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Abstract. The lattice vortex model of the inertial range in turbulence theory is
reviewed; the model consists of an array of vortex tubes whose axes coincide
with the bonds on a regular lattice, subjected to random stretching and
successive scaling, and constrained by conservation laws for energy, specific
volume, circulation, helicity, and an energy/vorticity relation. The scaling laws
for vorticity are examined in detail, a Hausdorff dimension for the "active"
portion of the vortex array is calculated, the origin of intermittency is exhibited,
and it is pointed out that the Kolmogorov — 5/3 power law already accounts
for intermittency effects.

Introduction

The inertial range in turbulence is the range of scales far enough from the scale of
the driving forces to sustain universal statistics yet not so small that viscous effects
are important in their dynamics. The analysis of the inertial range is important for
the understanding of turbulence and for the design of practical modeling methods.
Numerical calculations designed to elucidate the structure of the inertial range, in
particular by vortex methods [2,5], display surprising patterns of complexity and
have not been convincingly reconciled with the qualitative theory of Kolmogorov,
Kraichnan, and others [9, 11, 14]. These calculations do provide evidence that
vortex tubes stretch, bend and bond into fractal structures.

The lattice model we shall examine stands halfway between a straightforward
vortex calculation and a qualitative model. It was suggested by the calculations in
[5], and affords a way of constraining the simple cascade models of the inertial
range to obey the basic conservation properties of the Euler equation. Some
aspects of the calculations in [5] have been challenged, in particular by Greengard
[10], but their usefulness as a qualitative guide is not impaired, except for one issue
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that will be discussed below. The model explains and reproduces the salient
observations made in vortex calculations, in particular intermittency.

The model has been previously presented in [6]. It has been pointed out to the
author that the earlier presentation contains a number of gaps that make it hard to
understand. The present paper fills these gaps, in particular where the scaling of
vortex tubes is concerned, and also repairs an error in the derivation of the
Kolmogorov spectrum. It prepares the way for a full-fledged polymeric model of
turbulence to be presented later.

Scaling Laws for Vortex Tubes

Consider flow in a periodic domain of period 1 of a fluid with density 1. We shall
not write down the equations of motion since they will not be used explicitly. The
kinetic energy T of the fluid can be written as [12]

where u is the velocity, x is the position, ξ = curlu, is the vorticity, and the
integrations are over a periodic box. The enstrophy is defined as

Z = f |ξ| 2dx, (2)

and the helicity H as

(3)

In the absence of external forces and of viscosity, dT/dt^O, dH/dt = 0 and Z is a
rapidly increasing function of the time t for "most" data [5].

Before presenting the lattice model, we need some scaling properties of the
integrals (1), (2). Consider a vertical cylinder C of height / and a cross section of area
A(r\ where r is a linear dimension characteristic of that cross section (e.g., if the
cross section is circular, A = πr2, r = radius). Assume ξ is vertical inside C,
ξ = (0,0, ξo\ ξ0 = const. Let T(r, I) be the second integral in (1) evaluated over CxC
and Z(r, Z) the integral in (2) evaluated over C. It is understood that divξ φ 0 unless
ξ is continued beyond C, and thus the first integral in (1) evaluated over C does not
necessarily equal T(r, I). We need to know the dependence of T and Z on r, Z when
the circulation A(r)ξ0 is kept fixed, i.e., ξo~ί/A(r).

Let α > 0 be a real parameter. Define the scaling factors SUS2 by

where ξ = (0,05ξo(α))5 ξo((x)A(ar) = ξo(ί)A(r). SUS2 depend in general on both their
arguments, but not on Z, r individually as long as the cross sections A(r) are similar.
SUS2 are not independent. A brief calculation shows that

while

T(ocr, αZ) = ^(//(αr), ot)T(otr, I) = S,(//(αr), α)S2(//r, a)T(r, I),
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Table 1. Energy scaling factor ^(7/r, 2) as a function of l/r

SSIr-,2) logS1(//r,2)/log2

0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.5
3.0

3.83 1
3.72 I

3.44 1

3.27 1

3.15 I

3.06 J

2.99

2.93

2.88

2.85

2.81

2.76

2.70

1.94
L90
L78
1.71
L65
1.61
1.58

1.55

1.53

1.51

L.49

1.46

1.43

and thus

α = S1(//(αr),α)S2(//r,α) (4)

