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Abstract. We construct a family of supersymmetric, two-dimensional quantum
field models. We establish the existence of the Hamiltonian H and the
supercharge Q as self-adjoint operators. We establish the ultraviolet finiteness
of the model, independent of perturbation theory. We develop functional
integral representations of the heat kernel which are useful for proving
estimates in these models. In a companion paper [1] we establish an index
theorem for Q, an infinite dimensional Dirac operator on loop space. This
paper and, another related one [2], provide the technical justification for our
claim that Q is Fredholm, and for our computation of its index by a homotopy
onto quantum mechanics.
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I. Introduction

In this paper we construct a family of TV = 2, Wess-Zumino quantum field models
on a cylinder T1 x R [3]. The one-torus (circle) corresponds to periodic boundary
conditions in space. We use a mixture of Hamiltonian and Euclidean methods to
construct the generator H of time translations.
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These models have a local, conserved operator, the supercharge β, related to H
by the identity H = Q2. The operators Q and H are integrals over T 1 of densities
Q(x) and H(x), respectively. It is a remarkable fact that these models are ultraviolet
finite - no infinite renormalizations occur in H. Furthermore, the vacuum energy
of H is identically zero; the models are thus infrared finite and have unbroken
supersymmetry. We believe that this provides the first complete construction of a
nonlinear, supersymmetric quantum field model.

The nonlinear models which we study also have nontrivial vacuum structure.
We extend the present analysis in a companion paper [1], where we establish an
index theorem for Q and prove nonuniqueness of the vacuum state. The
supercharge Q is a function of an analytic polynomial V(φ), the superpotential. For
a superpotential V of degree n, there are at least n—\ linearly-independent, zero-
energy eigenstates of H.

We establish the relevant estimates on the Hamiltonian H using heat kernel
methods. We represent exp( — βH) by a functional integral which is Gaussian in the
fermionic degrees of freedom but which, in general, is non-Gaussian in the bosonic
degrees of freedom. We establish a Feynman-Kac representation for the heat
kernel which, after evaluation of the Gaussian fermionic integral, yields a
Fredholm determinant.

To establish heat kernel representations we first introduce an approximate
(ultraviolet regularized) Hamiltonian H(κ) and supercharge Q(κ), with
H(κ) = Q(κ)2. The representation for exp( — H(κ)) involves a Fredholm determi-
nant of I — K{κ\ We replace the Fredholm determinant det(/ — K{κ)) with the
regularized determinant det3(/ — Kiκ)\ where

det(/ - X(κ)) = det3 (/ - K{κ)) exp( - TrX ( κ ) - |Tr(K ( κ ) ) 2 ) . (I.I)

This allows us to remove the ultraviolet regularization K. The singular terms in the
exponential, namely — ΎrK{κ) — ^Ύr(K(κ))2 exactly compensate for other singular-
ities which occur in the bosonic action. The result is that no ad hoc renormali-
zation is necessary. (This finiteness does not, however, hold in the corre-
sponding JV=1 models.)

We use these methods to prove uniform bounds of two types. In the first place
we establish a lower bound on the Hamiltonian of the form

ζNτ^H(κ) + C. (1.2)

Here τ < 1 and ζ = ζ(τ) > 0, C < oo are constants independent of K. Also Nτ is a
quadratic expression interpolating for τe[0,1] between the particle number
operator N = N0 and the free Hamiltonian H0 = N1, see Sect. II. This bound is
useful to establish elementary properties of H, such as the compactness of its
resolvent.

In the second place, we establish norm continuity estimates κ: ̂ (iί(κ:) + / ) ~ 1

and convergence as κ->oo. This allows us to also prove norm continuity and
convergence for the supercharge resolvents κ^(Q(κ)±i)~ί. The resulting κ= oo
operators Q and H are self-adjoint, cutoff independent, and H = Q2. The Feynman-
Kac representations also have κ-κχ) limits.

The family of models we study have superpotentials

m > 0 , (1.3)
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which are analytic polynomials in the complex-valued field φ of degree n ̂  2. We
use the mass term \mφ2 in the covariance of the Gaussian measure, and we
consider P=V—\mφ2 as a perturbation. The bosonic energy density of
self interaction is \dV(φ)\2, a polynomial of degree In — 2. The boson-
fermionic interaction has the form of a "generalized Yukawa" interaction
ψΛ + ψd2V + ψΛ_ψ(d2V)*, where Λ± are projections onto chiral subspaces of
spinors, see below. The φ4-Yukawa theory resulting from the choice of cubic V and
its renormalizability was studied [4] from a constructive point of view. In case
P = 0, this generalized Yukawa interaction reduces to a free field mass term mψψ,
and the total Hamiltonian reduces to a free, supersymmetric, mass m model.

II. The Mode! and the Main Results

We review the notation established in [1]. The Hilbert space Jf of our model is a
tensor product of the bosonic Hilbert space J*fb and the fermionic Hilbert space
Jfp namely J^ = J^b®J^f. In both cases we assume that the one particle space is
built over the circle (one-torus) T 1 of length t.

II.ί. The Bosonic Fock Space

The one particle space of the complex scalar field is

W=L2(T1)®L2(T1)=W+®W^ .

