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Abstract. Teichmuller theory for super Riemann surfaces is rigorously deve-
loped using the supermanifold theory of Rogers. In the case of trivial topology
in the soul directions, relevant for superstring applications, the following results
are proven. The super Teichmuller space is a complex super-orbifold whose
body is the ordinary Teichmuller space of the associated Riemann surfaces with
spin structure. For genus g > 1 it has 30-3 complex even and 2g-2 complex
odd dimensions. The super modular group which reduces super Teichmuller
space to super moduli space is the ordinary modular group; there are no new
discrete modular transformations in the odd directions. The boundary of super
Teichmuller space contains not only super Riemann surfaces with pinched
bodies, but Rogers supermanifolds having nontrivial topology in the odd
dimensions as well. We also prove the uniformization theorem for super
Riemann surfaces and discuss their representation by discrete supergroups of
Fuchsian and Schottky type and by Beltrami differentials. Finally we present
partial results for the more difficult problem of classifying super Riemann
surfaces of arbitrary topology.

1. Introduction

Polyakov's bosonic string theory [1] is a theory of maps from a two-dimensional
surface Σ into (Euclidean) spacetime, with action

X:Σ^R26. (1.1)

The world sheet metric gab is an auxiliary field which permits the action to be
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expressed in local form. Quantization involves functional integration over the fields
gab and Xμ. In addition to reparametrization invariance, the action (1.1) has a Weyl
invariance under conformal rescalings of the metric

gab-*Ωga\ (1.2)

with Ω a positive scalar function on Σ. To define the functional integral we pick
a gauge-fixing slice transverse to the orbits of the Weyl and diffeomorphism groups
in the space of metrics. This slice is a realization of the space of conformal equivalence
classes of metrics modulo diffeomorphisms on Σ, which is also the moduli space
of Riemann surface structures on Σ. Hence the amplitudes of the bosonic string
theory can be expressed as integrals of various functional determinants over moduli
space [2,3]. Such a representation of the amplitudes allows the use of powerful
techniques of algebraic geometry to study their holomorphic structure, investigate
their finiteness, and even compute them in terms of theta functions via the Selberg
trace formula [2,4]. Unfortunately, they are divergent.

It is generally believed that the superstring does not suffer from the divergences
of the bosonic string and may provide a realistic and predictive theory of all
fundamental interactions. Accordingly, there is great interest in generalizing the
algebraic geometry of moduli space to the superstring context. Several authors
have computed the dimension of the gauge-fixing slice for the superconformal
symmetries of 2D supergravity using index theorems [5,6]. This only gives local
information about the "super moduli space." The object of this paper is to study
the space of super moduli in a global way, as done in the Teichmύller theory of
Riemann surfaces. We provide a rigorous foundation for the theory of super
Riemann surfaces, proving all the basic results necessary for applications to
superstrings.

Teichmύller theory constructs a certain covering space of the moduli space of
all complex structures on Σ. In the course of the construction it is shown that
complex structures are in 1-1 correspondence with conformal equivalence classes
of metrics. The construction of Teichmϋller space proceeds via a passage to the
universal covering space of Σ, which is shown to be the Riemann sphere, complex
plane, or upper half plane by the uniformization theorem. The complex structures
on Σ are then parametrized by representing each generator of π1 (Σ) by a PSL(2, C)
transformation acting on the covering space. The parameters of the PSL(2, C)
elements give coordinates on Teichmϋller space. The moduli space is obtained as
the quotient by the modular group which acts by changing the choice of generators
ofπ^Σ).

