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Abstract. The internal symmetry group of a connection on a principal fiber
bundle P is studied. It is shown that this group is a smooth proper Lie
transformation group of P, which, if P is connected, is also free. Moreover, this
group is shown to be isomorphic to the centralizer of the holonomy group of
the connection. Several examples and applications of these results to gauge
field theories are given.

Contents
Introduction . . . A
1. Notation and Prellmmarles L K
2. The Lie Group I,(P) . . . . . . . . . . . . . . . . . . . . . ... 24
3. Some Examples. . . . Lo 244
4. Connections with Internal Symmelry Group as Ldrge as P0§s1ble e oo 250
5. Connections with Internal Symmetry Group as Small as Possible

and Irreducible Connections . . . A
6. I,(P) as a Lie Group of Transformatlons C 250
7. The Lie Group of Transformations I, “)(P) 2y
References. . . . . . . . . . . 202
Introduction

Let P(M,G) denote a principal fiber bundle with structure group G over a
connected manifold M, let AUT(P) denote the group of automorphisms of P, and
let Aut(P) denote the normal subgroup of automorphisms of P that cover the
identity diffefomorphism of M. Let w be the connection 1-form of a connection on
P. If FeAUT(P), let F*w denote the pullback of w by F. Then

AUT,(P)={Fe AUT(P)|F*w=w}
is the symmetry group of w, and

I(P)={F e Aut(P)|Ffw=w}=Aut(P)nAUT,(P)
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is the internal symmetry group of . In this paper we prove that if P is a connected
manifold, then with respect to the compact open topology, I,(P) is a finite
dimensional Lie transformation group of P that acts smoothly, properly, and
freely on P (see Theorem 6.2). This is in contrast to the fact that AUT,(P) is in
general an infinite-dimensional group. Another result is that for each p e P, there is
a Lie group isomorphism

i,:1,(P)=>CgHol,(w), Fruup),

where Hol ,(w)€ G is the holonomy group of @ with reference point p, Cs(Hol,(w))
is the centralizer of Hol ,(w)in G, and u: P— G is a map determined by F. Thus the
determination of I (P) is completely reduced to finding the holonomy group
Hol(w) and an algebraic problem. We give several examples and applications of
these results to gauge field theories.

It is of interest to compare these results to the results regarding the classical
affine group of a linear connection I" on the frame bundle LM of M. Let w be the
corresponding connection 1-form. Then a diffeomorphism f of M is an affine
transformation if the induced mapping Tf: TM — TM maps horizontal curves to
horizontal curves. This condition is equivalent tof*w =, where f:LM—LM
denotes the natural lift of f: M —>M to the frame bundle LM. Thus if Diff(M)
denotes the group of difftomorphisms of M, then

A (M)={ e Difl(M)|*w =0}

is the group of affine transformations of .
Now let 0 denote the canonical R"-valued 1-form on LM, and let

AUTY(LM)={F e AUT(LM)|F*0=0} .

Then F e AUT,(LM) if and only if F = f for some f e Diff(M) (Kobayashi-Nomizu
[1963], p. 226, or Kobayashi [1972], p. 40). Thus

AUT(LM)={fe AUT,(LM)|f e Diff(M)} ~ Diff(M)
and the affine group A,(M) is isomorphic to
A M)=AUT, ,(LM)={Fe AUT(LM)[F*0=0 and F*o=w}
=AUT,(LM)nAUT(LM).

Thus at the bundle level, affine transformations are bundle automorphisms that
preserve both the connection form w and the canonical form 0, so that the classical
group of affine transformations is actually the simultaneous symmetry group of both
o and 6. Although in general both AUT,(LM) and AUT,_,(LM) are infinite
dimensional, the intersection AUT, ,,(LM)~ A,(M) is a finite dimensional Lie
group.

It is interesting that historically affine transformations were first considered as
transformations of M whose natural lifts preserved w, rather than as more general
bundle automorphisms of LM that preserve w, thereby relegating the interesting
infinite dimensional group AUT(LM) to the shelf of mathematical obscurities.

On a general principal fiber bundle there is no canonical 1-form . However,
there are still interesting “reductions” of AUT, (P) resulting in a finite dimensional
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group. Firstly, we may intersect AUT,(P) with Aut(P), thereby obtaining the
internal symmetry group [,(P). Thus in this respect Aut(P) plays the role
AUT,(LM) did for the affine connection on the frame bundle LM.

Another possibility is to put a Riemannian metric g on M and consider the

group
I, o(P)={FeAUT(P)|[F*o=0w and f*g=g},

where f'is the diffeomorphism of M induced by the automorphism F. Thus I, ,(P)

is the group of symmetries of w that cover isometries of g. This also is a finite

dimensional Lie transformation group of P acting smoothly, properly, and

effectively (though not freely) on P (see Theorem 7.1). This group is of interest in

gauge field theories (see Fischer [1982, 1985, 1988] and the references therein).
On a frame bundle LM we can compare the internal symmetry group

I (LM)=Aut(LM)nAUT,(LM)
with the affine transformation group
A(M)xAUT 4 ,(LM)=Auty(LM)nNAUT,(LM).

Butif F el (LM)nAUT, ,(LM), F must cover the identity diffeomorphismid,, of
M [since I, (LM)SAut(LM)], and F must be the lift of a diffeomorphism of M
[since AUT ,, CAUT,(LM)]. Thus F=id, ,, theidentity diffeomorphism of LM,
and so I(LM)AAUT,y o (LM)={id, /) .

Thus the internal symmetry group I, (LM) has only a trivial intersection with
AUT ,(LM)~ A, (M). Thus I, (LM) and AUT, ,,(L, M) are respectively the
“vertical” and “horizontal” components of AUT(LM). I (LM) itself has no
classical analog.

In considering the symmetry (or automorphism) group of a geometric
structure (see Kobayashi-Nomizu [1963], p. 306, and [1969], p. 392), attention is
usually focused on the automorphism group of a G-structure on M, i.e., a reduction
of LM to a G-principal fiber bundle, G € GL(n). The automorphism group is then
the subgroup of Diff(M) consisting of those maps f whose natural lift f maps the
G-structure to itself. In this regard the affine group 4,(M) of a linear connection @
is somewhat of an exception inasmuch as a connection is not a G-structure on M
(i.e., it is not a reduction of LM), and so 4,(M) is not an automorphism group of a
G-structure. Similarly, a connection w on a general principal fiber bundle P(M, G)
is a geometric structure on P (or on M), but is not a G-structure on M, and so the
internal symmetry group I,(P) is not an automorphism group of a G-structure.
However, I ,(P)is a symmetry group of a geometric structure, and so our result that
I,(P) is a Lie transformation group adds another geometric structure to the list
enumerated in Kobayashi-Nomizu [1969], p. 332, of geometric structures whose
automorphism groups are Lie groups.

1. Notation and Preliminaries

Throughout this paper, M will denote a connected C* n-dimensional manifold
(Hausdorff and second countable, and hence paracompact), G a (second countable)
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Lie group, and P(M, G) a principal fiber bundle (PFB) with total space P, base
space M, structure group G, projection map

n:P->M,
and right action

O:PxG-P, (payp-a.

All of the above paraphernalia will be denoted by P(M, G).
For peP, let
®,.G->P, ap-a,
denote the orbit map through p, and for ae G, let
R,=®,:P->P, p—p-a

denote the diffeomorphism of P corresponding to aeG. Let G(P)
={R,: P—Plac G} denote the Lie group of difftomorphisms of P induced by the
action @.

Let e be the identity in G, let = T,G the Lie algebra of G (taken with the usual
Lie algebra structure of left-invariant vector fields on G), and let

Ad:G-GL(®), a—Ad(a):G-6

denote the adjoint representation of G on ®. Let V,=kerT,nC T,P denote the
vertical subspace of the tangent space T,P, and let T,®,: & —V,C T P denote the
derivative at the identity e € G of the orbit map @,: G—P. For A€ ®, let A* be the
fundamental vector field on P generated by A. For pe P, A* is defined by A*(p)
=T,0, - A

Le€ Diff(P) and Diff(M) denote the groups of C* diffeomorphisms of P and M,
respectively, with composition of diffeomorphisms as the group structure. Let

AUT(P)={FeDiff(P)|F+R,=R,° F for all ae G}

denote the group of automorphisms of P. The condition F o R,=R, < F can also be
written F(p-a)=F(p)-afor all pe P and ae G. For Fe AUT(P), F maps fibers to
fibers and so induces a diffeomorphism of the base manifold M. Let
[f=7#(F)e Diff(M) denote this induced diffeomorphism. Morever, the map

#:AUT(P)-Diff(M), F-#(F)=/f,
is a group homomorphism. Its kernel is
Aut(P)={F e AUT(P)|#(F)=id,},

the normal subgroup of automorphisms of P covering the identity diffeomorphism
id,, of M. The group Aut(P) has two other representations, which we briefly
describe.

Firstly, let C*(P, G) denote the C* maps from P to G, and let

CiuP.G)={ue C*(P,G)u(p-a)=a " -u(p)-a for all pe P and aeG}.

Then CZ,(P, G) is a group with respect to pointwise multiplication of functions.
Secondly, consider the left action of G on itself by inner automorphisms
GxG—G, (a,b)>a-b-a ' Let G, (M)=(PxG)/G denote the corresponding
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associated fiber bundle over M with standard fiber G. For xe M, the fiber at x,
denoted G, (M),, is the Lie group of diffeomorphisms of the fiber 7~ '(x)C P that
commute with the action of G on n~ '(x). Thus G,,(M) is a bundle of Lie groups
over M. Let C*(G,,(M)) denote the space of smooth cross-sections of G, (M),
taken with its group structure of pointwise multiplication of sections. Then the
following proposition is basic (see e.g., Trautman [1980], or Fischer [1985]).

1.1. Proposition. The three groups Aut(P), CX,(P;G) and C*(Gr,(M)) are
naturally isomorphic with each other. The first of these isomorphisms (i.e., group
bijections) is given by

Aut(P)»CZ{,(P,G), Fr ug,

where for pe P, u,(p) is defined by the equation

F(p)=p - up(p).
The second of these isomorphisms is given by

CRulP, G) = CHG (M), u= ity
where for xe M, u,(x) is defined by
uy(x)=1{(p-a,a”"-u(p)-aae G} e(PxG)/G,

where per™'(x), and the above definition is independent of the choice of p. []

We shall have occasion to use the viewpoint represented by all three groups.
However, since we shall be working primarily on P, we shall use mostly either
Aut(P) or C%,(P,G), depending on convenience. In Sect. 2, convenience will
dictate strongly that C,(P, G) be primarily used, while in Sect. 6, Aut(P) will be
primarily used.