Equation (4) has an important consequence: if one pulls on a vortex tube to
lengthen it, the energy associated with the vortex increases and thus work has to be
done. To the extent that our vortex tube will resemble a polymer, Eq. (4) determines
the force law for that polymer. Note that a volume preserving stretching of the tube
multiplies the energy Γby S2(od/r, l/]/α) 51(//r, α). If l/r <ζl (a "fat vortex"), one can
readily see that increasing the length of the tube by a factor α increases the volume
over which the integral T(7, r) is evaluated by α2 while keeping the distribution of
values of |x —x'| fixed, i.e., Sx ~oc2, and by (4), S 2 ~ α ~ 1 . At the other extreme, if
l/rp 1 (a "thin vortex" approximation) a comparison with the expression for the
energy of a vortex filament [12] suggests S ^ α l o g α , S2~(log(x)~1. Thus if one
doubles the length of a "fat" vortex one approximately quadruples its contribution
to the energy integral, while if one doubles the length of a "thin" vortex one does
little more than double its contribution.

In Table 1 we display some numerical values of S^l/r, 2) and of

for several intermediate values of l/r, calculated numerically for a cylinder of
square cross section. For a given value of l/r, Sί~otq. In [6] it was systematically
assumed that the vortex tubes were "fat" without adequate comment. We shall
show below that the "fat" vortex assumption is self-consistent.

A simple calculation shows that

Z(αr, /) = - Z(r, I), Z(r, α/) = αZ(r, I).
α

We shall refer to r for simplicity as the vortex tube radius even where the cross
section is not circular.
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Vortex Stretching on a Lattice

The main events that occur in the inertial range are breakdowns of vortical
structures into thinner and more convoluted structures on a smaller scale. We shall
now produce a lattice model of this breakdown. We shall be assuming that the
support of the vorticity can be idealized as a union of vortex tubes. Since
presumably every configuration can be approximated by such a union, the loss of
generality is not substantial.

Consider a three-dimensional cubic lattice with vertices (iδjδ,kδ), ij,k
integers, 1 ̂  ij, k^m,mδ = \. Consider a vortex tube made up of oriented segments
of finite thickness whose center lines coincide with the bonds of the lattice; its
configuration is continued periodically in all directions. Assume the tube is
connected and does not intersect itself, i.e., each vertex of the lattice connects either
0 or 2 segments. Write I = (iJ,k) in short instead of {iδjδ, kδ); denote by uI = uijfk

a horizontal active segment whose leftmost end coincides with / ("active" means
"belonging to the tube", "horizontal" means "parallel to the x = iδ axis", "leftmost"
means "corresponding to the smallest value of x"). Similarly, denote by w7 a
vertical segment and by vI a segment that is transverse. Denote by u^v^Wj a
variable attached to these segments and taking the value +1 if the segments are
oriented in the direction of increasing x, y, z and the value — 1 otherwise.

Endow this configuration with an energy T, constructed so as to mimic Eq. (1):

T=TE+TS,

TE = Σ Σ M i 17-7,7+ Σ Σ W'TT—77+Σ Σ WiWrτγ—jή> (5)
/ / ' Φ ί μ— ί\ 1 I'ΦI μ—1\ 1 r*i μ~ 1\

τ s = Σ % / ) + Σ $(*>/)+ΣS(w,),
/ / /

where \I — Γ\ is the distance between / and /'. The sums in TE mimic Eq. (1), the
immaterial factor (δπ)"1 has been omitted, and the subscript E stands for
"exchange." The system being periodic, each segment should interact with every
other segment and with all periodic images of every other segment; to save effort
we keep only the largest of these interactions (for details of implementation, see
[6]). The domain of integration in formula (1) includes values of x and x' belonging
to the same segment, giving rise to a self energy S; denote this self energy by Siuj),
S(vr), S(wj), depending on whether the segment is horizontal, transverse or vertical.
S(uj), etc. depend on the cross section of the segment as well as on its length; assume
that at the initial time these self-energies have been computed. Note that self energy
is different from "self induction." A straight vortex tube has no self-induced motion
but there is energy in the velocity field that it creates.

