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Abstract. The internal symmetry group of a connection on a principal fiber
bundle P is studied. It is shown that this group is a smooth proper Lie
transformation group of P, which, if P is connected, is also free. Moreover, this
group is shown to be isomorphic to the centralizer of the holonomy group of
the connection. Several examples and applications of these results to gauge
field theories are given.
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introduction

Let P(M, G) denote a principal fiber bundle with structure group G over a
connected manifold M, let AUT(P) denote the group of automorphisms of P, and
let Aut(jP) denote the normal subgroup of automorphisms of P that cover the
identity diffeomorphism of M. Let ω be the connection 1-form of a connection on
P. If Fe AUT(P), let F*ω denote the pullback of ω by F. Then

AUTJP) = {FE AUT(P)|F*ω = ω}

is the symmetry group of ω, and
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is the internal symmetry group of ω. In this paper we prove that if P is a connected
manifold, then with respect to the compact open topology, Iω(P) is a finite
dimensional Lie transformation group of P that acts smoothly, properly, and
freely on P (see Theorem 6.2). This is in contrast to the fact that AUTω(P) is in
general an infinite-dimensional group. Another result is that for each peP, there is
a Lie group isomorphism

ip:Iω(P)-+CG(Kolp(ω)), F^uF(p),

where Ho\p(ω)Q G is the holonomy group of ω with reference point p, CG(Holp(ω))
is the centralizer of Holp(ω) in G, and uF: P-+G is a map determined by F. Thus the
determination of Iω(P) is completely reduced to finding the holonomy group
Hol(ω) and an algebraic problem. We give several examples and applications of
these results to gauge field theories.

It is of interest to compare these results to the results regarding the classical
affine group of a linear connection Γ on the frame bundle LM of M. Let ω be the
corresponding connection 1-form. Then a diffeomorphism / of M is an affine
transformation if the induced mapping Tf: TM-+TM maps horizontal curves to
horizontal curves. This condition is equivalent to/*ω = ω, where f:LM-*LM
denotes the natural lift of / : M-»M to the frame bundle LM. Thus if Diff(M)
denotes the group of diffeomorphisms of M, then

Aω(M) = {feΌiϊϊ(M)\f*ω = ω}

is the group of affine transformations of ω.
Now let θ denote the canonical Revalued 1-form on LM, and let

AUTΘ(LM) = {FE AUT(LM)|F*# = 0}.

Then F e AUTΘ (LM) if and only if F = / for some fe Diff(M) (Kobayashi-Nomizu
[1963], p. 226, or Kobayashi [1972], p. 40). Thus

AUTΘ(LM) = {/G AUTθ(LM)|/e Diff(M)}« Diff(M)

and the affine group Aω(M) is isomorphic to

Aω(M)πAυτ{θ>ω)(LM) = {FeAυT(LM)\F*θ = θ and F*ω = ω}

= AUTθ(LM)n AUTJLM).

Thus at the bundle level, affine transformations are bundle automorphisms that
preserve both the connection form ω and the canonical form 0, so that the classical
group of affine transformations is actually the simultaneous symmetry group of both
ω and θ. Although in general both AUTΘ(LM) and AUTω (LM) are infinite
dimensional, the intersection AXJΎ{θ^ω)(LM)κAω(M) is a finite dimensional Lie
group.

It is interesting that historically affine transformations were first considered as
transformations of M whose natural lifts preserved ω, rather than as more general
bundle automorphisms of LM that preserve ω, thereby relegating the interesting
infinite dimensional group AUTω(LM) to the shelf of mathematical obscurities.

On a general principal fiber bundle there is no canonical 1-form θ. However,
there are still interesting "reductions" of AUTω(P) resulting in a finite dimensional
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group. Firstly, we may intersect AUTω(P) with Aut(P), thereby obtaining the
internal symmetry group Iω{P). Thus in this respect Aut(P) plays the role
AUTΘ(LM) did for the affine connection on the frame bundle LM.

Another possibility is to put a Riemannian metric g on M and consider the
group

/ ( P ) {FAUT(P)|F* = ω and f*g = g},

where / is the diffeomorphism of M induced by the automorphism F. Thus I{9t ω)(P)
is the group of symmetries of ω that cover isometries of g. This also is a finite
dimensional Lie transformation group of P acting smoothly, properly, and
effectively (though not freely) on P (see Theorem 7.1). This group is of interest in
gauge field theories (see Fischer [1982, 1985, 1988] and the references therein).