Let X(P) and X(M) denote the Lie algebras of C* vector fields on P and M,
respectively, taken with the usual bracket of vector fields as the Lie algebra
structure. Let

X(P)={ZeX(P)(R,),Z=Z for all aeG)}

denote the Lie subalgebra of G-invariant vector fields on P. Then n: P— M induces
a Lie algebra homomorphism 7, : X4(P)—X(M), Z—n,Z =X, whose kernel is
given by

X5 (P)={ZeXyP)n, Z=0},

the G-invariant vertical vector fields on P. As above, X;'(P) has two other
representations. Let C*(P.®) denote the C* maps from P to ®, and let

CiP,®)={peC*(P,®)|o(p-a)=Ad(a ") ¢(p) for all Pe P and aeG}.

Then CZy(P,®) is a Lic algebra using the pointwise bracket of maps, i.c.,
Lo, .1(p)=Le(p), p,(p)]. Also, consider the adjoint action of G on ©,
Gx G-, (a,A)>Ad(a)- A, and let ©,4(M)=(P x ®)/G denote the correspond-
ing associated vector bundle over M with standard fiber ®. Then 6 ,,(M) is a
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bundle of Lie algebras over M. Let C*(®,4(M)) denote the space of C* cross-
sections. Then C*(®,4(M)) is a Lie algebra with respect to the pointwise bracket of
sections. Corresponding to Proposition 1.1 is the following.

1.2. Proposition. The three Lie algebras X§™(P), Cy(P, ®), and C*(® ,q(M)) are
naturally isomorphic with each other. These Lie algebra isomorphisms (i.e., Lie
algebra bijections ) are given respectively, by

XE(P) - CLU(P;®)y, T g,
where for pe P, ¢(p) is defined by the equation T,®,- ¢4(p)=T(p), and by
CRaP,©)=>CT(O54(M)), @ ¢y,
where for xe M, ¢ (x) is defined by
eu(x)={(p-a,Ad(a™ ") p(p)lae G} e(P x ©)/G,
where pern™ Y(x), and which is independent of the choice of p. [

Let exp: ®—G denote the exponential map of the Lie algebra ®. Then exp
induces an exponential map

EXP:CZy(P, ®)—~Cg, (P, G),
where if ¢ e CZ4(P; ®), EXP is defined pointwise by (EXP ¢)(p)=exp(¢(p)). The
resulting u=EXP ¢ is in C,(P, G), since
u(p - a)=(EXP @) (p-a)=exp(@(p-a))=exp(Ad(a" ") ¢(p))
=a" ' ex )-a=a"'-u(p)-a.
We let p(e(p (
Exp: X" (P)—Aut(P), T ExpT
denote the corresponding exponential map on X§™(P), defined by

(ExpT)(p)=p - (EXPo7)(p)=p-(expp(p)).

Note that if @ e Cy(P,®), or TeX§"(P)), then u,=EXP(lp)e CZ,(P,G) and
F,=ExpATeAut(P)are defined for all A€ R. Thus, in particular,if Te XF™(P), T is
a complete vector field on P with flow F,=ExpiT.

It is important to note that, in general, the difffomorphism R,: P—P, ae G, is
not an automorphism of P.Indeed, R, € Aut(P) if and only if a is in the center Z(G)
of G, where the center

Z(G)={aeGla-b=b-a for all be G}

is a closed normal subgroup of G, and hence a Lie subgroup. Note that
Z(G)Cker Ad, and if G is connected, then we have cquality.
The Lie algebra of Z(G) is

2(G)={Ae®|Ad(b)- A=A for all be G}.
On the other hand, the center of the Lie algebra ® is defined to be
2(®)={Ae®|[4,B]=0 for all Be ®},
so that z(G)Cz(®). If G is connected, then z(G)=z(®).
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Let
ZyP)=1{R Jae Z(G)} = G(P)nAut(P),

a normal subgroup of Aut(P). Similarly, let Z4(P)={4* € X;"(P)|4 € z(G)}, where
A* denotes the fundamental vector field on P associated with A € ®, denote the
corresponding ideal of X™(P). Note that if 4 € z(G), then Ad(a)- A=Aforallae G,

and so
(R)A*=(Ad(a™ ') A)* =A%,

so that A* is indeed in XF"(P). For A ¢ Z(G), A* € X**"(P), but is not G-invariant.
Similarly, let

Z(P,G)={u:P—Z(G)lu is constant on P},
and
Z(P,®)={¢:P—z(G)|p is constant on P},

the corresponding normal subgroup and ideal of CZ,(P,G) and CZy(P,®),
respectively. Note that if u = constant € Z(G), then u(p-a)=a "' - u(p) - a=u(p), so u
is in C3,(P, G), and similarly, if ¢ =constant € z(G), then

pp-a)=Ad(a™ ") p(p)=(p),
80 @ i1s in CLy(P, ®).
Let
Z(CL (P, G)={ueCL(P,G)u-u,=u,-ufor all u; e CZ (P, G)}

denote the center of C5, (P, G). Since for fixed p and varying u,, u,(p) spans G,
ue Z(CZ,(P, G)) if and only if u takes values only in Z(G) if and only if u is constant
on the fibers of P. Such a u may however vary from fiber to fiber. Thus

Z(CLulP, G) = CLu(P. Z(G) = {ue CL (P, G)lu(p) € Z(G) for all pe P},

which in general is an infinite dimensional subgroup of C{, (P, G). Ifhowever G is a
semi-simple Lic group, then its center Z(G) is a discrete subgroup of G. Thus if
ue C3,(G)), uis constant on fibers, and by continuity of u and connectivity of M, u
is then constant on P. Thus in this case, the centers of C3,(P,G) and G are
isomorphic

Z(CRu(P, G)=Z(P,G)x Z((P) = Z(G),

and are zero dimensional Lie groups (see also Daniel-Viallet [1980]).
For 0<k<n=dimM, let C*(A*P)®®) denote the space of smooth Lie-
algebra valued k-forms on P, let

CHANP)®®)={pe C*(AP)QB)RFp=Ad(a*)- ¢ for all ae G}
denote the Lie algebra-valued k-forms of type (Ad, ®), and let
AXP, 6)= CLg nod 4"(P) R B)
={0eCly hor A P)®G)@(Z 9, ..., Z,) =0 whenever one of Z;’s is vertical}

denote the space of horizontal (or tensorial) Lie-algebra valued k-forms of type
(Ad, ®). Since a zero-form on P is always horizontal, C{,(P, ®)=A°(P, ®).
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A connection 1-form w on P is an element of C*(A(P)®®) such that

(1) R*fw=Ad(a™ ") - w for all aeG;

(2) w(A*)=A for all Ae®.

We let @(P) denote the space of connection 1-forms on P, naturally identifiable
with the space of connections on P. Since M is paracompact, €(P)£0 (sce
Kobayashi-Nomizu [1967], p. 67). Also, %(P) is an affine space, and is the affine
space associated to the vector space 4'(P, ®).

For a connection 1-form w, we let

D:CyP,®)—AYP,®), ¢+ Do
denote the gauge covariant exterior derivative, where
qu :(d(ro)hor = d(P + [O) A (P] >

and where the wedge bracket [w A @] e Ci (A (P)®®) is defined pointwise by
[wA @] Z=[w(Z),¢] for ZeX(P) (see Fischer [1985] for more on this termi-
nology). Also, we let

Q=Dw=(dw),,, =dow+3wArw]e A*P,®)

denote the curvature 2-forms of @, where the wedge bracket
is given by [ A ] e CL(AHP)RG)
[oAw](Z,Z,)=[(Z,), AZ,)]—[cAZ,), AZ )]

for Z,, 7, X(P). =2[w(Z,),w(Z,)]
For Fe AUT(P),and w € €(P), we let F*w denote the pull-back of w by /. Thus
if peP and Z,eT,P, F*w is defined by

Fra p)- Z ,=w(F(p)) - (T,F - Z,).

An easy check shows that F*we %(P), and indeed the map F*:%(P)—>%(P) is an
affine transformation of (P). Thus AUT(P) acts on %(P) on the right by pull-back
as a group of affine transformations,

%(P)x Aut(P)—%(P), (v, F)—F*w.

We shall be interested in the restricted action by Aut(P). Note that if a € Z(G),
then R,eAut(P) and R*w=(Ad(a"')-w=w, so that Z,P)<I(P) for any
connection m. Thus Aut(P) does not act effectively on ¢(P). However since Z ;(P) is
a normal subgroup of Aut(P), this is casily remedied by considering the quotient
group .oZ(P)=Z,(P)\Aut(P) of right cosets of Z(G), and the induced action

E(P)x L (P)->E(P), (w,[F])+ F*o,

where [F]=Z(G)- F. Under the assumption that P is a connected manifold, the
resulting action is then effective (see Fischer [1985]).

Let 0e C*(AYG)®®) denote the Maurer-Cartan form on G; i.e., the unique
left invariant Lie algebra valued 1-form that satisfies

(1) 0(e)=idg: ®—®, the identity transformation of ®.

(2) I¥0=0for all ue G, where L,: G— G, br—a - b denotes left translation on G.
Thus ¢ is defined by

G(a)znz‘(l":’l—;lG——)G)7 Uy rl:li[l'l.vll’

Note 6 is now different from the canonical form 6 discussed in the introduction.
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The following proposition is then a global version of the local transformation
law for connection 1-forms under a gauge transformation ue Cg, (P, G) (see
Kobayashi-Nomizu [1963], p. 66 or Bleecker [1981], p. 49).

1.3. Proposition. Let w € €(P), F € Aut(P), and u, € C{ (P, G) correspond to F asin
Proposition 1.2. Let 0 be the Maurer-Cartan form on G. Then

Fro=Ad(u; Y) - w+ukl,
where up '(p)=(uy(p) ™' [

Thus for ue C¥, (P, G), we define u*w=Ad(u"')- w+u*(, thereby generating
the equation F*o=ufw.

