x0) ^ u'ixi) ^ uf(x), x 0 ^ x ^ x x,

and therefore,

And now, since the L00 norm is invariant under δt,

l n Λ 1 / 2

Finally, in U

•<Wlί» 1 / p |T(ί)w-.

3. Quasilinear Parabolic Equations

We consider (1.1) when A(u) is smooth in (M_,M + ), and it is differentiable with A'
nonnegative and Lipschitz continuous in [w_,w + ]. We have thus included the
porous medium equation when w_ = 0. The results in Ref. [2], and the extensions
in Ref. [1] show that there exists a unique solution operator satisfying (l)-(5)
of Sect. 2.

Volpert and Hudjaev regularize the equation by adding artificial viscosity and
they obtain estimates independent of the viscosity parameter. In the statement of
their theorem they need more smoothness on A(u). Osher and Ralston overcome
this difficulty by modifying the initial data.

We let ύ satisfy the following equation which incorporates both regularizations:

ύ(0,x)eUε = {φeU'.u. + ε ^ φ ^ u+ - ε}. (3.1)

Standard results on parabolic equations yield smooth classical solutions to
(3.1) [5].

Our claim is that it suffices to verify property (6), i.e. Eq. (2.1) for smooth
solutions u with a constant independent of ε and v. To show this we use the
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estimates in Ref. [2] together with the arguments in Ref. [1] which yield

f |tφc,ί) - u(x, t)\wλ(x)dx ^ eκ*J|tφc,O) - fi(x,0)|wλ(x)dx,
— oo

where

wλ(x) = e x p ( - λ(ί + x2)112)

and

Kλ = λ sup ( | / »

Now take ίϊ(O,x) = Rε(x) = rε(l,x), the rarefaction which connects w_ +ε to
u+ —ε. Then

\u(och,x) - r(l + ah,x)\L\Wλdx) ^ |w(αΛ,x) - ύ(cch,x)\L\Wχdx:

+ \re(l+och,x)-r(

Ll(wλdx)

+ | r ε ( l + α / ι , x ) - r ( l + α / z , x ) | L W x ) .

Now let ε ̂ > 0 and then λ -> 0.
It remains, therefore, to show Eq. (2.1) when A(u) is smooth and A'(u) ^ α0 > 0

in [M_,M + ] and that the constant C doesn't depend on a0. This last part will
become evident from the proof.

We let φ = v — r. Then φ is a Lipschitz continuous function which satisfies

φ(0,x) = 0, see (2.1)). (3.2)

We multiply (3.2) by a regularized sign function of φ1, which is the derivative
of a regularized absolute value function denoted by Lε and defined as follows:

Lt(z) =
"2'

z >ε

z <ε

Then the regularized sign function is given by

sgnz, | z | > ε

- z , z\<ε

1 We thank the referee for suggesting the use of a regularized sign function. This replaces the original
less elegant argument
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and, from (3.2) we obtain:

Λ + o o ft 4- oo / j + o o

J L't(φ)ίf(r+Φ)-f(rnx = hl J L'ε(φ)A(φ+ r)xx. (3.3)
O

j J I J
O — o o O — o o

+ 00

The first term on the left, in (3.3), is J Lε(φ)(h) which tends to \φ\Lίidx)(h) as
— oo

ε-»0 by Lebesgue's Dominated Convergence Theorem.
The second term on the left, in (3.3), after integrating by parts, is equal to:

- f + f K(φ)φxU{r + φ)- /(r)] = - f +f-χlφi<είf(Φ + r) - f{r)-]φx.
o-oo o - oo ε

The integrand above tends to zero pointwise and is dommated by sup f'{u)-\φx\.

Therefore, by the Dominated Convergence Theorem the integral tends to zero as
ε^O.

Finally, we consider the term on the right in (3.3). After integrating by parts
and differentiating, we obtain:

T φ)(φx + rx)ί-h] +f K(φ)φxA
f(r + φ)rx9

O - o o

since mφ)φlA'(r + φ ) ^ 0 . (We note that this is the only place where we used
A' ^ 0 and that we didn't need A' strictly positive.)