The Fock space J^b is a symmetric tensor algebra over W with the natural inner
product yielding on the n-fold tensor product ||/(χ) ... (x)/|| = ||/||M, fe W. In the
Fourier space (momentum representation) we define annihilation operators a+(p)
on W± so that a + Ωb

0 = Q, Ω£ = (l,0, ...,0,...), and

[ f l±(p), a±(q)-] = \_a±{p\ aτ(qft = [α±(p), a%{q)]=0,

La±(p),a*±(qy] = δpq,

where peT1 = —TL and δpq is the Kronecker delta. The time zero field is defined
by {

<p(x) = ( 2 / Γ 1 / 2 Σ ω(pΓllz(al(p) + a-(-p))e~>px, (Π.2)
pet1

where ω(p) = (p2 + m2)112, and m>0. The canonical momentum is

pet1

The scalar field satisfies the commutation relations

lφ(χ), φiyίl - W 4 Φ)~] = [π*(χ), φ(y)] = 0,
(II.4)

)

where δ(x — y) is the Dirac measure.
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11.2. The Fermionic Fock Space

The fermionic Fock space J^f is the anti-symmetric tensor algebra over
1). The annihilation operators are b±{p\ pet1 and they satisfy

where { , } is the anti-commutator. The time zero Fermi fields are defined by

l2 Σ ω{pyll2(v(-p)bt{p) + v{p)b + {-p))e-ipx

9

pefl (II.6)
12 X ω(PΓ

1/2(v(p)b*(p)-v(-p)b+(-p))e-ίpx,
pet*

where v(p) = (ω(p) + p) 1 / 2. Let iPiM^ipfM? Ψ2(x) = Ψ*(χ)> corresponding to

o ) ' τ h e n

J/J. The Operators Nτ

For 0 ̂  τ ̂  1 we define the operators

Nτ,b= Σ Σ
J=±peTl

^τ,/= Σ Σ
j=± pet1

on dense subspaces of ffb and J^f, respectively. Let

be defined on J^7. Clearly the number operator is N = N0 and the free field
Hamiltonian is H0 = Nί. For 0 < τ < l these Nτ operators interpolate between N
and Ho. It clearly causes no confusion to suppress the tensor products with /.

11.4. The Cutoff Interaction

Let V be given by (1.2). The supercharge Q is defined as a bilinear form on M7.

Q=η= \ (φΛπ-dxφ*-idV(φ)) + ψ2(π*-dxφ-idV(φ)*))dx + h.c.9 (II.9)

where h.c. denotes hermitian conjugate. The domain £)0 of Q we choose consists of
Fock states with finite number of particles and @(T^-valued wave functions.
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We use the following smooth approximation to the periodic Dirac measure

based on a cutoff function χ satisfying

(i) O^χeS

(ii) J χ{x)dx = l,
— 00

(iii) χ(-x) = χ(x),
(iv)
(v) suppχ(p)C[-l,l], χ

We set

γjx) = κ X χ(κ{x-nί)), (11.10)
neZ

where κ>0. We define regularized (cutoff) fields by convoluting with χκ on T 1,

The regularized supercharge g(κ ) is defined as a bilinear form on Jf7,

efrHGo + Gu' (π.ii)
where

Q .c., (11.12)
|/2 7-

and

β ^ = - ^ ^ V i 3 P ( φ κ ) + φ25P((39IC)*)dx + h.c., (11.13)

where P(φ) is defined by (1.3).

Proposition ILL The form Q(κ) defines a symmetric operator with domain ® 0 , such
that (as a form) its square equals

H(K)ΞQ(K)2 = H0+ J (mφ*dP(φκ)-(φ1φ1)κd
2P(φκ

Γ1

+ J |δP(φκ)|2dx. (11.14)

Here (ψμψμ)κ = j>(ψμ,κψμ + ψμψμ,κ)> Thus H(κ) extends uniquely to a symmetric
operator with domain <30.

Proof. See [1].

II.5. The Zero Momentum Limit

Set

Φo = ^~ 1 / 2Φ(°)> Ψμ,o = t~ίl2Φμ(O)> (11.15)

where φ(p) = Γι/2 J Jxφ(x)β ίpx. Define
r1
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where

Qu o = ~ η= *(Ψi, oSP(ψo) + Ψ2. oδPiΨo)*) + h c (II. 17)

We also set H(0) = Q(0)2. Here H(0) is the Hamiltonian of a theory where the only
interacting mode is the zero mode.

11.6. The Main Results

We first state the results pertaining to the regularity of Q(κ) and H(κ) and their
dependence on regularization.

Theorem II.2. (i) The operators Q(κ) and H(κ) are essentially self-adjoint on the
domain Θo for all 0^κ<oo.

(ii) The resolvents of their closures converge in the operator norm as κ-»oo to
the resolvents of self-adjoint operators Q and H = Q2, respectively.

(iii) Define Q(oo) = Q, H(oo) = H. The mappings κ->Resolvent(Q(κ)) and
κ~> Resolvent (H(κ)) are continuous in the operator norm for Org/ĉ Ξ oo.

Remark. It is transparent from our proof that the limiting operators Q and H are
independent of the choice of the regularizing function χ. Thus the Hamiltonian and
supercharge are uniquely determined by the parameters of the superpotential V.