We shall now stretch the vortex tube by a sequence of elementary stretchings;
the end result of the sequence will be compared with the breakdown of an "eddy."
Pick an active segment at random, with all segments having an equal chance of
being picked. Consider the possible stretching of this segment into a [/-shaped
configuration of three segments (Fig. 1). There are four such configurations for
every segment. Pick one of them at random. If the proposed configuration leads to
self-intersection of the vortex tube, reject it and pick another segment. If it does not
lead to self-intersection, accept it if a certain energy constraint is satisfied. This
energy constraint will be described shortly.
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Fig. 1. An elementary stretching

Note that self-intersection is rejected because it would lead to infinite energy
and also violate the conservation of helicity. Helicity is conserved as long as the
"degree of knottedness" of the tubes is fixed, which will certainly be the case if they
are not allowed to self-intersect [15]. Euler's equations, as long as their solutions
are smooth, forbid self-intersection. If a small viscosity is allowed, self-intersection
can happen but the mechanism is at present obscure (see e.g. [1]). Some recent
theories of quantum turbulence gave a fundamental role to self-intersections of
vortex lines but the agreement of these theories with experiment has now been
shown to be a numerical artifact [4].

We now examine the change in energy T due to a proposed stretching. TE

changes because all interactions involving the old segment are deleted and
interactions involving the new segment are added. 7̂  changes because the self-
energy changes as the vortex tube becomes thinner, and because there are now
three segments with self energy instead of one. To calculate the increase in self-
energy we need to know the radii of the tubes. We shall see below that it is self
consistent, under appropriate constraints on m, to assume that the vortex segments
are close to being "fat". After stretching, each segment has a cross-section 1/3
smaller than the original cross-section and its radius is l/j/3 smaller than
previously, and thus its self-energy is j/3 x its original self energy. In moderately
fat vortices, the new energy is C x old energy, \<C<]/3. The self-energy of the
segments can only increase.

Consider a vortex tube that is initially vertical, with the S(wj) initially small.
Perform a stretching. TE will decrease, since the vertical contribution to TE will
decrease and the only horizontal contribution will involve segments pointing in
opposite directions (Fig. 1) and will be negative. The initial increase in 7̂  will be
small. If one keeps on performing stretchings (discarding possible self-
intersections) S(uj), S(vj), S(wj) will be increasing and eventually it is plausible that
the energy T= TE + Ts will return to its original value. If it does and when it does,
we have a new vortex tube; larger, thinner and more complicated than the initial
tube, but with the same energy, volume, helicity and connectivity. For detail of
computer implementation, see again [6].

The criterion for accepting stretchings is then as follows: as long as there are no
self-intersections and the energy T is below the initial energy, accept the
stretchings. If the energy after a proposed stretching exceeds the initial energy,
reject it and stop until further notice.

Note that the criterion we have just presented encourages the formation of
configurations for which TE is negative, to make up for the increase in 7̂ . An
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Fig. 2. A configuration that provides a negative contribution to TE

example of such a configuration is found in Fig. 2. This creates folds ("hairpins" in
the usual terminology) whose presence is well known from numerical and physical
experiment. The need for this folding to occur as Z increases while the energy is
kept fixed has been established in [5,6] on the basis of potential-theoretical
considerations. Here we have a discrete explanation of the reason why vortex
stretching coupled with energy conservation leads to the formation of hairpins. A
one dimensional "cartoon" of this fact has been presented in [7]. The intuitive
reason for the folds is that if the vorticity stretches while energy is fixed cancellation
must occur between the velocities induced by the stretched elements of vorticity.

Scaling of the Lattice

Once the calculation of the preceding section has come to a halt, no further
stretching with conservation of energy is possible on the given lattice. One could
hope that if the mesh were refined then stretching would become possible again
into the newly created smaller scale bonds. Presumably, one would have then to
keep on refining the mesh until one's computer memory were saturated - the
standard difficulty in turbulence calculations. Instead, one could attempt a scaling
- simultaneously halve δ, the bond length, and focus attention on an eight of the
computational domain (see [5,6]) by picking it out of the domain, making sure it
contains active segments, and then throwing out the rest of the segments and
replacing them by a periodic continuation of what has been kept. To simplify the
book-keeping, one can scale up the piece that has been kept to the original lattice.