On a frame bundle LM we can compare the internal symmetry group

Iω(LM) = Aut(LM)n AUTω (LM)

with the affine transformation group

But if F e Jω(LM)nAUT(θ?ω)(LM), F must cover the identity diffeomorphism idM of
M [since IJJLM) gAut (LM)\ and F must be the lift of a diffeomorphism of M
[since AUT(Θ ω ) Q AUT^ (LM)]. Thus F = idLM, the identity diffeomorphism of LM,

Thus the internal symmetry group IJJLM) has only a trivial intersection with
AUT<θϊω/LM)«4ω(M). Thus IJLM) and AUT^ω){L,M) are respectively the
"vertical" and "horizontal" components of AUTω (LM). IJLM) itself has no
classical analog.

In considering the symmetry (or automorphism) group of a geometric
structure (see Kobayashi-Nomizu [1963], p. 306, and [1969], p. 392), attention is
usually focused on the automorphism group of a G-structure on M, i.e., a reduction
of LM to a G-principal fiber bundle, G Q GL(ή). The automorphism group is then
the subgroup of Diff(M) consisting of those maps / whose natural lift / maps the
G-structure to itself. In this regard the affine group AJM) of a linear connection ω
is somewhat of an exception inasmuch as a connection is not a G-structure on M
(i.e., it is not a reduction of LM), and so AJM) is not an automorphism group of a
G-structure. Similarly, a connection ω on a general principal fiber bundle P(M, G)
is a geometric structure on P (or on M), but is not a G-structure on M, and so the
internal symmetry group IJP) is not an automorphism group of a G-structure.
However, IJP) is a symmetry group of a geometric structure, and so our result that
IJP) is a Lie transformation group adds another geometric structure to the list
enumerated in Kobayashi-Nomizu [1969], p. 332, of geometric structures whose
automorphism groups are Lie groups.

1. Notation and Preliminaries

Throughout this paper, M will denote a connected C00 n-dimensional manifold
(Hausdorff and second countable, and hence paracompact), G a (second countable)
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Lie group, and P(M, G) a principal fiber bundle (PFB) with total space P, base
space M, structure group G, projection map

π.P^M,
and right action

Φ:PxG->P, (p,a)h+p a.

All of the above paraphernalia will be denoted by P(M, G).
For p e P, let

Φ G P ω

denote the orbit map through p, and for αeG, let

denote the diffeomorphism of P corresponding to aeG. Let G(P)
= {Ra: P-+P\a e G} denote the Lie group of diffeomorphisms of P induced by the
action Φ.

Let e be the identity in G, let © = TeG the Lie algebra of G (taken with the usual
Lie algebra structure of left-invariant vector fields on G), and let

Ad: G->GL((b), cih->Ad{a): ©-•©

denote the adjoint representation of G on (5. Let Vp = ker Tpπ £ T^P denote the
vertical subspace of the tangent space TpP, and let TeΦp :(Ά~^VpQ TpP denote the
derivative at the identity e e G of the orbit map Φ p : G-»P. For ,4 e ©, let A* be the
fundamental vector field on P generated by A. For p e P , /I* is defined by A*(p)
= TeΦpΆ.

Let Diff(P) and Diff(M) denote the groups of C00 diffeomorphisms of P and M,
respectively, with composition of diffeomorphisms as the group structure. Let

AUT(P) - {F G Diff(P)|F <>Ra = RaoF for all a e G}

denote the group of automorphisms of P. The condition F o Ra = Ra o P can also be
written F(p α) = F(p) a for all p e P and α e G. For F e AUT(P), F maps fibers to
fibers and so induces a diffeomorphism of the base manifold M. Let
/ = π(F) G Diff(M) denote this induced diffeomorphism. Morever, the map

π: AUT(P)-»Diff(M), F->π(F) = / ,

is a group homomorphism. Its kernel is

Aut(P) = {F G AUT(P)|π(F) = id M },

the normal subgroup of automorphisms of P covering the identity diffeomorphism
idM of M. The group Aut(P) has two other representations, which we briefly
describe.