Secondly, we state our integral representations for the index of Q{κ). Let
Γ = (-Ifo,f and let P ± = | ( / ± Γ ) . Define Q + (K) = P + Q(κ)P_, and let i(Q + {κ))
denote the index of Q + {κ). In Theorem IV.2 of [1] we established the integral
representation

i{Q+(κ))= j det(l -K{κ)(Φ))exp(-Aiκ\Φ))dμc{Φ), (11.18)

where C = C^β is the Green's function of — A + m2 on the torus, and where dμc is a
Gaussian measure on periodic distributions. Also det denotes a Fredholm
determinant, and K{κ) and A(κ) are given in (IV.7-8) of [1]. In [2] we establish a
related representation for κ=oo. We use the regularized determinant defined
by (I.I).

Theorem II.3. With

= lim
κ—* oo

the index has the representation

(11.19)
'{T2)

III. Fundamental a priori Elliptic Estimates

In this section we state the crucial part of our construction, the fundamental a
priori estimates. These estimates generalize certain classical elliptic estimates for
differential operators on L 2 (R M ) to operators on L 2 of an infinite dimensional
(loop) space. The estimates will be proved in [2]. For example, a fundamental a
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priori estimate in partial differential equations is Garding's inequality which
bounds an elliptic operator from below by a power of the Laplace operator. Our
first estimate generalizes Garding's inequality to an infinite dimensional setting:

Theorem III.1. Choose τe [0,1). Then there exist constants ζ > 0 and C < oo which
are independent of K and for which

The fact that the bound (III.l) is uniform in K is characteristic of the a priori
bounds established here. We use such estimates to establish the existence of the
κ-+ oo limit. Such a philosophy is standard in the constructive field theory [5]. The
H(κ) with κ< oo are operators with a finite number of degrees of freedom (plus an
infinite number of uncoupled degrees of freedom). It is important that the
constants in our estimates are independent of the number of degrees of
freedom = O(κ). Thus we develop the theory of infinite dimensional elliptic
estimates in terms of finite dimensional, uniform approximations.

We next state the continuity and convergence of the finite dimensional
approximations for the semigroups

β-+Qxp(-βH(κ)), β^O. (III.2)

Theorem III.2. For β>0 fixed, the map

κ ^ e x p ( - βH(κ)) (III.3)

is norm-continuous for 0 ̂  K. Furthermore, the family

{exp(-βH(κ))}

is norm-convergent as κ-+co.

We denote the limiting semigroup by T(β), β^O, namely exp( — βH(κ))-^T(β).
In order to express T(β) in terms of an infinitesimal generator H, we require
continuity of T(β). The consequence of strong continuity at β = 0 is the
representation T(β) = e~βH, with H a. self-adjoint operator on Jtf*. The delicate
domain question of whether H has a dense domain is more subtle in the infinite
dimensional setting than in finite dimensions. For example, no vector in the
smooth domain ^ 0 of C00 wave functions with a finite number of particles is in the
domain oϊH. This is the case, even though no renormalizations of H are necessary!

Theorem III.3. The semigroup T(β) is strongly continuous at β = 0,

stlimT(j3) = J. (III.4)

Corollary to Theorems III.2, 3. The limiting Hamiltonian H satisfies the Gάrding
estimate (III.l)

(111.5)

In our examples, the supercharge Q(κ) is related to H(κ) by H(κ) = Q(κ)2. We
wish to construct a limiting Q as well as a limiting H, and we desire H = Q2. The
supercharge is a Dirac operator on loop space, while H is a Laplace operator. We
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require continuity of Q(κ) in K, as well as convergence of Q(κ) in the following
manner as /c->oo. Let δQ = (Q(κ) — Q(κ'))~~, where ~ denotes the operator closure.

Theorem III.4. Let β>0. Then Range(e~ W κ ) )C Domain(δQ) and

\\e-βH{κ>)δQe-mκ)\\ =o(l) (111.6)

as \κ — κ'\—>0, and as κ,κf->co.

IV. The Laplacian H on Loop Space (The Hamiltonian)

In this section we assume that H(κ) is essentially self-adjoint on @0 (as proved in
Sect. VI), and we assume the fundamental a priori bounds of Sect. III. We then
establish the existence of a self-adjoint H= lim H(κ). The limit exists in the sense

K —• o o

of norm convergence of the resolvents. Basically, the existence and self-adjointness
of H is a consequence of the a priori bounds.

Theorem IV.l. The resolvent κ-+Rκ = (H(κ) + iyι is continuous in norm, and the
family Rκ converges in norm as κ-κx). The limiting operator R = limRκ is the
resolvent (H + iy1 of a self-adjoint operator H.

We use a standard result in functional analysis: if for one β > 0, exp( — βHn) is a
norm convergent sequence of self-adjoint operators, then the resolvents (Hn + I)'1

also converge in norm. Thus resolvent convergence is a consequence of the
estimate on the continuity and convergence of the heat kernels, Theorem III.2. The
existence of H requires the construction of a dense domain for the infinitesimal
generator of limexp( — βHn). This follows from the strong continuity of T(β)

n

= limexp( — βHn), as stated in Theorem III.3.