Therc is another interesting interpretation of the equation u*o=Adu )
+u*0. Forue Cg,(P; G), we would like to define a gauge covariant derivative of u.
Since u takes values in G, which in general is not a linear space, we must modify the
usual definition of gauge covariant derivative. The ingredient needed is a means of
identifying the tangent spaces of G with . This ingredient is provided by 6. Thus a
reasonable definition of the gauge covariant derivative Due A'(P, %) of u is given
b

’ Du(p)- Z,=0(u(p)) - (Tyt - Zyo)) = W*0) (D) Lo = * Oy, Z,,..
where peP, Z,e TP, and Z,, is the horizontal projection of Z, Thus
Du=(u*0),,,. A calculation as in Proposition 1.3 then shows that

Du=(u*6),,,=u 0+Adu™ ") w~v=u*w—w.

Thus in particular u*w = if and only if Du=0.

For Te X™(P) and we €(P), let L, e ANP, ®) denote the Lie derivative of w
with respect to T. That Ly is horizontal is the infinitesimal version of the fact that
the difference between two connections is horizontal. Moreover, using the
connection w, the bijection

XEP)=CL(P,®), T
of Proposition 1.2 can be written as T+ ¢, = w(T), although this correspondence
is independent of the connection. The following relationship between Lo and
Do is of importance.
1.4. Lemma. Ler Te X3 (P) and @r=o(T)e CZy(P,®). Then Lyw=Dg;.
Proof. Lyw=di;w+ido=dp,+ipdw. Since Q= Dw is horizontal,
O=iDo=ido+3oro])=irdo+H[a(T)Aw]—[wAo(T)])

=ido+[esAw].
Hence

Liw=dor+ijdo=do;—[orrw]=dor+[onr@r]=De,. [

For we%(P) and pe P, let Hol (w)S G denote the holonomy group of w with
reference point pe P. Then Hol,(w) is a Lie subgroup of G (Kobayashi-Nomizu
[1963], p. 73), although it is not necessarily a closed subgroup. Note however that
Hol,(w) has at most a countable number of components (since M is connected and
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paracompact), and thus Hol () satisfies the second axiom of countability as
required by our definition of Lie group. Since M is connected, all of the holonomy
groups are conjugate in G to each other, and we denote Hol(w) as any one of them.

For pe P, we let P(p) denote the holonomy bundle (or sub-bundle) through p,
i.e., the set of points in P that can be joined to p by a horizontal curve. Then P(p)
=Q(M,Hol,(w)) is a Hol,(w)—PFB over M, and the connection w reduces to a
connection on Q(M, Hol (w)) (Kobayashi-Nomizu [1963], p. 83).

Note that the holonomy sub-bundle P(p) need only be an immersed sub-
bundle. Although in general the closure of an immersed submanifold need not be a

closed embedded submanifold, the closure P(p) of P(p) will be a closed embedded
submanifold in P, and in fact the closed sub-bundle P(p)=Q(M,Hol,(w))
= Q(M, Mol ,(w)) will be a reduced sub-bundle of P(M, G) with structure group
Hol,(w), the closure of Hol,(w) in G. Moreover, the connection w reduces to a
connection in Q(M, Hol (w)). These remarks follow easily from the fact that the
closure H of a Lie subgroup H of G is a closed subgroup and hence an embedded
submanifold.

In a similar vein as the above, we have the following lemma.

1.5. Lemma. Let G be a topological group, S a subset of G, and
Cy(S)={aeGla-s=s-a for all se S}

the centralizer of S in G. Then Cy(S) is a closed subgroup of G. Also, C4(S)=C(S),
where S denotes the closure of S in G. Thus Cy(S)=Cy(S)= C(S), where C4(S)
denotes the closure of C4(S) in G.

Proof. Let {a,} be a sequence in C(S) such that a,—~ae C4(S). Then for all n and
ses,a, s=s-a, and so by continuity of the group operation, a,- s—»a-sands-a,
—s-a. Thus a-s=s5-a and so ae Cy(S) and thus C4(S) is closed.

Similarly, let {s,} be a sequence in S such that s,—seS. Then for all n and

aeCyS), a-s,=s,-a, and so as above a-s=s-a. Thus aeCg\S), and so
C4(S)S C4(S). The reverse inclusion follows by definition of the centralizer. [

Remark. In particular, the center of a topological group is closed.
We return now to G being a Lie group.
2. The Lie Group I ,(P)
Let w be a connection on the PFB P(M, G). Let
1,(P)={FeAut(P)|F*o=wn)

denote the internal symmetry group of «. We denote the corresponding subgroup
of C3,(P,G) as
I(P,G)={ue CS (P, G)u*w=w},

where u*w=Ad(u"!)- 0+ u*0. Let
Jo(P)=(Te Xg"(P)| Ly =0}

denote the Lie algebra of infinitesimal symmetries of w. That .# (P)is a Lie algebra
follows from the identity

Lz, ry0=Lyp Ly,wo—Ly Ly o
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for Ty, T, € X§™. Note that since infinitesimal symmetries are in X;™(P), they are
automatically complete vector fields on P.
Since Ly®= D¢, the corresponding Lie algebra of C{y(P, ®) is

I(P,®)={peCyP,®)Dp=0} =kerD
That .7 (P, ®) is a Lie algebra follows from the identity

DLy, p21)=[Doy A @1+ [0, A Do, ]

for @y, p,€ CXy(P, ®).
For peP, let Hol,(w) be the holonomy group with reference point p, and let

Cg(Hol (w))={aeGla-b=b-a for all beHol (w)}

denote the centralizer of Hol,(w) in G. Although Hol,(w) need not be a closed
subgroup of G, by Lemma 1.5, C;(Hol ,(w)) is a closed subgroup of G, and hence a
Lie subgroup. Its Lie algebra is

Cy(Hol (w)={Ae€®|Ad(h)- A=A for all be Hol,(w)}.
The following classical result will be our main workhorse for this section.

2.1. Proposition. Let P(M, G) be a PFB, let we€(P), and let uel (P, G). Then

(1) u is constant on every holonomy sub-bundle P(p),

(2) for pe P, u(p)e Cq(Hol, (@),

(3) uisdetermined by its value at a single point. In particular, if u(p,)=e for some
Po € P, then u=e identically on P.

Converselyif ue CL, (P, G)is constant on a particular holonomy subbundle P(p,),
then u*w=w, and (1), (2), and (3) above hold.

Proof.(1): lfue I (P, G), thenu*w=Ad(u"')-w+u*0=w. For pe P and p, € P(p),
let ¢(4), A€ [0, 1], denote a horizontal curve from p to p,. Then w(c(2))- &(2)=0 for
A€[0,1], and so u*6(c(2)) - ¢'(2)=0. Let 2+ a(/)=(u-¢)(A), a curve in G. Then

*0(c(2) - (A =0(c(A) - Ty - (2)=0(u ) () - (uoc)(2)

=0(a(2))-d'(2)=0.
Since

0(a(2) =T,y Liay -+ TG~ 6

is an isomorphism, a'(2)=(u-c)(4)=0. Thus (u-¢)(4) is constant and so u(p,)
=u(p).

(2): For any aeHol,(w), p-aeP(p), and since u is constant on P(p), u(p)
=u(p-a)=a""-u(p)-a. Thus u(p)e C4(Hol ().

(3): Huy el (p)and u (py)=u(p,) for some p, € P, then by (1), u, is constant on
P(p,), and hence u and u, agree on P(p,). Since P(p,) intersects each fiber of P at
least once, u; agrees with u on at least one point in each fiber, and thus by their
transformation properties, on the entire fiber. Thus u; =u on P.

Conversely, if ue C{, (P, G) is constant on a particular holonomy subbundle
P(p,), then since P(p,-a)=P(p,)- a,

u(P(po - @) =u(P(po)-a)=a" ' -u(P(p,)) - a,
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and so u is constant on cvery holonomy sub-bundle. Thus for peP, let
X eH,CT,P be avector at p which is horizontal with respect to the connection «,
so that w(p)- X =0. Thus

@*@)(p)- X =Ad@™ '(p) - ((p)- X)+u*0(p) - X = 0(u(p)) - (T,u - X).

By the Holonomy Reduction Theorem (Kobayashi-Nomizu [1963], p. 83), the
connection w on P reduces to a connection on P(p). Thus the horizontal space H ,is
contained in the tangent space T,(P(p)). Since u is constant on P(p), T,u- X =0.
Thus (u*w)(p)- X =0, and so H,=kerw(p)Sker(u*w)(p). Since u*w is also a
connection on P, dimkerw(p)=dim ker(u*w)(p), and so kerw(p)=ker(u*w)(p).
Thus o(p) and (u*w)(p) have the same horizontal subspace at p, and since p was
arbitrary, u*w = . Note that all connections determine the same vertical subspace
V,=ker T,r, reflected by the requirement that w(A*)=A4 for all Ae®. []

Remarks. 1. Thus Proposition 2.1 can be summarized by
1,(P,G)={ue C{,(P,G)u is constant on the holonomy sub-bundles of P}.
2. Property (3) can be rephrased in terms of I (P) as follows:

2.1.1. Proposition. I/ Fel (P) fixes a point py€ P, F(po)=po, then F=id, the
identity automorphism of P.

3. As we have seen in Sect. 1, Du=(u*0),,,=u*w—w. Thus uel (P, G) if and
only if Du=0ifand only if uis a gauge covariant constant if an only if (1), (2), and (3)
above hold. [

The infinitesimal version of Proposition 2.1 is the following.

2.2. Proposition. Let P(M,G) be a PFB, let pe.#,(P,®)=kerD. Then

(1) @ is constant on every holonomy sub-bundle P(p);

(2) for peP, ¢p(p)ecg(Hol (w)={Ae®|Ad(b)- A=A for all beHol,(w)},

(3) ¢ is determined by its value at a single point. In particular, if ¢(p,)=0 for
some py€ P, then ¢ =0 on P.

Conversely, if ¢ e Coy(P, ®)is constant on a particular holonomy subbundle, then
D=0, and (1), (2), and (3) above hold.

Proof. If Do =(d¢)p,, =do +[w, ¢]=0, then on a horizontal curve ¢(/),

Do(e(2) - €(2)=de(c(2) - ¢(2) = (@ ¢)(2)=0.