Firstly, let C"°{P, G) denote the C00 maps from P to G, and let

C£ut(P, G) = {ue Cyj{P, G)\u{p α) = α " 1 φ ) a for all p e P and αe G}.

Then C^utίF, G) is a group with respect to pointwise multiplication of functions.
Secondly, consider the left action of G on itself by inner automorphisms

GxG-^G, (a,b)^κ2 b - a~ι. Let GAuX(M) = (P xG)/G denote the corresponding
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associated fiber bundle over M with standard fiber G. For x e M, the fiber at x,
denoted GAut(M)x, is the Lie group of diffeomorphisms of the fiber π~ι{x)QP that
commute with the action of G on π" ι(x). Thus GAlit(M) is a bundle of Lie groups
over M. Let C^iG^M)) denote the space of smooth cross-sections of GAut(M),
taken with its group structure of pomtwise multiplication of sections. Then the
following proposition is basic (see e.g., Trautman [1980], or Fischer [1985]).

1.1. Proposition. The three groups Aut(P), Q;ut(P;G) and C^G^M)) are
naturally isomorphic with each other. The first of these isomorphisms (i.e., group
bisections) is given by

Aut (P) -> CZJP, G), F h > u f )

where for p e P, uF(p) is defined by the equation

F(p) = p-uF(p).

The second of these isomorphisms is given by

where for x e M, uM(x) is defined by

uM(χ) = {(p>a,a~1 • u(p) a)\aeG}e(Px G)/G,

where peπ~1(x), and the above definition is independent of the choice of p. Π

We shall have occasion to use the viewpoint represented by all three groups.
However, since we shall be working primarily on P, we shall use mostly either
Aut(P) or CAut(P, G), depending on convenience. In Sect. 2, convenience will
dictate strongly that CAu{(P, G) be primarily used, while in Sect. 6, Aut(P) will be
primarily used.

Let X(P) and X(M) denote the Lie algebras of C00 vector fields on P and M,
respectively, taken with the usual bracket of vector fields as the Lie algebra
structure. Let

XG(P) = {ZeX{P)\{RXZ = Z for all aeG)

denote the Lie subalgebra of G-invariant vector fields on P. Then π: P-^M induces
a Lie algebra homomorphism π^:XG(P)^X(M), Zh^π^Z = X, whose kernel is
given by

the G-invariant vertical vector fields on P. As above, £^eit(P) has two other
representations. Let C°°(P, 05) denote the C x maps from P to (0, and let

C%d(P, © ) = {φ £ CX{P, (5) I φ{p a) = Ad{a~1) φ(p) f o r a l l P e P a n d aeG}.

Then C^d(P,(δ) is a Lie algebra using the pointwise bracket of maps, i.e.,
[φi?φ2](p) = [^i(p)5φ2(p)] Also, consider the adjoint action of G on (6,
G x ®->©5 {a,A)-+kά(a) A, and let ©A d(M) = (P x ©)/G denote the correspond-
ing associated vector bundle over M with standard fiber ©. Then ©Ad(M) is a
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bundle of Lie algebras over M. Let C°°(©Ad(M)) denote the space of C00 cross-
sections. Then C°°((5Ad(M)) is a Lie algebra with respect to the pointwise bracket of
sections. Corresponding to Proposition 1.1 is the following.

1.2. Proposition. The three Lie algebras 3^ert(P), C%d(P, ©), and C°°(©Ad(M)) are
naturally ίsomorphίc with each other. These Lie algebra isomorphisms (i.e., Lie
algebra bijections) are given respectively, by

where for peP, φτ(p) is defined by the equation TeΦp ψτ{p)= T(p), and by

where for xeM, φM(x) is defined by

ΨM(X) = {(P ' a,Ad(a^) φ(p))\aeG} ε(P x ©)/G,

where peπ~ ι(x), and which is independent of the choice of p. •

Let exp: ©—>G denote the exponential map of the Lie algebra ©. Then exp
induces an exponential map

where if φeC A d (P;©), EXP is defined pointwise by (ΈXPφ)(p) = exp(φ(p)). The
resulting w=EXPφ is in C^ut(P,G\ since

u(p • a) = (EXP φ) (p-a) = exp (φ{p a)) = exp (Ad (α ~ ι )

a = a~{ u(p) a.
We let

Exp: 3E^ert(P) ̂  Aut (P), T ι-> Exp T

denote the corresponding exponential map on 3E^ert(P), defined by

(ExpT)(p) = p- (EXPψτ){p) = p (expφτ{p)).