The periodic continuation is made to provide boundary conditions for the
calculation. It clearly changes the calculation in ways that are not well controlled.
Some of the more obvious difficulties can be suppressed by changing units at the
beginning of a scaled calculation so that the energy remains fixed, but this is not a
full solution of the problem. Such problems with boundary conditions are
common in scaling transformation (see e.g. [3]). This is the biggest gap in the
justification of the model. Some confidence in the validity of the process can be
obtained by noting that the calculation reproduces certain bounds on the allowed
support of the vorticity that are derived through potential theory (see [5,6] for
details).
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It is easy to see that the rescaled calculation may allow some additional
stretching of the vortex line without an increase of the energy simply by creating
new allowed configurations, but that after a few scalings vortex stretching will
come to a halt. Indeed, in each scaling each segment doubles its length; every term
in TE is replaced by four terms, each making approximately half of the original
contribution to TE (because the distance |/ — Γ\ has doubled). Thus TE doubles, and
to make the scaling consistent Ts should double. Each old segment is now replaced
by two segments, and thus after rescaling each new segment (whose ancestor was a
half segment) retains the value [_S(uj), S(vj), or S(wj)] of its parent segment. It is clear
that TE is bounded from below by a value obtained from a perfect antiferromag-
netic arrangement of tubes, and since the S"s are monotonically increasing there will
soon be no way to stretch the tube further without violating energy conservation.
In order for the stretching to continue indefinitely, the segments must be allowed to
bunch up more tightly than is possible on a regular lattice that fills out all of space.
This is the origin of intermittency - vortex stretching and energy conservation lead
not only to folding of the vortex tubes, but to a bunching of the stretched tubes in
an ever decreasing fraction of the available volume. A one dimensional model of
this situation also was presented in [7]. This remark may also explain why some
turbulence models based on global Fourier expansions (that assume a regular
lattice in physical space) fail to exhibit intermittency.

Note that in each scaling, like the one we have just described, the spatial scale is
reduced by a factor 1/2; in a single stretching the radius of a vortex tube is reduced
by a factor l/]/3 = 0.577. The "fat vortex" approximation is self-consistent only if
the scale of the calculation shrinks faster than the vortex radius, i.e., if between two
scalings the numbers of active segments increases by a factor less than 3j/3/2 on
the average. If the stretching comes to a halt, as we have just described, the "fat
vortex" approximation is automatically self consistent. When intermittency is
introduced this conclusion will have to be reconsidered. If the scale of the
calculation shrinks faster than the vortex radius and stretching does take place,
some of the tubes must explode into subtubes that stretch independently, a real
effect that we shall ignore.

Scaling with Intermittency

We shall bunch up the vortex tubes by scaling up the eighth of the calculation that
is retained at each scaling into volume /? = 2jD/23, 0 < D < 3 . D is a similarity
dimension, analogous to the one used in [9,14]. Such bunching is observed in the
calculations in [2,5]. We shall make the arbitrary assumption that the smaller
volume has a cubic shape, with side d = \f β — 2(D~3)/3. If one compares the terms in
T£, 7^ in the smaller volume with their values in a unit cube, one sees that the terms
in TE are multiplied by d (d2 because each segment is d times shorter, d~ 1 because
the distance between segments has decreased). In the "fat vortex" approximation
each term in Ts is multiplied by d2 because its energy is a quadratic function of its
length, then by ]/d because its radius is multiplied by ]/d, giving a total factor d512.
Note that the scaling here is different from the one that results from considering
T(αr, α/), α = d, in Eq. (4). To obtain T(ω\ oil) one multiplies each length by a without
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regard to conservation of volume, while here volume is conserved. Thus, if
T» = (Ts)n + (TE)n is the energy after the n-th scaling, when intermittency is taken
into account we find

When d< 1, Ts becomes smaller compared to TE and the stretching can proceed.
The "active" part of the volume, i.e., the part in which vorticity keeps on stretching,
occupies a shrinking part of the total volume, characterized by the scaling
dimension D. Potential theory [5,6] shows that D>\. Note that in general
Tn+ι< Tny as indeed must be the case since the vorticity in those parts of the total
volume where stretching no longer takes place still contributes to the total energy.