Thus ¢ is constant on horizontal curves and hence is constant on every holonomy
sub-bundle. The proof now proceeds as in Proposition 2.1. Alternately, the
proposition can be proven by taking curves in [ (P,G) and using
Proposition 2.1. [

Remark. In terms of .7 (P)={Te X"(P)|Lyw =0}, property (3) can be rephrased
as

2.2.1. Proposition. If Te.# (P) satisfies T(p,)=0 for some p,€ P, then T=0. []

Using Proposition 2.1, we can now derive a “formula” for I (P, G).
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2.3. Theorem. Let P(M,G) be a PFB, let we%(P), and let p,eP. Then the
evaluation map at p,

eval, :1,(P,G)—>CsHol, (), u—u(p,),
is a group isomorphism. Similarly, the evaluation map

eval},n I (P, G)—»cG(Holpo((u)), @ — ¢(po)
is a Lie algebra isomorphism.

Proof. By the definition of the group structure in C, (P, G),

evalpo(ul “Uy)=uy(po) - us(po) = (evalpo(ul)) : (evalpo(”z)) )

and so eval, is a group homomorphism. It is injective by property (3) of
Proposition 2.1.

To show surjectivity, let ae C4(Hol, (w)), and define a function u: P—G such
that

u(p)= a if peP(py)
P=b-1a-b it peP(p,-b)

u is well-defined, for if p € P(py)nP(p,, - b), then b e Hol,, (w) [and P(p,)= P(p, - b)],
and thus b™'-a-b=a since ae Cgz(Hol, (w)). To find the transformation pro-
perties of u, let pe P(py - b), so u(p)=b~"-a-b. Then for ceG,

p-ceP(py-b)-c=Plpo-b-c),
SO
ulp-cy=0b-c) "t a-(b-o)=c (b7 a-b)-c=c ' -ulp)-c.

If Hol, (w) is a closed subgroup of G, P(p,) is an embedded submanifold, and
since by construction u is constant on the holonomy sub-bundles, it follows that u
is a C* function on P. Thus ue CZ, (P, G), and by Proposition 2.1, u*w = w.

If Hol,, (@) is not closed in G, then by Lemma 1.5, C;(Hol (@)= Cg(Hol, (w)).
Thus if « centralizes Hol,, (), a centralizes Hol, (). Thus u defined above is
constant on the embedded submanifold P(p,)=Q(M, Hol, (w)). Thus, as above, u
is a C* function on P, ue C,(P, G), and as u is constant on the holonomy sub-

bundles, u*w=w. []

Remark. Another approach to the surjectivity of eval, that avoids the complic-
ation of non-closed holonomy groups is as follows. Let x,=n(p,), and let Hol
denote the holonomy group with reference point x,. Then Hol, is a Lie subgroup
of G, =(Gpu(M)),,, the group of automorphisms of the fiber P, . If ae C4(Hol, ),
let a,,eG,, be the corresponding element in G, . Then a, € Cq, (Hol, ). We
construct a smooth section u,, € C*(G (M) as follows. If x, € M, let ¢: [0,1]> M,
A—c(2), be a smooth curve from x, to x,, let ¢'(4) =¢(1 — 1), let t,: P, — P, denote
parallel translation of the fiber P, alongc,andlett, ': P, — P, denoteitsinverse.
Define u,(x,) by

-1
¢ .

Up(X,) =T 0 Ay, 0T

X0
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Then u,(x,) is independent of the curve ¢ from x, to x; since if ¢; and ¢, are two
such curves,
Te, 0y Ter1 =T, 2Tz 10T, ) ol o (Top10T,) 0 Tes

=T, 7 T,0 0y, ° T-;_ 0Ty 1=T.,°0,,°T

5o

where y=c, - ¢, ! is the closed composite curve based at x,, and the last equality
follows since 7,eHol, and a, eCq;_ (Hol - Let ue C5, (P, G) correspond to
Uy € CP(G (M )) Then by constructlon of uy, u(po)=a and u is constant on the
holonomy sub-bundles of P, and so u¥*w=w. []

By Lemma 1.5, C4(Hol,, (w)) is a closed subgroup of G, and hence a closed Lie
subgroup. In particular, C;(Hol, (w))is an embedded submanifold in G. We put a
Lie group structure on I,(P, G) by declaring that the group isomorphism

eval, :1,(P,G)—CgHol, (w))
is a Lie group isomorphism. With respect to this Lie group structure,
eval, =T,eval, :.7,(P,®)—csHol, ()

is the induced Lie algebra isomorphism.

Clearly, for different p € P, the Lie group structures induced on I (P, G) are all
isomorphic. Moreover, any other second countable Lie group structure on
I,(P, G) must be isomorphic to that induced by eval, (see e.g., Helgason [1962],
p- 109, or Warner [1971], p. 95). Thus the Lie group structure on I (P, G) is unique
(up to isomorphism).

Using the group bijection between I ,(P) and I (P, G), we carry the Lie group
structure of I (P, G) back to I (P). With respect to this structure, the map

1(P)=>CgHol,(w)),  F—ugpo)

is a Lie group isomorphism, where u, corresponds to F by Proposition 1.1. Thus
we have the following “formula” for I(P), 1,(P)~ CgzHol(w)), where Hol(w)
denotes any one of the holonomy groups Hol,(w), pe P.

Remark. If ae Cg(Hol, (w)), po€ P, Fel,(P)is determined by the equation F(p,)
=p,-a [since Fel,(P), F is uniquely determined by its value at a point]. Note,
however, that although R, solves this equation, R, is not the corresponding
internal symmetry of w unless a € Z(G), and then R, € Aut(P). Thus I (P), although
isomorphic to the subgroup C (Hol (@) of G, does not in general have a
representation as a subgroup of G(P {Ralae G}. Indeed I,(P) is a subgroup of
Aut(P), and G(P) is a subgroup of lef( ).

3. Some Examples
We now give some examples of the formula I (P)~ Cs(Hol(w)).

3.1. Example. Let P(M,G) be a PFB with Abelian structure group G. Then
Z(G)=G, and so for all aeG, R,e Aut(P). Let we%(P) with holonomy group
Hol(w)< G. Note that since the holonomy group of @ with respect to different
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points are all conjugate to each other in G, Hol(w) is independent of reference
point.

Since G is abelian, Cg(Hol(w))=G, and so I ,(P)~G. But since for all aeG,
R, e Aut(P),and Rfw=w, {R,ae G} <1 (P), so that I (P)=G(P)={R,ae G} ~G.
Thus in the Abelian case, for any connection w, I (P)is actually isomorphic to the
structure group of the bundle. The Lie algebra of I (P) is #,(P)={A*Ae®}
= ®(P)~ ®. Similarly,

1,(P,G)={u:P—Glu is constant on P}
with Lie algebra
7,(P,®)={¢p:P—>6|p is constant on P}.

In physical field theories, the Abelian case is of interest inasmuch as
electromagnetism can be formulated in terms of a connection w on a U(1)-PFB
P(M,U(1)) over a Lorentz manifold (M, g). For any such connection the internal
symmetry group is then given by [, (P)x~U(1). Since I,(P) leads to global
conservation laws, in this case (or more generally, in any Abelian case), the
structure group U(1) gives rise to global conservation laws for the resulting field
theory (see also Sect. 4), and Fischer [1985]).

3.2. Example. Let P(M,G)=M x G be the product bundle and let w, be the
canonical flat connection on P. Thus if n,: M xG—G, (x,a)+ a, denotes
projection onto the second factor, then w,=n%0, where 0 is the Maurer-Cartan
form on G. Then Hol(w,)={e} (again independent of reference point), and
Cg(Hol(wy)) = Cg4l{e})=G, so that I, (P)~ G is again isomorphic to the structure
group of the bundle. In this case however, I, (P)is not equal to G(P), since the right
translations R,: P— P are not automorphisms of the bundle [unless ae Z(G)].
However, on a product bundle, G can be represented as a group of left translations

ar> Ly=(idyxL):MxG-MxG, (x,b)— (x,ab),

where L, is left translation on G by a, and this action of G on M x G commutes with
the right action of G on M x G,

L, Ry(x,c)=(x,ach)=R, L,(x,c¢).
Thus for all ae G, L, e Aut(P), and also
Loy =LEn50=(ny0 L)*0 = (L, m)*0 =i 50 =n%0 = w,,

since @ is invariant by left translations. Hence L,el, (P). Thus I, (P) can be
displayed concretely as the group of left translations of M x G,

I, (MxG)={L,s M xG->MxGlaeG}=G,,

where G is defined only for product bundles, or for bundles isomorphic to product
bundles.
The Lie algebra of G, is given by
6, ={(0,A)e Xy (M x G)|Ae G},

where ;Z is the left-invariant vector field on G corresponding to A€ ®. Thus for
aeG, A(a)=T,L,- A.
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3.3. Example. As a slightly more general example, let w be a connection on a PFB
P(M,G) whose holonomy group Hol(w)={e}. Then for p,e P, the holonomy
bundle P(p,) is an {e}-PFB over M, or a global cross-section of P(M, G). Thus
P(M, G) is bundle isomorphic to the product bundle M x G (but not canonically)
and o is isomorphic to the canonical flat connection w, on M x G.

Then as above I(P)~ G, and using an isomorphism of P(M, G) with M x G,
I(P) can be represented as a group of “left translations” on P(M, G).

As a particular subcase, if M is simply connected and w is a flat connection on
P(M, G), then Hol(w) = {e}, and so I ,(P) ~ G. This case is of interest for Yang-Mills
field theories over a simply connected spacetime M, often taken to be either R* or
S*. In this case, if the connection w on P(M, G) is flat, then I (P)~ G. Ignoring the
distinction between left and right translations, the structure group G is said to
induce the global conservation laws of the associated Lagrangian field theory (see
also Sect. 4). [

We now give some examples where we must compute the centralizer
Cs(Hol(w)).

3.4. Example. Let M = §" taken with its usual metric g, and orientation as the unit
sphere in R"*!, Let L(S") denote its frame bundle, and let w, be the Levi-Civita
connection of g, on L(S"). Then Hol(w,)=SO(n) (see Poor [1981], p. 64, for the

calculation), so that
Ly (LAS") % CLw(SO ().

Let R*=IR —{0}. Then we have the following.
3.4.1. Lemma. For neZ", n+2,
Corn(SOM) = Z(GLM) = {1]; e R*} ~R*
For n=2,
C4L2(SO(2))=R*-SO(2)={2-al2cR* and acSO(2)}.