Using Friedan's global definition of a super Riemann surface [7] we are able
to repeat this entire construction. This is one of the few applications of superspace
in physics which seems to require a rigorous mathematical theory of supermanifolds
rather than just an intuitive manipulation of anticommuting variables. By
employing Rogers' theory of supermanifolds [8-10] we maintain full rigor while
staying close to our intuitive notion of superspace. In Sect. 2 we define super
Riemann surfaces, specifying in particular their global topology, and describe the
supergroup which generalizes PSL(2,C). In Sect. 3 we construct the super
Teichmϋller space by the procedure outlined above. We show that it is the quotient
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of a real supermanifold by a Z2 symmetry with fixed points, hence a super-orbifold,
and compute its dimension, which agrees with the result from 2D supergravity.
The description of supertori in terms of superlattices is worked out explicitly with
attention to the dependence of the results on spin structure. Some technical aspects
of the uniformization theorem are postponed to Sect. 4. In Sect. 5 we show how
to describe super Riemann surfaces in terms of Beltrami differentials, deriving the
super Beltrami equations and discussing the uniqueness of their solutions. This
machinery allows us to embed the double cover of super Teichmύller space in a
space of superdifferentials of weight 3/2, thereby exhibiting its complex structure;
to represent super Riemann surfaces by Schottky supergroups; and to define a
universal super Teichmύller space. It should make possible deeper studies of the
geometry of super moduli space as well. Some of our results have been announced
by other authors [7,11,12], but without the rigorous proofs provided here. In
Sect. 6 we briefly consider super Riemann surfaces with nontrivial topology in the
anticommuting directions. We sketch arguments for a uniformization conjecture
for them and explain why they do not contribute to the superstring path integral.
Section 7 contains our conclusions.

2. Definitions

We adopt Friedan's definition of a super Riemann surface (SRS) [7], which we
make rigorous by combining it with Rogers' general theory of supermanifolds
[8-10]. Thus, a SRS will be a complex supermanifold of dimension (1, 1) whose
transition functions are superconformal maps. We now explain this definition in
detail.

In each coordinate chart of a SRS there will be one complex even coordinate
z and one complex odd coordinate θ. These coordinates take their values in a fixed
Grassmann algebra BL having L anticommuting generators vl9v2,...,vL. Thus,

(2.1)

where vr denotes the product of all the vt whose subscripts appear in the sequence
jΓ, and υ0 = 1. The coefficients zr,θr are ordinary complex numbers. Sometimes
we will use Z to denote either or both of z and θ. The complex number z0 is called
the body of z, while the remainder z — z0 is its soul; θ has no body and is pure
soul. A SRS can always be viewed as an ordinary complex manifold of dimension
2L by using the ZΓ as complex coordinates. This is a major advantage of Rogers'
theory: topological properties of SRS's are as well defined as those of ordinary
manifolds.

The transition functions relating coordinates in overlapping charts on the SRS
are required to be both complex analytic and superanalytic, meaning that they
take the form,

3=ψ(z) + θg(z). (2.2)
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Furthermore the component functions /, £, ψ, g have Taylor expansions in powers
of the soul of z, for example

/(z) = /(z0) + (z-z0)/'(z0)+ .., (2.3)

with /(z0) analytic. This series always terminates because z — z0 is nilpotent, so
the component functions are uniquely specified once known for soulless values of z.

We are assuming the Grassmann algebra BL to be finite-dimensional in order
to avoid questions of convergence. However, this assumption creates its own
technical difficulties stemming from the fact that the derivative d/dθ does not obey
the Leibniz rule in a finite-dimensional algebra. To see the problem, consider
d(θv12...L)/dθ. If the Leibniz rule were valid, this derivative would have to be t;12...L,
but the function being differentiated is identically zero! Since we will need the
Leibniz rule on several occasions, such as Eq. (2.4) below, we handle this problem
by the method suggested recently by Rogers [13]. We restrict the components
/(z0), C(z0) of all superanalytic functions F(z, θ) = /(z) + θζ(z) to take values in the
subalgebra BL_1 generated by ι;1,ι;2,...,ι;L_1. Then the components cannot
contain any term proportional to vl2...L

 and the problem is resolved. The results
to be obtained in this paper will hold for all finite values of L and in the limit L-» oo.