Note that if φ e C ^ P , ©), or TeX^rt(P)), then u ^ E X P μ φ J e C ^ Λ G ) and
FΛ - ExpλTE Aut(P) are defined for all λ eR. Thus, in particular, if Te 3%ert(P), τ i s

a complete vector field on P with flow Fλ = ExpλT.
It is important to note that, in general, the diffeomorphism Ra: P-+P, a e G, is

not an automorphism of P. Indeed, Kαe Aut (P) if and only if a is in the cenίer Z(G)
of G, where the center

Z(G) = {aeG\a-b = b>aϊoΐ all foeG}

is a closed normal subgroup of G, and hence a Lie subgroup. Note that
Z(G) £ker Ad, and if G is connected, then we have equality.

The Lie algebra of Z(G) is

z(G) = {Λe ©IAd(b) A = Λ for all b e G}.

On the other hand, the cβn/^r 6)/ the Lie algebra © is defined to be

z(©) = { ^ e © | [ ^ , β ] - 0 for all

so that z(G)Qz(($)). If G is connected, then z(G) = z(©).
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Let
ZG{P) = {Ra\ae Z(G)} = G(P)n Aut(P),

a normal subgroup of Aut(P). Similarly, let ZG(P) = {A* e XG

ert(P)\A e z(G)}, where
A* denotes the fundamental vector field on P associated with AE®, denote the
corresponding ideal of Xv

G

r\P). Note that if A e z(G), then Ad(α) A = A for all a e G,
and so

(Ra)*A* = (Aά(a-ι) - A)* = A*,

so that A* is indeed in 3^ert(P). For AφZ(G\ ,4* e ϊ v e r t (P) , but is not G-invariant.
Similarly, let

},

and

Z(P, ($)={φ:P-+z(G)\φ is constant on P},

the corresponding normal subgroup and ideal of C^nt(P,G) and Cχd(P, ©),
respectively. Note that if u = constant eZ{G\ then u(p a) = a~1 u(p) α = t/(p), so u
is in C^υt(P, G), and similarly, if φ = constant ez(G), then

so <p is in
Let

Z(Q u t (P, G))- {ue C^ut(P, G)|M -U^U^U for all M, e C ^ P , G)

denote the center of C^ut{P, G). Since for fixed p and varying u1, uγ{p) spans G,
u E Z(C^ut(Λ G)) if and only if u takes values only in Z(G) if and only if u is constant
on the fibers of P. Such a u may however vary from fiber to fiber. Thus

Z(CZJP, G)) = CΐJP, Z{G)) ={ue C£JP, G)\u(p) e Z(G) for all p e P],

which in general is an infinite dimensional subgroup of C^ut(P, G). If however G is a
semi-simple Lie group, then its center Z(G) is a discrete subgroup of G. Thus if
u E Cχut(G)), u is constant on fibers, and by continuity of w and connectivity of M, u
is then constant on P. Thus in this case, the centers of C£ut(P, G) and G are
isomorphic

i(P, G)) = Z(P, G)« ZG(P)« Z(G),

and are zero dimensional Lie groups (see also Daniel-Viallet [1980]).
For 0<zkSn = άimM, let C°°(/lk(P)(8)05) denote the space of smooth Lie-

algebra valued fc-forms on P, let

)= {φECco(Λk(P)(S)<$>)\R*φ = Ad(a*) φ for all aeG]

denote the Lie algebra-valued fc-forms of type (Ad, (S), and let

= {φe C^dhor(yl/c(P)(χ)(δ)|φ(Z1,..., Zk) = 0 whenever one of Z/s is vertical}

denote the space of horizontal (or tensorial) Lie-algebra valued /c-forms of type
(Ad,©). Since a zero-form on P is always horizontal, CAd(P5©) = ̂ °(P,©).
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A connection I-form ω on P is an element of CCO(A1(P)<S)®) such that
(1) R*ω = Ad(a-ι) ωϊor a l l α e G ;
(2) ω(A*) = Aϊora\\Ae(S.
We let Ή(P) denote the space of connection 1-forms on P, naturally identifiable

with the space of connections on P. Since M is paracompact, ^(P)Φ0 (see
Kobayashi-Nomizu [1967], p. 67). Also, <g(P) is an affine space, and is the affine
space associated to the vector space A1(P,(δ).