Proof. Since SO(n) acts irreducibly on R”", if 4e GL(n) commutes with every
clement of SO(n), then by Schur’s lemma (see ¢.g., Kobayashi-Nomizu [1969],
p. 277), if n is odd, then A=AI, AeR*, or if n=2m is even,

al,  bl, P
A_<~b1m al > a®+b*=+0.

Since for all ne Z™", Z(GL(n)) € Cg,,(SO(n)), for n odd, we have equality. If n is
even, let Be SO(2n). Then a conjugate of B can be put into the standard form

m

'B(0,)
B(0,,....0,)= :

"B, ) ’

cosf); sin0,

where B(0,) = ( Sinf. cosd ) A matrix computation shows thatif m=2 and 4

above commutes with B(04, ..., §,,) for all 8, then b=0. Hence in this case Z(GL(n))
= Cgrm(SO(n)). If n=2, all elements A of the above form commute with SO(2), so
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that
Cer2(SO(2)=R*-SO(2)=R*-S0(2).
For ZeR*, denote by 4 also the map
A L(S")—1(S"), p—ip,

whereif p=(X,,...,X,)isaframe at x, Ap=(AX,, ..., AX,) is also a frame at x. Thus
for n+2,

I, (L(S")={1: L(S")— L(S")|. e R*} ~ R*,

f»')o(

with a similar result for n=2.

Now let 0"(S"CL(S") denote the SO(n) bundle of positively oriented
orthonormal frames on S", and let w;, denote the Levi-Civita connection of g, on
07(S"). Then wy is the reduction of w, to 07 (S"), and so Hol(wy) = Hol(wq) =SO(n).
Thus

{I}  for n odd
107 (S") =~ Cy0m(SO(n))=Z(SO(n) =1 {1} for neven =4
SO(2) for n=2. O
Remark. The above example shows that the internal symmetry group of a
connection can change when the connection is reduced to a sub-bundle (although
it need not necessarily change; see Example 3.6). For comparison’s sake, note that

the classical affine group 4,(M) is independent of any reduction of w to a sub-
bundle. In the case at hand, for n>2,

A8 =A,4(S"=1,(S")=0(n+1).
(8" EDIff(S"), whereas I, (L(S")) S Aut(L(S"), so that
AUT (g, 0 (LIS, (L(S") = {id 5} »

Also, we remark that 4

where 0 is here the canonical 1-form on L(S").

3.5. Example. Let P(M, G) be a PFB with dim M = 2, let H be a Lie subgroup of G,
andleti: Q(M, H)— P(M, G)be a reduction of G to H. Assume that Q is a connected
manifold. Then there exists a connection w, on Q(M, H) such that Hol(w,)= H (see
Kobayashi-Nomizu [1963], p. 90). Also w, induces a unique connection w; on
P(M, G) such that w,=i*w, and Hol(w,)=Hol(w,)=H. Now

1,)(Q)~ Cy(Hol(wy))=Cy(H)=Z(H),
and
1, (P)~Cs(Hol(w,)=Cg(H). [
We give two special cases of this example.

3.6. Example. Let M be a 2m-dimensional orientable manifold, m>1, J an almost

complex structure on M (J2= —1I), and g a Hermitian metric on M, g(JX,JY)

=g(X,Y). Consider M with the natural orientation induced by J and let
C(M)=P(M, GL(m,€)) denote the complex linear frame bundle;
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0% (M)= P(M,SO(2m)) the bundle of oriented orthonormal frames and
U(M)=C(M)n0"(M)=P(M, U(m)) the unitary frame bundle.
In the real representation of Gl(m, C),

B
GL(m,C)»GL2m,R), A+iB»—+< AB A)’

where A and B are real m x m matrices,
U(m)= GL(m, €©)n0O(2m)= GL(m, C)nSO(2m),

the latter equation following from the fact that GL(m, C) is connected and hence
lies in GL°(2m,IR), the connected component of the identity of Gl(m, R).

Leti: U(M)—07"(M)denote the bundle reduction of 0* (M) to U(M) induced by
the almost complex structure J. Since M is connected and since U(m) is connected
(m=1),it follows that the total space U(M) is connected. Also, dim M =2m =2, and
so there exists a connection w, on U(M) such that Hol(w,)=U(m). This
connection then induces a unique connection @, on 07 (M) such that w,=i*w,,
and such that Hol(w,)=Hol(w,)=U(m). For these connections,

L, (UM)) % Cyim(U(m) = Z(U(m) = {“1,,|0 e R} x U(1),
and
L, (07 (M) = Cso2m(U(m)),
where U(m) is taken as a subgroup of SO(2m) in the real representation.
3.6.1. Lemma.
Csom(U(m))=Z(U(m)) ~ U(1).
Proof. In the real representation,

0 I,
J= <-1 0>6U(m),

where 1, is the m x mreal identity matrix. Let A € Cyg2,,)(U(m)). Since A commutes

with J, A€ GL(m,C). Thus A € GL(m, C)nSO(2m)= U(m), and so A € U(m). Since
Z(U(m)) € Cso2m(U(m)), we have equality. []

Thus in the above example, the internal symmetry groups of w, and w, are
isomorphic,

L, 0 (M)~ 1, (UM) = Z(Um)=~U().

3.7. Example. Let G=SU(n), n=2, and let P(M,G)=M x SU(n) be the product
bundle, dimM =2. Let H be a closed connected proper subgroup of SU(n) such
that H acts irreducibly on €" [for example, in the real representation,
SO(n)CSU(n), n=2, acts irreducibly on €"]. Let i: M x H— M x SU(n) denote the
reduction of SU(n) to H. Let w, be a connection on M x H such that Hol(w,)=H,
and let w,; be the connection pushed over to M xSU(n). Then Hol(w,)
=Hol(w,)=H, and so

2mik
I, (M x SU(n)~ Csy(H)=Z(SU (n)) = {eTI,,lk:(), 1. n— 1},
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since by Schur’s Lemma (valid for any field), if H acts irreducibly on C", then
Csym(H)=Z(SU(n)). , is an example of a generic reducible connection (see
Sect. 5).

3.8. Example. Let P(M, G) be a PFB such that the total space P is connected, and
such that G is a discrete Lie group. Then ®={0}, and n: P—»M is a regular
covering manifold of M. Let

Cov(P)={FeDIiff(P)ln- F=F}
denote the covering transformations of P. Then
Cov(P)x Grmy (M, xo)/m, (1, (P, po)),

where 7, denotes the first homotopy group of M (respectively P) based at x,e M
[respectively po,en™ Y(x,)]. Also, Aut(P)SCov(P), and so Aut(P)~ Z(G).

Since ® = {0}, there exists only one connection w,=0 on P, which is flat.
Moreover, since every curve in P is horizontal, Hol(w,)= G. Thus

1, (P)~Cs(Hol(w)~ Z(G),

so that I, (P)~ Z(G). Note that since w,=0, I, (P) is the entire group Aut(P),
which is, however, only the O-dimensional Lie group Z(G). Also, see
Proposition 5.4. []

Finally, we give an example where the holonomy group is not a closed
subgroup of the structure group G.

3.9. Example. Let P(S',S")=S'xS' be the product bundle, where
S'=U(1)={e"”|weR}. Identify S'x S' with the square E of length 27 in IR?
with opposite edges identified. Let A be a fixed irrational real number, and for
(x,y)e ECIR?, take as the horizontal subspace the line with slope 2. Let w, denote
the corresponding connection 1-form. Then since any connection over a 1-dimen-
sional manifold is flat, w, is flat, and its holonomy group is the discrete subgroup of
u(),

Hol(wg)={e™neZ}~Z.

Thus Hol(w,) is not a closed Lie subgroup of U(1). Since the structure group is
Abelian, by Example 3.1, I, (P)=U(1).

If A1s a fixed rational number, and if the horizontal subspaces are taken as the
lines with slope A, then the holonomy sub-bundles are the n-fold covering
manifolds S’ - S!, z—z" forsomene Z* depending on /, and the holonomy group
is

2mik

Hol(w)= {e_r

k=0,1,.‘.,n—1}zZ,,,

the cyclic group of order n.
Thus the possible holonomy groups for connections on S* x S* are Z and Z,,
neZ*, and each of these holonomy groups is attained.
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Remark. In contrast, on the “cylindrical” PFB P(S',IR)=5" x R, the holonomy
sub-bundles of each connection produces either a spiral or circular foliation of
S!' x R. Thus the possible holonomy groups are integer multiples of the vertical
distance d >0 attained in one spiral. Thus the possible holonomy groups are

Zd:{nd!nez,dgo}z{{zo} ﬁ ;1:8 .

4. Connections with Internal Symmetry Group as Large as Possible
From the realization of I,(P) as a closed subgroup of G by the map
evaly, i (P)~ Co(Hol, (@) SG.  F > uylpy).

we see that I (P) cannot exceed G. Thus we have the general estimate on the
dimension of I (P),dimI (P)<dimG=k.

It is of interest to know when I ,(P) is as large as possible, i.e., when I (P) is
isomorphic to G. In this case we shall say that I (P) (or that w) is maximal. If the
weaker condition dim/,(P)=k holds, we shall say that [ (P) has maximal
dimension. Again, we note that I (P)~ G docs not imply that I (P) is equal to
{R Jae G}, but merely that the internal symmetry group is isomorphic to G (see last
paragraph of Sect. 2).

In Lagrangian field theories, there is some confusion over the role played by the
symmetry group I ,(P) and by the structure group G of the PFB P(M, G). The
symmetry group I (P) generates global internal conservation laws, whereas in
general the structure group G does not. Thus it is of considerable interest to know
when these groups are isomorphic. Thus, although the cases discussed below are
special and “rare,” they are many of the cases that have been considered in great
detail classically, often resulting in the unfortunate confusion between the different
roles played by I (P) and G. (See Fischer [1985] for more details regarding these
differing roles.)

The formula of Theorem 2.3 gives an easy criterion in terms of the holonomy
group for when I (P)xG.

4.1. Proposition. Let P(M, G) be a PFB, and let w e €(P). Then I (P)~ G if and only
if Hol(w)C Z(G).

Proof. If Hol(w) < Z(G), then C,(Hol((w))=G. Thus I (P)~ Csz(Hol(w))=G.
Conversely, if I (P)~ G, then Cgz(Hol(w))=G. Thus forallae G,a-b=>b-afor
all be Hol(w). Thus if be Hol(w), then b e Z(G), and so Hol(w)C Z(G). ]

Examples 3.1, 3.2, and 3.3 are special cases of the above criterion. In
Example 3.1, G is Abelian and so Hol(w) < Z(G) = G for all connections w € €(P). In
Examples 3.2 and 3.3, Hol(w)={e} CZ(G) for all Lie groups G, and so again the
above criterion is satisfied. Using Example 3.3 and Proposition 4.1, we can also
give the following criterion for maximality of flat connections.