V. The Dirac Operator Q on Loop Space (The Supercharge)

In this section we establish the properties of Q = lim Q(κ). We use the notation

Sκ = (6M + 0 " 1 , Rκ = (H(κ)±IΓι. (V.I)

Theorem V.I. The resolvents Sκ, SJ of the supercharge are norm-continuous in K and
norm-convergent as κ;->oo. The limiting operator S= lim Sκ is the resolvent of a
self-adjoint operator Q, and H = Q2.

Lemma V.2. The operator R~1/I2SK is unitary.

Proof Note that SKS* = RK = S*SK. On the domain ® 0 ,

(R- ι/2Sκ)*(R; ι'2Sκ) = R;ιS*κ$κ = /,

and similarly for the product in the opposite order. These identities extend to Jf
by continuity. [The operator R ~ 1J2SK is actually a square root of the Cayley
transform of Q(fc).]
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Proof of Theorem V.I. Choose ε>0. We claim that for K, K' sufficiently large,

(V.2)

Let Eκ = Eκ(λ) denote the spectral projection onto the subspace H(κ)^λ. We
choose λ = ε~2. Since Q(κ) commutes with H(κ), these operators can be simulta-
neously diagonalized and Eκ commutes with Sκ. We study δS = Sκ~Sκ>. Then

δS = Eκ,δSEκ + (/ - Eκ)δSEκ + δS(I - Eκ). (V.3)

We claim that for K, K! large,

|| δS(I - EJ || S 3£, II (/ - Eκ,)δSEκ || ^ 3ε. (V.4)

In fact, using the lemma

||S^(7 —£^11 = i l ^ - ^ ^ ^ ^ ^ C / —£^11 ̂  | |^/ 2 (7 —£^11 ̂ (A + 1 ) ~ ^ 2 ^ £ : . (V.5)

Furthermore, for κ,κ', sufficiently large, we infer from Theorem IV. 1 that

ε. (V.6)

Here we use the fact that norm convergence of resolvents implies norm
convergence of the square root. Thus

g ε + ε = 2ε,

and by Lemma V.2,

(V.7)

It follows from (V.5), (V.7) that

which is the estimate on the last term in (V.3). The estimate on (I — Eκ )δSEκ is
similar. Hence

\\δS\\Z6ε+\\Eκ.δSEJ. (V.8)

We now use the facts that ||SK]| 5|1, and that the resolvent identity

δS = Sκ-Sκ, = Sκ,(Q(κ')-Q(κ))Sκ

holds as a bilinear form. Thus we also have the form identity

Eκ.δSEκ = Sκ.Eκ,δQEκSκ, (V.9)

where δQ = (Q{κ')-Q(κ))~.

By Theorem II1.4, with β > 0, and with c, K sufficiently large,

\\Eκ,δQEJ = \\Eκ,e
βHiκ'>e-βHiκ">δQe-mκ}eβHiκ)Eκ\\

£e2λf\\e-βH<κ')δQe-l'mκ)\\ ^e2λ

From (V.8-10), we infer ||<5S|| ̂ 7ε as claimed.
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This completes the proof of convergence of Sκ as κ->oo. The same type of
argument shows that {*SK} is continuous in K for κ< oo. Since \\δS\\ = \\δS*\\, the
continuity and convergence of S* follows. This completes the proof of the norm
continuity Sκ.

We now proceed to show that S= lim Sκ is the resolvent of a self-adjoint
K—• oo

operator Q. The main technical issue is to show that S is invertible, namely that
kernel (S) = 0. A similar issue arose in the proof of self-adjointness of H, and it was
solved by showing that the semigroup T(β)= lim exp( — βH(κ)) was strongly

continuous at β = 0, cf. Theorem IV.3. In this case we have no heat kernel
representation for Q, but we use the existence of a dense domain for H. In fact,

= lim S * S K = lim (H(κ) + I ) ~ 1 = { H + I ) ~ ί . (V.ll)
K—• oo κ~* oo

Since O gif = H*, the null space of (// + / ) " * is zero. Thus the null space of S is
trivial and S is invertible. It then follows by Theorem 4 of [6] that S = (Q -f i) ~1 is
the resolvent of a self-adjoint operator Q. Furthermore,

so H = Q2 and the proof of Theorem V.I is complete.

VI. The Cutoff Theory

In this section we define well behaved approximations to the Hamiltonian H and
to the family of modified Hamiltonians f/τ, used to establish the Nτ bounds of
Theorem III.l. The integral representations for the heat kernels of these
approximating Hamiltonians Hτ(κ) yield elliptic regularity estimates for Hτ(κ), as
well as continuity properties in K.

The approximating operators Hτ(κ) are unitarily equivalent to operators of the
form ho + hι-\-h2, where h2 is a partial differential operator on L2(IRM), where
M = O(κ) is large but finite. The operator h0 can be diagonalized in closed form [on
a Fock space t#

>\L2(lRM) of a system with an infinite number of degrees of
freedom]. The operator /zt is an infinitesimal perturbation oϊh0 + h2 (in the sense of
Rellich and Kato). Thus Hτ(κ) is an approximation to Hτ whose properties are
determined by the action of Hτ(κ) on functions with 0(κ) degrees of freedom. Our
analysis of the κ;—>oo limit depends on uniformity of the constants in the elliptic
estimates as a function of K.