For a connection 1-form ω, we let

D : C£d{P, (S)-+Aι(P, ©), φ ̂  Dφ

denote the gauge covariant exterior derivative, where

Dφ = (dφ)hoΐ = dφ + [ω Λ φ] ,

and where the wedge bracket [ ω Λ φ J e C ^ ^ P ) ® ® ) is defined pointwise by
[ωΛφ] Z = [ω(Z), φ] for ZeX(P) (see Fischer [1985] for more on this termi-
nology). Also, we let

denote the curvature 2-forms of ω, where the wedge bracket

is given by ίω Λ ω ] E C:Ad(Λ2(P)®iϊ>)

[ω Λ ω] (Z l 9 Z 2) = [ω(Z!), ω(Z2)] - [ω(Z2), ω(Zi)]

for Z l 9 Z 2 e i ( P ) . =2[ω(Z 1),ω(Z 2)]

For F e AUT(P), and ω e rέ\P\ we let F*ω denote the pull-back of ω by F. Thus
if peP and Z p e TpP? F*6o is defined by

An easy check shows that F*COEC$(P), and indeed the map i7* : ^(P)—>^(P) is an
affine transformation of #(P). Thus AUT(P) acts on C€(P) on the right by pull-back
as a group of affine transformations,

#(P) x Aut(P)-•#(?), (ω, F)ι-^F*ω.

We shall be interested in the restricted action by Aut(P). Note that if a e Z{G),
then i^αeAut(P) and R*ω = (Ad(a~ι) ω = ω, so that ZG(P)QIt0{P) for any
connection ω. Thus Aut(P) does not act effectively on ^(P). However since ZG(P) is
a normal subgroup of Aut(P), this is easily remedied by considering the quotient
group j/(P) = ZG(P)\Aut(P) of right cosets of Z(G), and the induced action

#(P) x ,Q/(P)->V(P) , (ω, [F]) H> F*ω,

where [F] = Z(G) o F. Under the assumption that P is a connected manifold, the
resulting action is then effective (see Fischer [1985]).

Let θeCcc(Λι(G)®^) denote the Maurer-Cartan form on G; i.e., the unique
left invariant Lie algebra valued 1-form that satisfies

(1) 0(e) = id(g :©-•©, the identity transformation of (5.
(2) L*# = #for all aeG, where La: G-+G, b\-+a b denotes left translation on G.

Thus 0 is defined by

Note θ is now different from the canonical form θ discussed in the introduction.
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The following proposition is then a global version of the local transformation
law for connection 1-forms under a gauge transformation ueC^ut(P,G) (see
Kobayashi-Nomizu [1963], p. 66 or Bleecker [1981], p. 49).

1.3. Proposition. Let ω e ^(P), F e Aut(P), and uF e C£ut(P, G) correspond to F as in
Proposition 1.2. Let θ be the Maurer-Cartan form on G. Then

where Up \p) = (uF(p)Γ^ •

Thus for ue C^ut(P, G), we define w*ω = Ad(u~J) ω + u*θ, thereby generating
the equation F*ω = u*ω.

There is another interesting interpretation of the equation u*ω = Ad(u~ι) OJ
+ u*θ. For u e C£ut(P; G), we would like to define a gauge covariant derivative of u.
Since u takes values in G, which in general is not a linear space, we must modify the
usual definition of gauge covariant derivative. The ingredient needed is a means of
identifying the tangent spaces of G with (δ. This ingredient is provided by θ. Thus a
reasonable definition of the gauge covariant derivative DUEA1(P, (5) of u is given

Y Du(p) • Zp = θ(u(p)) (Tpu Z h o l ) = (u*θ) (p) Z h o r = (w*0)hor Zp,

where p e P , ZpeTpP, and Z h o r is the horizontal projection of Zp. Thus
Du = (u*θ)hoΓ A calculation as in Proposition 1.3 then shows that

Thus in particular u*ω = ω if and only if Dw = 0.
For Teΐ^ert(P) and ω e(€{P\ let Lτω eA\P, ©) denote the Lie derivative of ω

with respect to T. That Lτω is horizontal is the infinitesimal version of the fact that
the difference between two connections is horizontal. Moreover, using the
connection ω, the bijection

of Proposition 1.2 can be written as T H φτ = ω{T\ although this correspondence
is independent of the connection. The following relationship between Lτω and
Dφτ is of importance.