4.2. Proposition. Let o be a flat connection on the PFB P(M, G).
(i) If M is simply connected, then 1,(G)~G.
(i) If G is connected and Hol(w) is a normal subgroup of G, then I.(P)~G.
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Proof. (i) If o is flat and M is simply connected, then Hol(w) = {¢}, and so I ,(P)~ G
(see Example 3.3).

(i) If w is flat, Hol(w) is discrete. But a discrete normal subgroup of a
connected topological group is central (see e.g., Greenberg-Harper [1981], p. 18),
and so Hol(w)E Z(G). Thus by Proposition 4.1, I (P)~G. [

We can also give a criterion for when I(P) has maximal dimension. Let G°
denote the connected component of the identity of G.

4.3. Proposition. Let P(M,G) be a PFB, let k=dimG, and let web(P). Then
dim /I (P)=k if and only if Hol(w)S C(G°). In particular, if G is connected, then
I (P)~G (1,(P) is maximal) if and only if dimI (P)=k (I,(P) has maximal
dimension ).

Proof. From Theorem 2.3 and Lemma 1.5, I (P)~ C4(Hol(w)) € G, and C(Hol(w))
is a closed subgroup and hence a closed submanifold of G. Thus if dimI (P)=k
=dimG, then C;(Hol{w))2G°. Thus if ac G°, a-b=>b-a for all he Hol(w), so if
bheHol(w), then b commutes with all aeGY and so beC4GY. Thus
Hol(w)< C4(GO).

Conversely, if Hol(w)< Cy(G®), then if be Hol(w), then b commutes with all
elements in G°, b-a=a-b for all aeG°. Thus if aeG® a commutes with all
beHol(w). Thus

G°SCy(Hol(w) <G,
and so dimCgy(Hol(w))=k. [

4.4. Example. For an example of a connection with maximal dimension but which
is not maximal, let P=S"' x O(2) and let @, be a connection on P such that the
horizontal subspaces on each component of P have a fixed irrational slope 4 (see
Example 3.9). Then Hol(wy)={e™|ne Z}, and Hol(m,)=SO(2). Thus

IwU(P)z CO(z)(HOl((Uo)) C()(z) HOl( )= CO(z)(SO(Z)):SO(Z)‘

Thus dim/, (P}=1, but I, (P)* 0(2), so w, has maximal dimension but is not
maximal. []

In Example 3.3 we saw that if M is simply connected and w is flat, then
I,(P)~G. As a partial converse, we have the following.

4.5. Proposition. Let P(M, G) be a PFB with G semi-simple, and let e %(P).
) If I (P)~G, then w is flat.
(2) If G is connected and dimI (P)=k=dimG, then w is flat.

Proof. If I ,(P)= G, then by Proposition 4.1, Hol(w) € Z(G). Since G is semi-simple,
its center Z(() is a discrete subgroup of G. Thus Hol(w) is a discrete subgroup of G,
and so by the Ambrose-Singer Theorem (see Kobayashi-Nomizu [1963], p. 89),
the connection is flat.

If G is connected and dim[ (P)=k, then by Proposition 4.3, I (P)~ G, and so
by (1) the connection is flat. [

In Yang-Mills field theories, G is often assumed to be compact, connected, and
semi-simple (see e.g., Mitter [1980] or Singer [19781). With these assumptions
(even without G being compact), a maximal dimension connection must be flat,
thereby indicating the “scarcity” of maximal dimension connections.
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5. Connections with Internal Symmetry Group as Small as Possible
and Irreducible Connections

We have seen that for all a e Z(G), R¥w=w for any connection w € ¢(P). Thus the
inclusion Z(G)<I,(P) holds for all connections w, so that Z(G) is the smallest
possible symmetry group for any connection. We shall say that the connection w is
generic if 1 ,(P)=Z(G). Thus if w is generic, I (P) is as small as possible. By
Theorem 2.3, a criterion for w to be generic is given in terms of its holonomy group
as follows:

w is generic if and only if Cg(Hol(w))=Z(G).

We let

% o(P)={we€(P)|1,(P)=Z(P)}|

denote the space of generic connections on P. The term generic is justified by the
fact that if €,(P)=*¢, then €,(P) is an open dense subset of %(P) under the
assumption that P is a compact connected manifold [see Singer [1978] for this
result for irreducible connections (see below)].

In the special case when G is Abelian, Ci(Hol(w))=G=Z(G) for any
connection w (see Example 3.1), so that € ,(P)=%(P). Thus in the Abelian case,
every connection is both generic (I,,(P)=Z(G)) and maximal (I ,(P)=G), since
Z(G)=G.

Returning to the general case, we remark that although I (P)= Z(G)is constant
as a function of w € €,(P), the holonomy group Hol(w) may depend on w € € ((P).
For example, if P=S!xS! (see Example 3.9), then %,(P)=%(P), but Hol(w)
depends on w e %(P).

We shall also need the following result regarding generic connections.

5.1. Proposition. Let P(M, G) be a PFB, and assume € o(P)+ ¢. Let w e € ,(P). If for
some pe P, Hol (w) is Abelian, then G is Abelian.

Proof. Let H=Hol,(w) be Abelian. If aeH, a-b=b-a for all be H, and so
ae Cyz(H). Thus HC Cy(H). Since w e € o(P)* ¢, Co(H)=Z(G). Thus H £ Z(G), and
so C4(H)=G. Thus Z(G)=G, and so G is Abelian. []

Remark. Note that under the conditions of the proposition, w is also maximal. []

We now go on to study the irreducible connections, which turn out to be a large
sub-class of the space of generic connections. Unfortunately, there are at least three
definitions of an irreducible connection in the literature.

If w is a connection on P(M, G), then by the Holonomy Reduction Theorem
(see Kobayashi-Nomizu [1963], p. 83), @ can be reduced to a connection on the
holonomy sub-bundle P(p,)=Q(M,Hol, (w)). Thus it is reasonable to define a
connection to be irreducible if Hol(w)=G, and this is in fact done by several
authors (see e.g. Atiyah-Jones [1978], p. 101, Daniel-Viallet [1980], p. 186, or
Rawnsley [1978], p. 35). However, if Hol,, (w) is not a closed subgroup of G, P(p,)
will only be an immersed and not an embedded submanifold of P. The connection

w could then be reduced to a connection on the closed sub-bundle P(p,)

=Q(M, Hol, (w)). Thus if one wishes to rule out reductions of @ to immersed sub-
bundles as not being “proper” reductions, then an irreducible connection should
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be defined as a connection such that Hol(w)= G. This weaker definition is chosen
by other authors (see e.g. Atiyah, Hitchin, and Singer [1978], p. 442). Finally, for a
matrix Lie group GSGL(n,R), Singer [1978], p. 9, defines a connection to be
irreducible if its holonomy group Hol(w)S G acts irreducibly on IR".

Since for a general PFB this last definition requires a representation of the
structure group G on R”, we do not take it over to define an irreducible connection
on P(M, G). Since non-closed holonomy groups are a fact of life in the theory of
connections, we will consider reductions to immersed sub-bundles as being bona
fide reductions. Thus we end up with the following.

5.2. Definition. Let € %(P) be a connection on P(M, G). Then w is irreducible if
Hol(w)= G, and w is weakly irreducible if Hol(w)=G. w isirreducible if Hol{m)=* G,
and o is weakly reducible if Hol(w)=*G.

Let %,(P)={we %(P)|Hol () =G
denote the space of irreducible connections on P, and let
@ w(P)= {0 %(P)|Hol(@)= G}
denote the space of weakly irreducible connections on P. Thus
(P)SE(PYE(P).
5.3. Proposition. If w is a weakly irreducible connection on P(M, G), then
I1(P)=Z(G)={R,:P->Plac Z(G)}.

Thus every weakly irreducible connection is generic, and in particular, every
irreducible connection is generic.

Proof. Since o is weakly irreducible, Hol(w)=G. Thus from Theorem 2.3 and
Lemma 1.5,

1,(P)~ Cg(Hol(w)) = Cg(Hol(w)) = Ce(G)=Z(G).
Since for any connection, Z(G)<S1,(P), it follows that [ (P)=Z(G). []
From the above proposition, we now have the following inclusions:
EHP)C G (P)SE(P)SH(P).

In general, the inclusion %,,(P)C % ,(P) is proper. For example, if G is Abelian,
€o(P)=%(P) (see Example3.1), and so any weakly reducible connection
(Hol(w) = G) will be in € (P) but not in ¥ ,,(P). Another less trivial example is the
canonical connection w, on the frame bundle L(S") with n= 3 (see Example 3.4).
Here Hol(w,)=8S0(n), and so o, is reducible and so weakly reducible to the
proper closed sub-bundle 07(S"), but I, (L(S")=Z(G), and so wye @ (L(S") is
generic, but w, ¢ € (P).

The above inclusion is proper even in the case when G is compact, connected,
and semi-simple, as shown in Example 3.7, where a generic connection o, is given
on M xSU(n), dimM =2, n=2. By construction, w, is reducible and so strongly
reducible to a connection @, on the proper closed sub-bundle, M x H.

Regarding the existence of irreducible connections, we have the following.

wo
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5.4. Proposition. Let P(M, G) be a PFB where the total space P is connected and
dimM 2 2. Then there exists an irreducible connection on P, so that € (P)= ¢,
Ew(P)+ ¢, and € o(P) =% ¢.

Proof. By a theorem of Kobayashi-Nomizu [1963], p. 90, there exists a connection
w, such that Hol(wy)=G. This w, is irreducible, and so
wo €6 (P)SEW(P)SEo(P). [

The one-dimensional case is an interesting curiosity. The variety of possi-
bilities, listed below, is somewhat uncxpected.

5.5. Proposition. Let dimM =1, so that M is either diffeomorphic to R or to S*,
and let P(M, G) be a PFB over M.

If M~RR, then P(M,G)~R x G If G is Abelian, then € (P)=%(P)+ ¢. If G is
not Abelian, then € (P)=%y(P)=%(P)=¢. If G=*{e} (G Abelian or not ), then
CUP)=Fw(P)=.If G={e}, then € (P)=% y(P)=%(P)=%(P)={w,} # ¢, where
wo=0 is the zero connection on P(R{e}) (sec Example 3.8 ).