In this section we establish the integral representations which we use to
establish estimates. In [2] we prove the desired uniform estimates. Throughout
these sections we fix m > 0 and f < oo (the length of the circle); we do not discuss
uniformity of our estimates in these parameters.

VIA. The Operators Hτ(κ) and Q(κ)

We begin with the definition of Hτ(κ). Choose 0 ^ τ < 1 and 0 ^ ζ < m1 ~ \ Consider
the following operators with domain <3Q.

H0^b = H0,b-ζNτ,b, HOtXtf = HOtf-ζNτιf, (VI.l)
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Wι = j m[φ*δP(φκ) + φdP(φκ)*]dx, (VI.2)
r1

W2= I \δP(φκ)\2dx, (VT.3)
Γ 1

and

Hb,f= ~ J
T 1

In terms of these operators

Note that for ω(p) = (p2 + m 2) 1 / 2, there exists ε = ε(ζ, τ) > 0 such that ω — Cωτ §: εω, so
εHoSHOtτtb + HOtttf. Also note that for ζ = 0, Hτ(κ) = H(κ) of (11.14). The Nτ

estimate of Theorem III.l is equivalent to

where C — C(ζ, τ) is a constant independent of K.

Proposition VI. 1. The operators Hτ(κ) and Q(κ) are essentially self-adjoint.
Furthermore, for ζ sufficiently small, (VI.7) holds, but with a constant C which is not
necessarily uniform in K as κ-κx).

Let /p(Jf), p ^ l , denote the Banach space of trace class operators on the
Hubert space π with the norm \\T\\p = {Ύr{T*T)p/2}1/p

Corollary VI.2. Letβ>0 and let Jf denote Fock space. Then exp(-βHτ(κ))eIp(3tf)
for all p ̂  1.

Proof. This follows from the κ:-dependent bound (VI.7) and Proposition II. 1
of [1].

Lemma VI.3. The operator Hτ b(κ) is essentially self-adjoint.

Proof. Decompose the Fock space j ^ b as a tensor product

where Jf< is spanned by states of the form RΩ0, where R is any polynomial in the
creation operators af(p) for \p\^(n — \)κ. Then the operators Hτb can be
represented as H^b®I + I(g)Hζ, where Hζ contains no interacting modes. The
operator Hfh is equivalent to a Schrδdinger operator — A + v on L 2(RM), with a
polynomial potential v. See [7] for a proof of this representation and the proof of
essential self-adjointness of —A + v. This completes the proof.

Lemma VIA Given ε>0, there exists a finite constant C = C(ε, κ)<oo such that on

Proof. The perturbation Hb f of (VI.5) can be written as a sum of four terms of the

Σ Σ Ψ?(-p-q)ψi(p)Up)(d2P(φκ)nq), (VI. 10)
| p | S κ | « | g ( n - 2 ) κ
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ι = l,2. Since each ψ^p) is a bounded operator, for Cκ sufficiently large,

HlfSCκ ^ 2Jd2P(φκnq)\2

= Cκ$\ΰ2P(φκ)\2dx. (VI.11)
τi

It follows that for ε > 0 there exists C < oo such that

lf^εjJdP(φκ)\2dx-

as claimed.

Lemma VI.5. Assume n = d e g P ^ 3 , so dogW2^4. Then there exists η = η(κ)<ί,
C = C(η, K) < GO, and ζ0 > 0 such that for ζ < Co,

Furthermore, η(κ) is bounded uniformly away from 1.

Proof. We write φ(x) = φ1(x) + φ2(λ;) + φ ( > )(x), where φ^x) denotes the contri-
bution to φ(x) from Fourier modes with \p\<Lκ/2, and where φ2(x) is the
contribution to φ(x) from Fourier modes with κ/2<\p\^(n—l)κ. Then for
arbitrary ε> 0,

m J 1/2

rgε j J (V1.13)

Since φκ(p) = φ(p)χ(p/κ), and χ(p/κ) > μ > 0 for |p| g #c/2, and χ(p/κ) = 0 for |p| ^ K, it
follows that

2 J | φ κ W | 2 J x ^ ε J \3P(φκ)\2dx + 0{?Γ ιμ~2).

Thus, after a new choice of ε,

m
τ i

<,^l\dP{φκ)\2dx + large constant. (VI.14)

Similarly, and using the fact that dP{φκ)
A{p) vanishes for \p\>(n — \)κ, we have

m \ {φ2 + φ{>))dP(φκ)*dx = m J φ2dP{φκ)*dx

= 2

 τi

1 j \φ2\
2dx.

Thus

/ κ / 2 < u Σ ( n

Σ

'm η
m

2\-l

T

(VI. 15)



Two-Dimensional, N = 2 Wess-Zumino Model on a Cylinder 159

where

oc= sup η-2{l+p2/m2)~ί=η~2{\+κ2/4m2yί. (VI.16)
\p\^κ/2

For fixed K, m we choose η<l, but sufficiently close to one that α < 1. Note that our
estimate appears to suggest that 77->1 as τc->0. However, our operators are
constant for K < π//, so it is sufficient to establish the estimate for K > π//, showing
that η is bounded away from 1. We are not interested here in the fact that our
constants diverge as TC-XX), since estimates uniform in K are only established
in [2].