1.4. Lemmao Let TePG

e r t(P) and φ τ = ω(T)eQd(?,(J9). Then Lτω = DφΊ.

Proof. Lτω = diτω + iτdω = dφτ-\-iτdω. Since Ω = Dω is horizontal,

0 = iτDω = iτ(dω+j[ω A ώ]) = iτdω + i([ω(T) Λ ω] — [ω Λ OJ(T)])

r [ φ τ ]
Hence

Lτω = dφτ-{iτdω = dφτ— \_φτ A ώ] =dφτ

J

Γ [co A φτ~\ =Dφτ. •

For oj e ^(P) and p e P, let Holp(ω) £ G denote the holonomy group of ω with
reference point peP. Then Holp(ω) is a Lie subgroup of G (Kobayashi-Nomizu
[1963], p. 73), although it is not necessarily a closed subgroup. Note however that

p(ω) has at most a countable number of components (since M is connected and
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paracompact), and thus Holp(ω) satisfies the second axiom of countability as
required by our definition of Lie group. Since M is connected, all of the holonomy
groups are conjugate in G to each other, and we denote Hol(ω) as any one of them.

For p e P, we let P(p) denote the holonomy bundle (or sub-bundle) through p,
i.e., the set of points in P that can be joined to p by a horizontal curve. Then P(p)
= Q(M, Holp(ω)) is a Holp(ω) —PFB over M, and the connection ω reduces to a
connection on Q(M, Holp(ω)) (Kobayashi-Nomizu [1963], p. 83).

Note that the holonomy sub-bundle P(p) need only be an immersed sub-
bundle. Although in general the closure of an immersed submanifold need not be a
closed embedded submanifold, the closure P(p) of P(p) will be a closed embedded
submanifold in P, and in fact the closed sub-bundle P(p) = Q(M, Holp(ω))
= Q(M,Molp(ω)) will be a reduced sub-bundle of P(M, G) with structure group
Holp(ω), the closure of Ho\p(ω) in G. Moreover, the connection ω reduces to a
connection in Q(M, Holp(ω)). These remarks follow easily from the fact that the
closure H of a Lie subgroup H of G is a closed subgroup and hence an embedded
submanifold.

In a similar vein as the above, we have the following lemma.

1.5. Lemma. Let G be a topological group, S a subset of G, and

CG(S) = {aeG\a-s = s-a for all seS}

the centralizer of S in G. Then CG(S) is a closed subgroup of G. Also, CG(S) = CG(S),
where S denotes the closure of S in G. Thus CG(S) = CG(S) = CG(S), where CG(S)
denotes the closure of CG(S) in G.

Proof. Let {an} be a sequence in CG(S) such that an-^a e CG(S). Then for all n and
seS,an s = s-an, and so by continuity of the group operation, an s^a • s and s an

-+s a. Thus a-s = s- a and so aeCG(S) and thus CG(S) is closed.
Similarly, let {sn} be a sequence in S such that sn-+seS. Then for all n and

a e C G ( S % a - s n = s n ay a n d s o a s a b o v e a - s = s a. T h u s a e C G ( S \ a n d s o
CG{S)QCG(S). The reverse inclusion follows by definition of the centralizer. •

Remark. In particular, the center of a topological group is closed.
We return now to G being a Lie group.

2. The Lie Group Iω(P)

Let ω be a connection on the PFB P(M, G). Let

denote the internal symmetry group of ω. We denote the corresponding subgroup
of C^ut(P,G) as

where t/*ω = Ad(w- 1) ω + u*Θ. Let

denote the Lie algebra of infinitesimal symmetries of ω. That ^fω{P) is a Lie algebra
follows from the identity

^ίτltτ2]
ω = LTχLTiω — LT2LTιω
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for Tu T2e3ίVQn. Note that since infinitesimal symmetries are in 3£^ert(P), they are
automatically complete vector fields on P.