If M~S*, and if G is Abelian, then € (P)=%(P)=*¢. If G is not Abelian then
G P)=Fw(P)=%F(P)=¢. If P(S'.G) is connected and dimG=0, then G is
isomorphic to either Z or Z, for some ne Z™, and P(S*, G) is bundle isomorphic to
either covering manifold R —S'; i—e'*, for G%Z, or '8 22" for GxZ,
and where S'={zeClzz=1}. In either case

Cw(P)=%,(P)=C(P)=F(P)={wo} + ¢,

where my=0.
If G is Abelian and dim G = 1, then € ,(P)= ¢, but whether € ,,(P) is empty or not
depends on the bundle P(S', G).

Proof. From Example 3.1 and Sect. 5, if G is Abelian, then % o(P) = ¢(P) =+ ¢, for any
PFB P(M, G).

If dimM =1, then the curvature 2-form of connection w on P(M,G) must
vanish, so that any connection on P(M, G) must be flat.

Now let M ~RR. Since R is contractable, P(IR, G) is bundle isomorphic to
R x G. Let e %(P). Since w is flat and IR is simply connected, Hol(w)= {e}. Now
suppose €o(P)+ ¢. Let w,e%,(P), so that Z(G)= CG(Hol(wo)) Cylle})=G, and
so G is Abelian. Thus if G is not Abelian, €,(P)=¢, and so 6 (P)=%,(P)
=%o(P)=¢.

Since Hol(w)= {e} for every connection w € €(P), every connection is reducible
to the zero connectlon we=0 on the closed holonomy sub-bundle P(p,)
=Q(M, {e}). Thus if G+ {e}, then € (P)% ¢, and so also %, (P)=¢. If G={e},

ther % wlP)=%,(P)=%o(P)=6(P) = {0} + .
Now let MxS'. For pye P(S',G), let x,=n(p,)eS'. For we%(P), let
himy(S', xo)—Hol, (w)
denote the holonomy homomorphism (see Kobayashi-Nomizu [1963], p. 93).

z .. .
——— is isomorphic to

kerh

Since 7,(S", x,)~ Z and since h is surjective, Hol, (w)~
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zZ . .
cither Z or Z,= 7 for some neZ". Thus Hol,(w) is Abelian, and so by

Proposition 5.1, if € ( P) % ¢, then G is Abelian. Thus if G is not Abelian, € o(P) = ¢,
and so €y (P)=%(P)=%(P)=¢.

If dim G =0, G is a discrete Lie group, and so if P is connected, by Example 3.8,
P—S'isaregular covering manifold of S'. But every connected covering manifold
of S' is equivalent to either R—S!, 1—¢™* or §' S, z—2", for some ne Z* (see
Spanier [1966], p. 80). Thus G must be either Z or Z, for some ne Z*. In either
case, there is only one connection w, =0 on P, and Hol(w,)= G (sce Example 3.8).
Thus

,(P) = (P) =% (P)=%(P) = o} .

Now assume dim G > 1, G Abelian. Since every connection w on P(S*, G)is flat,
the holonomy groups must be discrete subgroups of G. Thus if dimG2>1,
Hol(w) =+ G for any connection » on P. Hence % ,(P)=¢.

Example 3.9 with P=S'xS' and with connection w, determined by
horizontal subspaces with irrational slope gives Hol(w,)=S', and hence
wo €% w(P)=% ¢. On the other hand, the holonomy group of any connection on
P=S" xR isadiscrete subgroup of R (see Example 3.9), and so Hol(w) = G for any
connection w on P. Hence €,(P) = ¢. Thus whether % ,(P) is empty or not depends
on the bundle P(S!,G). [

We summarize the above results in the following tables, with w,=0.

Subspaces of €(P)

Group G € ,(P) € w(P) o(P)
G={e} {wo} {wo} {gf
G Abelian, G # {e} ¢ ¢ Eo(P)=%(P)* ¢
G not Abelian ¢ 103 0
Case 1, M=R

Subspaces of %(P)

Group G GP)  ylP) olP)
P(S', G) connected, (g} {wy} {wg}
dimG=0= GxZ or Z,, {wo} {wo} {wg}
neZz’
G Abelian, dimG =1 ¢ depends on G o(P)=%(P)+ ¢
P(S, G)
G not Abelian ) ¢ )

Case 2. MxS!
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6. 1,(P) as a Lie Group of Transformations

In Sect. 2 we showed that I,(P, G), and hence I (P) has a Lie group structure. In
this section we show that I (P) is a Lie transformation group that acts properly
and freely on P.

Let P(M,G) be a PFB over M, let g be a Riemannian metric on M (M is
paracompact and hence admits Riemannian metrics), let w e %(P), and let 7 be a
positive-definite inner product on ®. We are not assuming that 7y is adjoint-
invariant. Indeed, such a y does not exist on a general Lie algebra. Using g, w, and 7,
we construct a Riemannina metric g on P by g=n*g+7 - (0Qw), so that

gp)(Z,Z,)=gx) (X, X,)+7 - (0(Z,), w(Z,)),

where peP, Z,,Z,eT,P, x=n(p), and X, =T,n-Z,, X,=T,n-Z,e T.M. Note
that if y is not Ad-invariant, then g is not G-invariant (R¥g=+¢ for all aeG).
However, we shall see below that g is I ,(P)-invariant. This observation is the key to
Theorem 6.2 below.

Let I,(P)={H e Diff(P)|H*§ =g}

denote the group of isometries of P. Note that an isometry need not be an
automorphism of P. A classical result of Myers and Steenrod ([1939]) states that if
P is connected, then with respect to the compact open topology, I,(P) is a Lie
transformation group of P;i.e., I,(P) has a Lie group structure such that the action
I(P)x P—P,(H,p)— H(p)is a C* map. Also, the Lie algebra of I,(P) consists of
the complete Killing vector fields on P,

J(P)={We X(P)|W is complete and L,g=0}.

As part of this classical result, it is shown that if { H,} is a sequence in I;(P) such
that H,(py)—p;, then there exists an H e I,(P) [with H(p,)=p, | and a subsequence
{H,} of {H,} that converges to H in the compact open topology (see Helgason
[1962], p. 167 or Kobayashi-Nomizu [1963], p. 47). This latter result can be
rephrased as follows.

6.1. Proposition. If P is connected, then the action I,(P)x P—P, (H, p) = H(p) is a
proper action.

Proof. The above action is proper if the map I,(P) x P—P x P,(H, p) = (p, H(p))is a
proper map, i.e., if the inverse image of a compact sct is compact. This is equivalent
to showing that if {p,} is a sequence that converges in P, and {H,} is a sequence in
I,(P)such that {H,(p,)} convergesin P, then {H,} has a convergent subsequence in
I,(P). Thuslet (p,, H,(p,))—(po, p1) € P x P. Let d be the metric on P associated with
¢. Then since ¢ is I,(P)-invariant, so is d. Thus

d(Hn(pO)a pl) é d(Hn(pO)9 Hn(pn)) + d(Hn(pn)7 pl) = d(p07 pn) + d(Hn(pn)’ p]) .

Since p,—p, and H,(p,—p,, the right-hand side converges to zero. Hence
H,(po)—p;- Thus by the classical result, therc exists a convergent subsequence
{H,,} in I (P). Hence the action is proper. []

Our main theorem is now the following.
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6.2. Theorem. Let P(M, G) be a PFB, let @ be a connection on P(M, G), and let
I (P)={FeAut(P)F*u=w}

denote the internal symmetry group of w. Assume that the total space P is a connected
manifold. Then with respect to the compact open topology on I (P),

(1) I(P) is a Lie transformation group of P, i.e., the action ¥ :1,(P)x P—P,
(F,p)—F(p) is a C* action.

(2) The Lie algebra of 1,(P) is:

S o(P)={Te Xg"(P)|Lyw=Dp,=0j.

(3) The action ¥ is proper and free.
(4) dimi (P)<dim®.
(5) For pe P, the orbits

(CP: {F(p)IFEIo)(P)}

are closed submanifolds of P, and the orbit maps ¥ ,:1 (P)—>C,C P, F — F(p) are
diffeomorphisms onto the orbits. The differentiable structure on I (P) is given by the
embedding of 1,(P) onto the closed submanifold .

(6) The orbit space

I(PNP={C,|pe P}

in the quotient topology has the structure of a C* manifold such that the orbit
projection map P—1,(P)\P, p > O, is a submersion, and is also a left principal fiber
bundle with total space P, base space 1,(P)\P, and structure group I (P).

(7) For pe P, the map

Io)(P)_)CG(HOlp(w)) g F = uF(p)

is a Lie group isomorphism.
(8) If the structure group G of the PFB P(M, G) is compact, then 1,(P) is a
compact Lie transformation group.

Proof. (1) For Fe AUT(P), let f=#(F)e Diff(M), so that 7+ F=f-x. Then
F*g=F*n*g)+ F*(y - (0®@w)) =n*(f*g)+7 - (F*o® F*w),

where F* pulls through the second term because of the bilinearity of 7. Thus if
Fel (P), #(F)=id,, and F*o=wm, so that F*¢=n*g+7 - (0®w)=4¢. Thus
Fely(P), and so I,(P)SI,(P).

Morcover, in the compact open topology, F¥*w=w is clearly a closed
condition, and so I,(P) is a closed subgroup of I,(P). From the classical result
stated above, I,(P) is a Lie transformation group. Since any closed subgroup of a
Lie transformation group is also a Lie transformation group, it follows that I (P)is
a Lie transformation group.

(2) Let F, be a one-parameter group of transformations in I_(P), and let

_dr,

d2{;<o

T € XI(P)

be its generator. Then Ffw=w, and so Lyw=0. Thus Te.7_ (P).



258 A. E. Fischer

Conversely, let Te 4 (P)< X&(P). Then since G-invariant vertical vector fields
are automatically complete, T is complete. Let F,e Aut(P) be its flow. Since
Lrw=0, Ffo=o (sec Kobayashi-Nomizu [1963], p. 33), and so F, eI (P).

(3) The action is proper since the action of I (P) on P is proper (see
Proposition 6.1), and since the restriction of a proper action to any closed
subgroup is also a proper action.