We now collect together the bounds (VI. 14-15), as well as the identical bounds
for the complex conjugate term in (VI.2). Thus

where Ct is the constant from (VI. 14). Furthermore, with ω = (p2 + m2)1 / 2, and

Ho,b(P) = Σ ω « » * « » = : |π(p)|2: + ω2: \-'^2

we have

ω2\φ(p)\2 = ω2:\φ(p)\2;+ω

Here we use |π| 2 = : |π | 2 : +ω, |φ | 2 = : |φ | 2 : H-ω"1. Summing over the modes
\p\^(n—ί)κ and increasing the bound by 0^Ho b(p) for each remaining mode
yields, after a new choice of η < 1 and C, the desired inequality (VI. 12) for ζ = 0, and
it completes the proof for ζ = 0. A similar proof holds for ζ>0.

Proof of Proposition VI.ί. The operator Hτ>b-t-i/0)/ is essentially self-adjoint by
Lemma VI.3 and the fact that Hτ b and i/0,/ operate on distinct factors of the
tensor product M" = ̂ b®^f. The bound of Lemma VI.4 shows that

(\-η)(HQtXth+W2) + HQ^Hτth + HQtf + C{κ). (VI. 17)

Using Lemma VI.4 we conclude that Hb f is an infinitesimal perturbation of W2.
Thus by the Rellich-Kato bound on the Neumann series, Theorem V.4.3 of [8],
Hτ(κ) is essentially self-adjoint and (VI.7) holds with small ζ and a κ:-dependent
constant C(κ). The essential self-adjointness of Q(κ) follows from (for instance)
H(κ) = Q(κ)2 and the commutator theorem (Theorem 19.4.3 of [5]).

VI.2. The Feynman-Kac Formula

We consider the space / ( R x T1) of distributions periodic in the xί direction. Let
Q denote the Green's function for — A +m2 on the cylinder R x Γ 1 . It has the
integral kernel
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Also, let dμc^(Φ) be a Gaussian measure on 5^(IR x T1) with covariance Q. Let
Φκ{x) be a regularized approximation to Φ(x):

Φκ(x) = Xκ * Φ(*)= ί ^ i - x ' i ) Φ ( x o ^ Ί W , (VL19)

where χκ is given by (11.10). We set

Af\Φ) = J (mΦdP(Φκ)* + mΦ*dP{Φκ) + |<3P(ΦJ|2)dx. (VI.20)
[ 0 3 ] Γ 1

Similarly, let S^(x — y) denote the Green's function for the Euclidean Dirac
operator on the cylinder. Its integral kernel is

where p=po7o + Pι7ι, a n d where yμ are the Euclidean Dirac matrices:

0 - Λ E_ί0 - Γ

-/ 0/' 7l~\l 0/

Let Jfα(]R x Γ1) denote the Hubert space

where J^α(lR x T1) is the Sobolev space of order a over 1R x T ι . The norm on 2/fa is

H/llα= Σ ί (p 2 + m 2 ) α l / (/ ? ) l 2 Φo (vi.23)

Elsewhere we require JQT 2 ), the Sobolev space over the torus T2. It will be clear
from the context which space is relevant. Let Kf\Φ) be the operator on JΓ ] / 2 whose
integral kernel is given by

,y) = \ f {[_Se(x-z)d2P(Φκ(z))χκ(zί-yι)

+ Sί{x-z)lκ(zι-yι)d2P(Φκ(y)ϊ\Λ +

)nΛ^dzι, (VI.24)

where

are the chiral projections, and where z = (yo,zι). We remark that
for almost all Φ (with respect to dμCe). This estimate is a special case of more
delicate, related estimates in [2]. However, it can be seen directly by applica-
tion of the Schwarz inequality in the trace norm. Let K = K(f\Φ) and
μ = { — d2/dx2 + m2)1 / 2. Then taking lx norms on the Hubert space Jf1/2,

Since K*K is self-adjoint on JΓ1/2, and since the adjoints of μ on JΓ0 and on
agree, we use | |μ" x | | 2 ^const and
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Since K has a cutoff,

\Ίτ{μ2K*K)dμc<oo,

and

as claimed. It follows that the Fredholm determinant det(/ — Kf\Φ)) is a random
variable.

Consider the following function on ^'(IR x T 1):

F{;\Φ) = det(7 - Kf \Φ)) exp( - Λ(;\Φ)). (VI.25)

Proposition VL6. There exists α > 0 independent of K such that

F?> e Lp{ST(R x Γ 1 ) , dμc), (VI.26)

for all K, 0 ^ K: < oo, αnrf /or α// p satisfying 1 ̂ p ^ 1 + α.

Remark. The restriction /? ^ 1 + α in (VI.26) arises because two occurrences of Φ in
A{*\Φ) of (VI.20) are not regularized. The proof below shows that the integrability
properties of Ff\Φ) improve as κ->αo.