We must now impose the condition that the transition functions (2.2) be
superconformal [7, 14, 15]. In each chart there is a derivative operator

which transforms according to

D = (DΘ)D + (Dz - ΘD Θ)D2. (2.5)

By analogy with the behavior of d/dz on a Riemann surface, we demand that D
transform homogeneously, so that D = (DΘ}D. This imposes the constraint

Dz = ΘD θ, (2.6)

which becomes explicitly

t = gψ, g2 = f' + ψψ'. (2.7)

Thus, a general superconformal map takes the form,

\lsψf. (2.8)

It is specified by the two £L_ rvalued analytic functions /(z0) and ψ(z0).
There is an equivalent definition of a superconformal map which we will find

more useful. Requiring the 1-form dz + θdθ to transform homogeneously leads to
the same conditions (2.7) and the transformation law

dz + θdθ = (D θ)2 (dz + θd θ). (2.9)

(Our convention for 1-forms is that dθ commutes with itself but anticommutes
with dz and with θ.) This works because dz + θdθ and dθ constitute the basis of
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1-forms dual to the basis D, D2 of vector fields. The object dZ defined by Friedan
[7] via its transformation law dZ = (DΘ}dZ can be viewed as a square root of
dz + θdθ in the sense of half-forms.

So far we have defined a Rogers SRS whose global topology may be very
complicated: in particular, nontrivial topology in the θ dimensions is possible [9,10].
For applications to superstrings the more restricted topology of a DeWitt
supermanifold [16] is appropriate. To implement this restriction we require that
each coordinate chart of the SRS may not be an arbitrary open set but instead
must be the Cartesian product of an open set in the z0 plane with the entire complex
planes of the other coordinates ZΓ. This effectively trivializes the topology in all
but the z0 dimension. From now on the unqualified term "SRS" will imply this
DeWitt topology. When we discuss Rogers SRS's we will explicitly identify them
as such.

To every (DeWitt) SRS M there is associated a corresponding Riemann surface
MO, called the body of M, with a particular spin structure. The charts on M0 are
the projections on the z0 plane of the charts on M, and its transition functions
are the bodies /0(z0). Then the /Ό(z0) are the transition functions of the tangent
bundle of M0, and a choice of square roots of these functions defines a spin structure
[17]. Since the square root of a Grassmann number can be found as an expansion
about the square root of its body in powers of its soul, such a choice of square
roots is implicit in Eqs. (2.8). M is a fiber bundle over M0 having a vector space
as fiber, but it is not strictly speaking a vector bundle because the transition
functions need not be linear in the fiber coordinates. Conversely, given a Riemann
surface M0 with spin structure, there is a canonical SRS M whose body is M0.
The charts on M are the Cartesian products of the charts on M0 with the entire
complex planes in the soul coordinates, and its transition functions have /(z0)
equal to the transition functions of M0, and ψ(z0) = Q, with the square roots in
Eqs. (2.8) defined via the given spin structure. An important question which will
be answered (in the negative) by the Teichmύller theory we will develop is whether
every SRS is equivalent to one of these canonical ones.

Because the plane C, the Riemann sphere C*, and the upper half-plane U are
simply connected, they have unique spin structures. Therefore there are unique
canonical SRS's over these Riemann surfaces, which we denote by SC, SC*, and
SU. The group of superconformal automorphisms of SC* is the natural generaliz-
ation of the group of fractional linear transformations and will play a central role
in our work [7,14,15]. We now determine this group, which Friedan calls SL2

and which we will denote as SPL(2, C). Each element of the group is specified by
functions /(z0) and φ(z0). Certainly the body of /(z0) must be a Mobius
transformation,

f (7 \ - aozo + bo n ι mJ o l z o J — ~T- (2.LO)
C0z0 + d0

At first it seems that there are no constraints on φ(z0) or on the soul of /(z0),
because a superanalytic map is invertible whenever its body is: the inverse can be
found as an expansion about the inverse of the body in powers of the soul [16].
However the situation is more subtle because of the pole in Eq. (2.10). Certainly
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an expansion in powers of the soul is not valid if the soul has a pole at a point
where the body is finite. The soul may have poles where the body does, but they
cannot be poles of arbitrarily high order or again the expansion fails. Indeed, in
the neighborhood of a pole we use the transition functions of SC* to replace
(z, θ) by ( — 1/f , θ/z)9 which must make the soul as well as the body finite. The most
general functions satisfying these conditions are