Since P is connected, M is necessarily connected. Thus the action is free by
Proposition 2.1 and Remark 2 following it. Note that the action of /,(P) on P is not
necessarily free.

(4) Fix peP. Then the map .7, (P)—®, T+ w(p)- T(p) is an injection by
Proposition 2.1 (and Remark 2 following it) and so dim [ (P)=dim.# (P) < dim &.

(5) and (6) follow for any smooth, proper and free action (see Abraham-
Marsden [1978], pp. 266 and 276). That the differentiable structure on I (P) is
induced by the embedding @,:1(P)—~C ,, F — F(p), follows from the correspond-
ing result for I,(P) (see Kobayashi [1969], pp. 15 and 41).

(7) Since Cg(Hol,(w)) is a closed subgroup of G, the map

Cs(Hol ,(w)»C, P, ar>p-a,

is a diffcomorphism onto the orbit. Hence the Lie group structure on I ,(P) induced
by the embedding I (P)— ,, I' — F(p), coincides with the Lie group structure on
I,(P) induced by the group isomorphism

I(O(P)_)CG(HOIIJ((’O)) > Fi uF(p) .

Thus (7) is a restatement of Theorem 2.3, again using the fact that M is connected.
We also note again that all second countable Lie group structures on a Lie group
are equivalent (see discussion following Proposition 2.3).

(8) Since C(®,(w))is a closed subgroup of G, if G is compact, so is C(P (),
and hence also I ,(P). [

Remarks. 1. A similar but modified formulation of the above theorem is available
for the “action”

I(P,G)x P—>G, (u,p)— u(p).

Thus I,(P, G) has a Lic group structure such that the above “action”is C*, it is free
in the sense that if u(p)=e, then u=e, and it is proper in the sense that

1(P,G)x P=>Px G, (u,p)— (p,u(p))

is a proper map.

2. As we have noted, if P is connected, then M is connected. However, G need
not be connected. On the other hand, if both M and G are connected, then P is
connected.

3. Note that if G is compact, Hol(w) need not be compact (sec Example 3.9).
Thus it is of interest that I (P)~ Cgz(Hol(w)) is compact [since Cg(Hol(w) is a
closed subgroup of G]. Note the analogy with Riemannian geometry, where if M is
compact, then the isometry group /(M) of a Riemannian meiric g is compact.
Thus in this regard, compactness of the structure group G, causing [,(P) to be
compact, is analogous to compactness of M, causing I (M) to be compact.
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4. If P has a finite number of components, then I,(P) is still a Lie
transformation group, but its action on P is no longer proper. However, if M is
connected, the action of I ,(P) on P is still a proper action, inasmuch as F e I (P) is
determined by its value at a point.

7. The Lie Group of Transformations [, ., (P)

As noted in the introduction, there are several finite dimensional subgroups of the
infinite dimensional group AUT (P) which are Lie groups. If P is a frame bundle,
then we can consider the Lie group of affine transformations of w,

ASM)=AUT ,(P)=AUT(P)nAUT(P)=1 ,(P),

where 6 is now the canonical 1-form on P=[L(M). For a general PFB, we
considered in the previous section the Lie group I (P) = Aut(P)nAUT(P). In this
section we put a Riemannian metric g on the base manifold M and consider the
larger subgroup

Iy o(P)={FeAUT(P)F*o=w and f*g=g} 21,(P).

where f'=#(F) e Diff(M) s the difftfomorphism of M induced by the automorphism
FofP.Thus [, ,(P)is the group of automorphisms of w that cover isometries of g.

Regarding I, ,,(P) we have the following result.

7.1. Theorem. Let P(M, G) be a PFB, let @ be a connection on P, and let g be a
Riemannian metric on M. Assume that the total space P is a connected manifold.
Then with respect to the compact open topology on I,] o P)s

(1) I, (P} is a Lie transformation group of P, i.., the action ¥:

L. wfPYX P=P, (F,p)— F(p)

is a C* action.
(2) The Lie algebra of 1, (P

I .o\ PY=1ZeXyP) Z is a complete vector field on P,
and L,w=0 and Lyg=0, where X =n,Z e X(M)] .

lS

(3) The action ¥ is a proper action.
(4) dimI, ,(P)Sn(n+1)+k, where k=dimG.
(5) The isotropy group at an arbitrary point py€ P,

( (9. u)(P))m fFe](q ) P)IF pU) pOI

is compact.
(6) For peP, the orbits € ,={F(p)|Fel, ,(P)} are closed submanifolds of P,
and the maps

(Cl w)(P) R
(I(l].w)(P)) C(pgp’ [F] g F(p)

are diffeomorphisms onto the orbits.

(7) If P(M,G)is compact, then I, ,(P)is a compact Lie transformation group.

(g, ®)
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Proof. (1) and (3). As in Sect. 6 and Theorem 6.2, let 7 be a positive-definite inner
product on ®. Then g=n*g+7y - (W®w) is a Rlemanman metric on P. If
Fel, ,(P),

F¥g=n*(f*g)+7 - (F*o®F*w)=3§,

s0 Iy, ,)(P) is a closed subgroup of Ig(P). Thus I, ,(P) is a Lie transformation
group on P, and the action is proper.

(2): If F, is a one-parameter subgroup of I, ,(P) with generator Z e X4(P),
then Z is a complete vector field and F¥w=w and f*g=g, where f,=#(F,). Thus
L,w=0 and Lyg=0.

Conversely, if Ze .7, ,,(P), then by definition of .7, ,(P), Z is complete and
L,w=0and Lyg=0. Let F, be the flow of Z and [, =#(F,) the flow of X =n,Z.
Then Ffw=w and f*g=g. Thus F;el, ,(P).

(4): Note that since dimP=n+k, we have the immediate rough estimate

dimI, ,(P)<3(n+k)(n+k+1).

This can be refined as follows. For Ze .7, ,(P), let X =n,Z e .7 (M), the space of
complete Killing vector fields on M. Let O(M) denote the orthonormal frame
bundle of M, and for pe P and ue O(M), consider the map

Zg.0P)=>O X TOM)),  Z— (lp)- Z(p), X(w),

where X(u) denotes the natural lift of X to O(M). This map is injective, for if
o(p)- Z(p)=0 and X (1) =0, then X(x)=0 and T.X =0, where x is the base point of
u. Then since X is a Killing vector field, X =0. Thus Z is a vertical vector field, and
so Ze.#,(P). Since w(p)- Z(p)=0, Z=0. Since the above map is injective,

dim.7,,,,(P)<dim G +dim T,O(M)) =k +in(n+1).

(5): Since the action is proper, the isotropy subgroups are compact. Alter-
nately, (I, ,,(P)),, is a closed subgroup of the compact isotropy group (I;(P)),,
={Fel(P)|F(po)=po}-

(6): This is a consequence of the properness of the action (Abraham-Marsden
[1978]).

(7): If P(M,G) is compact, I,(P) is a compact transformation group. Since
I, 0)(P) 1s a closed subgroup, it is also compact. []

Remarks. 1. Note that in contrast to .#(P), where infinitesimal vertical symmetries
of w are automatically complete, infinitesimal symmetries Z of ., ,, (i.e., L,»=0
and Lyg=0) are not nccessarily complete, so the Lie algebra .7, ,(P) must be
restricted to the space of complete infinitesimal symmetries.

2. Another difference between the groups I,(P) and I, ,(P) is that the action
of I, ,,(P)on Pis not necessarily free. This is because if Fe [, (P) with F(p,) = p,,
then f(x,) = x,, where f=7a(F)e I (M)and x, = n(p,). But anisometry which fixes a
point need not be the identity. Thus F need not cover the identity, and thus
Proposition 2.1 cannot be applied. Thus F fixing a point p, € P is not sufficient to
cause F to be the identity (see Example 7.2 below).

— 1S

3. Since the action of I, ,,(P) is not necessarily free, the orbit space - 13

(q )
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not necessarily a manifold. However, since the action is proper, it is a Hausdorff

space. [
Here’s an example of the non-freeness of the action of I, ,,(P) on P.

7.2. Example. Let S" be the standard unit sphere in IR"*! with standard metric
20, Xo the north pole, and fe I, (S"), an isometry fixing x, with f#id,,. Let P(S", G)
= 5" x G be the product bundle, and let w, =n%0 the canonical flat connection on
P (see Example 3.2). Let

F:§"xG-8"xG, (x,a)—(f(x),a).
Then Fe AUT(P), F covers f, and
Fro,=F*n50=(n, F)*0=n%0=w,,

so that F el ,,(P). Also F fixes (x,, a), F(xq, a)=(f(xo), a)=(x,, ), but F#id on
S"xG. [

For ZeX4(P) and we%(P), the Lie derivative L,me A'(P,®) can be further
examined. Let Z =T+ X be the decomposition of Z into its vertical and horizontal
part. Here TeXg™(P) is defined by T(p)=T,®,- (w(p)- Z(p)), and X is the
horizontal lift of X =7, Z e X(M).

7.3. Proposition. Let Z € X5(P), w e €(P), and let Z =T+ X the decomposition of Z
into G-invariant vertical and horizontal vector fields. Let @r=w(T)e C3y(P, ®)
correspond to T according to Proposition 1.1, and let Q=Dwe A*(P,®) be the
curvature of ®. Then Lyo=D@,+ixQ.

Proof. By Lemma 1.4, Ly = D¢,. Since o(X)=0,

Lyo=igdo+dizo=iydw,
and also

iyQ=izdw+3iy[wAw])=iydo.
Thus

Lyw=L;,yo=Lyo+Lyw=Dpr+isdo=Dp,+izQ2. []
Thus the Lie algebra .4, ,,(P) can be described by
I o(P)={Z € X4(P)|Z is complete and D, +i3xQ=0 and Lyg=0},

where ¢ = w(T)=w(Z),and X =n,Z. This description is important in Yang-Mills
field theories (see e.g. Forgacs-Manton [1980]; Jackiw-Manton [1979]; Fischer
[1985]).

Finally we remark that in Lagrangian gauge field theories, the Lie group
I,.(P) plays an important role as the generator of global conservation laws for
matter fields coupled to the fixed parameter fields (g, w). This is analogous to the
role played by I(P) as the generator of global internal conservation laws, and to
the role played by I (M) as the generator of the global spacetime conservation
laws. Here g is usually a Lorentz signature metric (see Fischer [1984, 1985] for
more details).
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