Proof. Since

|det (/ - Kf\Φ))\2 = det (/ + 4K)(Φ)), (VI.27)

where

4κ)(Φ) - - K{;\Φ) - κf\Φf + κf\Φγκf\Φ). (vi.28)

Clearly 4 K ) ( Φ ) ^ - I , and thus

We claim that the function

Zf\Φ) = exp( - Af\Φ) + \Ίτ ψ(Φ)) (VI.29)

has the required integrability properties.
We decompose Q as

) . (VI.30)

In the Fourier series for Q in the spatial variable, this splitting is according to
whether I p J ^ / i —l)κ or \p1\>(n — l)κ. Then we write dμc^=dμσ<)®dμσ>).
Clearly, ' '

where Φ ( - } is the contribution to Φ from the Fourier modes with \px\^{n — \)κ.
To prove that there is α > 0 such that the right-hand side of (VI.31) is finite for

l ^ P ^ l + ^ w e employ the same technique as in the proof of Lemma VI.5. We
write Φ{-) = Φ1 + Φ2, where Φγ is the sum of Fourier modes with lp^rgκ/2,
and correspondingly C^=] = C{/]®Cψ. The covariance Cf] satisfies ^ 1

^ m 2 + (/c/2)l This and the bound
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with C = C(κ) < oo yield the required integrability properties. We leave the details
of this argument to the reader.

Let gphjβ^ORxT1), j=l,...,k. We consider the fc-fold exterior product

/\feJfo with its natural inner product. Then define

Ff\Φ,g, ft) = ( A Zfi A i1 ~^K)(Φ))"%h)\ det(ί-Kf\Φ))exp(~Af\Φ)).
\ i = i J = I /Λk^o (VI32)

F{^\Φ,g,h) is well defined since for K e i Ί the mapping

is an entire, operator-valued function.

Proposition VI.7. Ff\Φ, g,h)eLp{dμc,), for 0^/c<oo
p{dμc,
^ 1 / 2,norms are continuous for gp hj

Proof. Following Seller [9] we write

i7/κ) extends by continuity to this space.

A cy% A u-κf
x exp( - 2Af\Φ)) det(/ + 4κ )(Φ)). (VI.33)

Let L{*\Φ)+ and L{^\Φ)^ be the positive and negative parts of the self-adjoint
operator 4κ )(Φ), Lf\Φ) = L{;\Φ)+ -L (/ }(Φ)_. It follows that

m*>(Φ,g,ft)|;g f l ίlCί/ 2g,!! j r i / 2 |!S< fft,||3 r i / 2

1/2

expU - 4 κ ) ( Φ )

^ π

with Z{*\Φ) given by (VI.29). This upper bound yields the same function of Φ which
occurred in the proof of Proposition VI.6. The extension by continuity follows
from the continuity of the estimate in g and ft.

Let uje^lί2(Tίl j = ί,...,q, and let WjβJf^^T1), j = l,...,p. Write

o r

(VI.34)

For s^O set

Let O^S/^β, j=ί, ...,p + q. We define the time ordered product

/p+q

T[ Π =sgn(π)
pq

Π

(VI.35)

(VI.36)
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where π is a permutation of {1, ...,q] such that (i) s π ( 1 ) ^ ... ^sπiq)i and (ii) if st = Sj
and ξi = ψμι(Ui\ ξj = ψVj{uj), then we place ζf left to ξjm Also, ρ is a permutation of
{q + \,...,p + q} which puts the numbers Sj into a nondecreasing order. Let α; (ί),
j=l,...,p + q be smooth functions supported in (0,/?). We define the vector

Π ξ/^) Π *Hs,)Ωod* + *s. (VI.37)

The Feynman-Kac formula gives a path integral representation for the matrix
elements <Ω,exp( — βH(κ))Ω'} with Ω and Ω' of the form (VI.37). Let qί and ^ be
the number of the ψ fields in Ω and Ω', respectively. Let q2 and g'2 be the number of
the ψ fields in Ω and Ω', respectively. It is clear that <Ω, exp( — βH(κ))Ω'} = 0, unless
<h + #2 = <lΊ +q2 = k. Let i\ < ... < iq] (and î  < ... < if

q>i) be the indices corresponding
to the field ψ in Ω (and in Ω', respectively). Let ^ < ... <jq>2 (and j \ < ... <^ 2 ) be the
indices corresponding to ψ in Ω (and in Ωr, respectively). Let (θβa)(t) = a(β—t)*. We
set

a n d r e l a b e l c o r r e s p o n d i n g l y t h e s p i n o r i n d i c e s . S i m i l a r l y , w e set f\ = u*θβ(xp, ...9fp

= ufθβuufp+1=u/

1a
/

u...J2p = u/

poc'p.

Proposition VI.8 (Feynman-Kac formula). With the above definitions

Λ gP A (I-K?X
V/=i j - i Λ O

Π Φ*(fj)dμQ(Φ), (VI.38)x

where # means possible complex conjugate and where ε= ± 1 .