-, ad -be = I,
cz0 -t-

depending on three independent even parameters in BL_1 and two odd ones. Thus
we obtain the general group element

Z cz + d + θ(cz + d}2'

z_yz + δ θ
cz + d cz + d

(2.12)

The group SPL(2, C) so defined is obtained by exponentiating the subalgebra of
the Neveu-Schwarz algebra generated by L _ 1 , L0 , Ll , G _ 1/2 , and G1/2 . If any other
generators are included, all others are produced by commutation, leading to poles
of arbitrarily high order, which is unacceptable.

Given three points of SC*, there are exactly two SPL(2, C) transformations
which send two of them, as well as the even coordinate of the third, to specified
values. For example, the points (z, 0) = (0,0), (1,0) and the even coordinate of
(oo,0) are fixed by both the identity and the fermionic inversion I:z = z, θ = —θ.
The fact that / cannot be distinguished from the identity by its action on these
points will lead to a fundamental Z2 ambiguity in the Teichmϋller theory in Sects. 3
and 5. An element of SPL(2, C) can be characterized in terms of its fixed points
and multiplier, just as is true for ordinary Mobius transformations [12].

Associated to any subgroup G of SPL(2, C) is the group G0 of fractional linear
transformations which are the bodies (2.10) of the elements of G. If G acts on some
SRS M, then G0 acts on M0. Specifically, if x0 is a point of M0 and q0 an element
of G0, take any point x in the fiber of M lying over x0 and any element q of G
with body q0. Then define q0x0 to be the body of qx, which does not depend on
the choice of x and q.

3. Uniformization

In this section we will prove the uniformization theorem for SRS's, which states
that any "metrizable" SRS is SC* or a quotient of SC or SU by a subgroup of
SPL(2,C). As a corollary we learn that the super Teichmiiller space is a real
super-orbifold and determine its dimension and its body. As an illustration we
explicitly work out the groups representing super tori. This genus 1 case is
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exceptional in that the dimension of the super Teichmύller space depends on spin
structure.

Let M be an arbitrary SRS and M0 its body. Since M is a bundle over M0

with contractible fibers, its universal covering space M is also such a bundle over
M0, the universal cover of M0. M can be given a SRS structure such that the
covering group acts by superconformal transformations and the body is M0. By
the uniformization theorem for Riemann surfaces we know that M0 is C, C*, or
U [18,19]. In the next section we will use sheaf cohomology methods to prove
that the canonical SRS's SC, SC*, and SU are in fact the only SRS's over these
Riemann surfaces. This will show that any SRS is a quotient of SC, SC*, or SU
by a group G of superconformal automorphisms. Furthermore, G is isomorphic
to the fundamental group π^M). Since M is a fiber bundle with a vector space as
fiber, this in turn is isomorphic to π^Mo), a discrete group. Hence G is known to
be discrete.

In order for the quotient space M/G to be a manifold, G must act properly
discontinuously: each point of M must have an open neighborhood which does
not intersect any of its images under group transformations (other than the identity).
If the open neighborhoods in this definition can be arbitrary, then the quotient
space in general will be a Rogers SRS. To ensure that the quotient is a DeWitt
SRS, the neighborhoods satisfying the above condition must be open in the DeWitt
sense: they must be cylinders over open sets in M0. This in turn is possible iff the
associated Mόbius group G0 acts properly discontinuously on the body M0. A
simple example illustrating these points is provided by supersymmetry. The group
G generated by

z = z + θδ, θ = 0 + δ (3.1)

for some fixed δ acts properly discontinuously on SC, but G0 consists of the identity
map alone. The body is actually fixed by the transformation, and taking the quotient
SC/G renders the fibers nonsimply connected while leaving the body unchanged [9].