We now have

- A } + f L'ε(φ)xA(r)x - Λ j 7 ° L'ε'(φ)(A'(r + φ)- A'(r)))φxrx.
O - o o O - o o

The second term tends to zero as ε->0 by virtue of the same Dominated
Convergence Theorem, and the first term is estimated by

ft

\\
0 ^ ^

where the BV(dx) norm is defined by

^ + 00

l<7lβκ(d*) = sup- j" \g{x + h)-g(x)\dx.
h>0 ft - oo

In conclusion, after letting ε->0, (3.3) yields \φ\Lι(dx)(h) ^ C/z2, which is the desired
estimate.

We close this section with the example mentioned in the introduction which
uses Burger's equation:

ft

h\\A(r)x\BV{dx)(τ)dτ^h2 sup \A(r)x\BV{dx)9

0 Oh
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Here one can solve explicitly, using the Cole-Hopf transformation, and obtain

Λ(x/t)-l]y/2p-y2/4tdy

where

y+ =
y y^o
0 y<0'

Here the rarefaction is given by

0

X
—

t

1

X

t

0

X

t

X

= t =

^ 1

r(x,t)={

To obtain the asymptotic expansion of w(x, t) for x ̂  0 we let s = x/t and integrate
by parts in the numerator to obtain

where O(l/t) is uniform in s ̂  0.
In the denominator the dominant term is:

o(x/2Jt)2

e~y2dy.

Therefore, one obtains

u(t,x)=-
1
~X/2y/t κ,/ y /

j e-y>dy

where | K |LP ( R- } ^ct~1 + 1/2p, R~ =(-oo,0% l^p^oo. One can therefore verify that

', l^pύoo, C o > 0 .

4. Monotone Difference Schemes

We consider (1.2) and impose the following conditions on the numerical flux
0 = #(tt _ p o , . . . , M+€0), a function of p0 + q0 + 1 variables:

(a) g{u,...,u) = f(u).
(b) g is Lipschitz continuous everywhere and dg/dut are Lipschitz continuous

in the domain u_po^u_



Parabolic Equations and Monotone Schemes 535

(c) The function u0 - λ(g(u_Po,..., uqo) - g(u-ipo+1)i...,uqo_ J ) is nondecreas-
ing in each of its arguments u _ po _ ί,..., uqo.

For example, the Engquist-Osher (upwind) and Lax-Friedricks (dissipative)
schemes, all satisfy these conditions which imply properties (1) through (5) of Sect.
2 for the solution operator. Unfortunately, Godunov's upwind scheme does not
satisfy the second part of (6)2.

For simplicity of notation take λd= 1 so in (2.2) p(x) = R(x). Then, condition
(6) is equivalent to

\r(l+h9x)-r(l9x)-Δdg(r(l9x-poh)9...9r{l9x + qoh))\Ll^Ch2

9

with r(t,x) = R(x/ή from (1.5).
First, one easily verifies that

\r(l+h,x)-r(l9x)-hrt(l9x)\L1£Ch2,

since the expression inside the L1 norm is compactly supported, always bounded
by Ch and bounded by Ch2 in the smooth regions which are outside some
neighborhoods of a(u-),a(u + ) of measure less than Ch.

Next, by the mean value theorem

Δdg(R(x-poh),...9R(x

qo λ da

i=-Poodui

for some 0 ̂  ηt ̂  1,

ί 0

- ^{R{x\ , R(x))dθR'(x - (ί + ηt)h)

|jj ~ (i + m)h) - K W) =

Because of our assumptions on g and since \R'\BV ^ C, we get I^OIL 1 = Ch2 and
the result follows.

In closing, we wish to mention that the result of the Proposition yields the
following LP rate of convergence to rarefactions for monotone schemes:

\uh - R\LP^ Ch(1/2) + il/2p)(\n l/hY1/2) + {1/2p\ 1 ̂  p g oo,

where h is the mesh size (which is related to the number of iterations in time), and
uh(0,x) = φ(x/hl φeU.

2 We thank the referee for pointing this out
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The well-known results on convergence of monotone schemes [6-8] hold for
general tinBVnL0 initial data. Our rate of convergence, h\n(\/h) in L1, is an
improvement over the previous rate, /z1/2, given in Refs. [6,8]. This is because, for
our special case, it was possible to adopt a more direct type of proof of convergence.
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