The proof follows the lines of [10,11] and is based on the following well-known
bound to establish convergence of a semigroup convergence expansion:

Lemma VI.9. Let H ^ 0 be a self-adjoint operator and let H1 be symmetric, and such
that D{H)CD{H\) and

Hl^aH + b (VI.39)

with α>0. Then exp( — β(H + HJ) has a norm convergent perturbation series

,))^ Σ (-1)" ί

x H1 exp ( - (β - sn)H)dns. (VI.40)

We apply this lemma to H = Hb(κ) + HOtf (adding a constant if necessary) and
Hί=Hbίf(κ). The estimates of Sect. VI.1 ensure that (VI.39) is satisfied. Using

valid for O^sι^t1^...^sn^tn and the Feynman-Kac formula for bosons, we
obtain (VI.38).
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VI3. Finite Temperature States

We consider the finite temperature states defined in Sect. IV.l of [1]. These are just
trace states regularized by the heat kernel of H. Let Q β(x — y) be the periodic
covariance with period β in the x0 direction, and let S^β(x~y) be the fermionic
covariance which is antiperiodic in the x0 direction with period β. Let Kf^β(Φ) be
given by (VI.24) with S^ replaced by S^β. Below we state a simple Feynman-Kac
formula involving such trace states. The final representation differs from the
Feynman-Kac formulas in Sect. VI.2 only by replacing the Green's functions Q
and Sj by C€tβ and SΛj8, respectively. The validity of these representations is a
consequence of the similar representations in the Gaussian case, see Proposition
VI.l of the first paper of [1]. The analytic proof then follows by the convergence of
VI.40. Similar trace state representations also hold for states of the form

— — — , (VI.42)
iτe r~~

where jδ^O and Σβj = β. We set
j

Af}β{Φ) = J [mΦdP{Φκ)* + mΦ*dP{Φκ) + \dP{Φκ)\2~\dx. (VI.43)

Also, let

Ξ,tβ = Ύτ(e-βHo)= Π coth2(βω{p)). (VI.44)
pet1

Proposition VI. 10. The following identity holds

Tr(exp(-βH(κ)) = Ξ€tβ\det(/-K^β(Φ))exp{-A^β{Φ)}dμCe p(Φ). (VI.45)

VIA. Path Integral Representation of Tr(exp{ — βHτ(κ)})

We use covariance operators studied by Osipov [12]:

Cτ(x -y) = (2π) ~ 2 J ̂ ^7~irr~r^ e -ιp{x - y)dp (VL46)

and

(VI.47)

where ωτ(pι) = ω(pι) — ζω(pι)\ and where

ι l , if Xo^O,

- 1 , if x o < O .

Let Cτ Jt β be the periodization of Cτ with period / in the xί direction and period ̂ 8
in the x0 direction. Similarly, let SτJiβ be the periodization of Sτ periodic with
period t in the xλ direction and antiperiodic with period β in the x0 direction. Let
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Kty, β{Φ) be given by (VI.24) with S, replaced by SZt^β. As in Subsect. VI.2 we show
that

i**>,β(φ) = d e t ( / - £ $ , β ( Φ ) ) e x p ( - 4 % ( Φ ) ) eLp(rf/xCτ ^ , ) , (VI.48)

provided C is sufficiently small and p is close to 1.

Proposition VI.11. With the above definitions,

Tr(exp( - βHτ(κ)) = Ξτ,,, „ J det (/ - £<κ>, „(<*>)) exp( - Λ ^ Φ ) ) ^ . , _ ,(Φ)
(VI.49)

/or /? > 0, where

Ξτ,,,f= Π coth^ωM (VI.50)
pet1

Acknowledgement. We wish to thank Konrad Osterwalder for comments on a draft of this paper.

References

1. Jaffe, A., Lesniewski, A., Weitsman, J.: Index of a family of Dirac operators on loop space.
Commun. Math. Phys. 112, 75-88 (1987)
Jaffe, A., Lesniewski, A., Lewenstein, M: Ground state structure in supersymmetric quantum
mechanics. Ann. Phys. 178, 313-329 (1987)

2. Jaffe, A., Lesniewski, A.: A priori estimates for N = 2 Wess-Zumino models on a cylinder.
Commun. Math. Phys. (to appear)

3. Wess, J., Zumino, B.: Nucl. Phys. B70, 39 (1974)
Cecotti, S., Girardello, L.: Stochastic and parastochastic aspects of supersymmetric functional
measures: a new nonperturbative approach to supersymmetry. Ann. Phys. 145, 81-99 (1983)

4. McBryan, O.: Unpublished
5. Glimm, J., Jaffe, A.: Quantum physics. Berlin, Heidelberg, New York: Springer 1987
6. Glimm, J., Jaffe, A.: Singular perturbations oϊ self-adjoint operators. Commun. Pure Appl.

Math. 22, 401-414 (1969)
7. Jaffe, A.: Existence theorems for a cutoff λφ* field theory. In: Mathematical theory of

elementary particles. Goodman, R., Segal, I. (eds.). New York: MIT Press 1966
8. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer

1984
9. Seiler, E.: Schwinger functions for the Yukawa model in two dimensions with space-time

cutoff. Commun. Math. Phys. 42, 163-182 (1975)
10. Seiler, E., Simon, B.: Nelson's symmetry and all that in the Yukawa2 and φ% field theories.

Ann. Phys. 97, 470-518 (1976)
11. Gross, L.: On the formula of Mathews and Salam. J. Funct. Anal. 25, 162-209 (1977)
12. Osipov, E.P.: The Yukawa2 field theory: linear Nτ bound, locally Fock property. Ann. Inst.

H. Poincare 30, 470 518 (1976)

Communicated by A. Jaffe

Received June 26, 1987; in revised form September 17, 1987