Since no Mόbius transformation acts properly discontinuously on the body
C* of SC*, no new SRS's can be obtained as quotients of SC*. So we know that
any SRS is either SC* or a quotient of SC or SU by a group of superconformal
automorphisms which acts properly discontinuously on the body. Unfortunately,
it is not true that all superconformal automorphisms of SC and SU belong to
SPL(2, C). Since C and U do not contain the point at infinity, we no longer have
the constraints on the behavior of superconformal maps at their poles which gave
us the group SPL(2, C) for the Riemann sphere. A superconformal automorphism
of SC or SU need only have a fractional linear transformation as its body—its
soul is unrestricted. For example, the superconformal transformation

z - z + 1 + Θηzn

9 θ = θ + ηzn, (3.2)

does not belong to SPL(2, C) for n > 1, but it is nevertheless an automorphism of SC.
For applications to superstrings, however, more than just a SRS structure is

required. There must be enough geometric structure to construct an integration
measure and invariant Lagrangian for world sheet supergravity. For Riemann
surfaces the existence of a metric is automatic, but not every SRS admits a metric
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generalizing the metric on its body. For physical applications, then, we must restrict
ourselves to "metrizable" SRS's. For example, on SU there is a generalization of
the Poincare metric,

ds = (Imz + $ΘΘΓ1\dz + θdθ\, (3.3)

which is invariant under SPL(2, R) but not under larger superconformal groups
[11]. Here SPL(2,R) is the subgroup of SPL(2, C) for which the even parameters
are all real (α = α, etc.) and the odd parameters are restricted by y — iy, etc. This
restriction ensures that the product of two odd parameters will be a real even
parameter. Heuristically, one can think of SPL(2, R) as the subgroup of SPL(2, C)
which fixes the "superboundary" SR of SU, namely the set z = z, 0 = iθ. The
superboundary is not the boundary of SU as a manifold because it has half the
dimension oϊSU rather than the dimension minus one, but unlike the true boundary
SR is a supermanifold. Similarly the metric

ds = \dz + θdθ\ (3.4)

on SC is only invariant under a subgroup of SPL(2, C). Thus the uniformization
theorem which is needed for physical applications states that any metrizable SRS
is either SC* or a quotient of SC or SU by a discrete subgroup of SPL(2, C). This
subgroup is isomorphic to the fundamental group of the body and is unique up
to conjugation.

It is not quite clear that the physical requirement for superstring applications
is the existence of the metrics described above, because 2D supergravity is not a
Riemannian supergeometry based on a metric but instead involves covariant
derivatives with torsion. The metrics above also cannot be directly relevant to the
heterotic string because they depend on θ as well as θ. However, in 2D supergravity
one does make use of a frame on the SRS which is constructed from a metric (or
the associated zweibein) on its body as well as a gravitino field which can be locally
gauged away. Therefore the constant curvature metric on the body must extend
to a function of z which is invariant under the bosonic parts of the superconformal
automorphisms. The fermionic parts mix this metric with the gravitino. This
certainly restricts the bosonic parts of the automorphisms to be those of SPL(2, C)
elements, but it restricts the fermionic parts as well since the fermionic parts of
two group elements contribute to the bosonic part of their product. In this way
one is again led to the metrizability condition. The same is true in "heterotic
geometry" [20], although this is a somewhat different construction in which only
the bosonic parts of superconformal maps are used as transition functions of the
SRS while the fermionic parts act in the tangent space.

In addition to this general argument, a specific one can be given for the 2D
supergravity describing the nonchiral spinning string. In this case the "metrics" ds
above should be reinterpreted as the norms of the even component of the frame
field Ez = dZMEz

M on SU and SC. Invariance of the "metric" translates into
invariance of Ez up to a phase, which is invariance up to a rotation by the tangent
space group (7(1) in two dimensions. This is certainly necessary for the SRS to
inherit a supergravity frame field from its covering space. It is also sufficient, since
an odd component Eθ can be found such that the complete frame is invariant up