The smaller D (and thus d) the smaller Ts, and thus more stretching can occur.
Zn, the enstrophy after n scalings, is thus a function of D. The relation (Zn + 1/Zn)
= 4(Tn + ί/Tn) holds for homogeneous turbulence and provides an implicit equation
for D. This relation is a consequence of the relation ξ = curlu. The resulting
equation for D was solved numerically in [6], under the "fat vortex" scaling, and
provided the estimate D~23. Finite values of r/l lead to larger values of D, and
thus D ^ 2.3 is an underestimate, consistent with the usual guess D ~ 2.5 [9,13,14].
The arguments above show that D < 3 .

It should be noted that the object whose similarity dimension has just been
computed and the object whose similarity dimension was estimated in [5] are not
the same. In [5] we estimated the dimension of the support of a fraction (1 — ε) of Z
while here we are estimating the dimension of the collection of cubes whose
interior contains the support of all but a negligible fraction of Z. It is plausible that
the two objects are equal, but the calculation in [5] was marred by the uncertainty
as to what happens when ε-»0, as was pointed out to the author by Greengard
[10]; the present estimate is the better estimate.

The self-consistency of the "fat vortex" approximation depends on the number
of stretching per scaling not being large, and thus on m, the number of lattice nodes,
not being large. This restricts the model with "fat" vortices to small m, where m3 is
the number of lattice nodes, i.e., to the case where the cascade is local in scale.
Recently, the validity of this assumption has been challenged [16]. The
Yakhot/Orszag model could presumably be accommodated by a "thin vortex"
approximation. The calculations in [6] were made mostly with m = 4 and m = 6, for
which values the potential theoretical result D > 1 for finite energy is recovered.
However, it should be pointed out that for D near 1 the restriction posed by the use
of the "fat" vortex model is more severe than near D^2.5, as can indeed be seen
from the results in [6].

Some Comments on the Kolmogorov Spectrum

The spectrum derived by Kolmogorov for the inertial range is £(/c)~ε2/3/c~5/3,
where k is a wave number and ε is the rate of energy dissipation. A dynamical
derivation of this law was given by Kraichnan [11]: consider a sequence of eddies
of decreasing sizes /„, n = \,2,...,ln+ί<ln, with characteristic velocities un and
characteristic energies En ~ u2. Suppose that in a time tn ~ ljun, the "turnover time"
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of the «-th eddy, that eddy yields its energy to the eddy of the next size; then

EJtn~u3Jln~ε, (6)

ul~εVψJ\ (7)

and the Kolmogorov law follows by a Fourier transform. Equation (6) is very
attractive because it is a plausible caricature of the Euler equations: if one
considers an eddy of size /, then ux ~ u/l, (u V)u ~ u2/l, — gradp ~ (u V)u, uδtu ~ ε
~u3/l. Note however that Eqs. (6) and (7) contain a paradox. If indeed all of the
energy in eddies of size ln move to eddies of size ln +1 [as is assumed in deriving
Eq. (6)], then the amount of energy in eddies of size /„ is on the average equal to
EoίJT, where T is a characteristic decay time for the vortical structures, Eo is the
constant available energy, and tn~ljun, un~γΈ = const. Thus En~ln, and E(k)
~k~2, contradicting Eq. (7). The paradox can be resolved if some energy is left
behind at each step of the cascade, as a result of the integral constraints discussed
above and the resulting intermittency, and furthermore if the characteristic times
and lengths are also modified by the intermittency. Thus the difference between a
k~2 and k~5/3 spectrum can be ascribed to intermittency and there is no need for
further intermittency corrections as in [9,14]. This argument was made in [6] in a
more precise way, but the more detailed analysis is implausible and must be
abandoned. Furthermore, assumptions about the contribution of the energy left
behind as a result of intermittency to the structure of the inertial range may well
lead to a reconciliation of the cascade picture with the experimental data on the
higher statistics of the flow in the inertial range.

Conclusion

We have provided a lattice vortex model of the inertial range that explains many of
the results of direct numerical calculations. A number of omissions and an error in
earlier presentations have been corrected, in particular, the scaling properties of
vortex tubes and the relation between the model and the Kolmogorov law have
been made explicit. The use of the lattice model in turbulence modeling will be
explained in a subsequent paper.
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