Since Lτω = Dφτ, the corresponding Lie algebra of C^d(P,&) is

That <#ω{P, ©) is a Lie algebra follows from the identity

ι, Ψi\) = ίDΨ\ Λ Ψi\

ϊoτφi,φ2eC%d(P,(δ).
For peP, let Holp(ω) be the holonomy group with reference point p, and let

CG(Holp(ω)) - {a e G\a • b = b • a for all b e Holp(ω)}

denote the centralizer of Holp(ω) in G. Although Holp(ω) need not be a closed
subgroup of G, by Lemma 1.5, CG(Holp(ω)) is a closed subgroup of G, and hence a
Lie subgroup. Its Lie algebra is

CG(Holp(ω)) = {/4 G ©I Ad (ft) A = A for all b e Holb(ω)}.

The following classical result will be our main workhorse for this section.

2.1. Proposition. Let P(M,G) be a PFB, let ωe^{P\ and let ueIω(P,G). Then
(1) u is constant on every holonomy sub-bundle P(p);
(2) forpeP,u(p)6CG(Ho\p(ω));
(3) u is determined by its value at a single point. In particular, if u(p0) = e for some

p0 E P, then u = e identically on P.
Conversely if ue C^ut(P, G) is constant on a particular holonomy subbundle P(p0),

then u*ω = ω, and (1), (2), and (3) above hold.

Proof (1): If ueIω(P, G), then w*ω^AdΐiΓ 1) ω + u*β = ω. For peP and px eP{p\
let c(λ), λ e [0,1], denote a horizontal curve from p to pv Then ω(c(λ)) c(λ) = 0 for
, G [0,1], and so u*θ(c(λ)) c\λ) = 0. Let λ H^ a(λ) = (u<>c) (λ)9 a curve in G. Then

u* θ(c(λ)) c\λ) = θ(u(c(λ)) • T-C{λ)u c\λ) = θ(u o c) (λ)). (M O c)\λ)

= θ(a(λ)).a'(λ) = 0.

Since

is an isomorphism, a'(?,) = (uoc)f(λ) = 0. Thus (uoc)(λ) is constant and so u{px)
= u(p).

(2): For any αGHolp(ω), p-aeP(p), and since w is constant on P(p), u(p)
= u(p'ά) = a~1 u(p) a. Thus u(p) e CG(Holp(ω)).

(3): If uγ G /ω(p) and u 1 (p0) = u(p0) for some poeP, then by (1), u 1 is constant on
P{p0), and hence u and wx agree on P(p0). Since P(p0) intersects each fiber of P at
least once, uγ agrees with u on at least one point in each fiber, and thus by their
transformation properties, on the entire fiber. Thus uΐ=u on P.

Conversely, if w e C^ut(P, G) is constant on a particular holonomy subbundle
P(pΌ), t h e n s i n c e P(p0 a) = P(p0) a,

u(P(p0 a)) = u(P(p0) -a) = a~ι u(P(p0)) a,
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and so u is constant on every holonomy sub-bundle. Thus for peP, let
XeHpQ TpP be a vector at p which is horizontal with respect to the connection ω,
so that ω(p)-X = 0. Thus

(κ*ω) (p)'X = Ad(u " :(p)) (ω(p) X) + w*0(p) X = θ(u(p)) -(Tpu-X).

By the Holonomy Reduction Theorem (Kobayashi-Nomizu [1963], p. 83), the
connection ω on P reduces to a connection on P(p). Thus the horizontal space Hp is
contained in the tangent space Tp(P(p)). Since u is constant on P(p), T̂ i/ X^O.
Thus (u*ω)(p) X = 0, and so H p = kerω(p)£ker(u*ω)(p). Since w*ω is also a
connection on P, dimkerω(p) = dimker(w*ω)(p), and so kerω(p) = ker(ι/*ω)(p).
Thus ω(p) and (u*ω)(p) have the same horizontal subspace at p, and since p was
arbitrary, w*ω = ω. Note that all connections determine the same vertical subspace
Vp = kerTpπ, reflected by the requirement that ω(A*) = A for all Ae(5. •

Remarks. 1. Thus Proposition 2.1 can be summarized by

Iω(P, G) = {ueCχm(P, G)\u is constant on the holonomy sub-bundles of P}.

2. Property (3) can be rephrased in terms of Iω(P) as follows:

2.1.1. Proposition. // FeIω(P) fixes a point poeP, F(po) = po, then F = id, the
identity automorphism of P.

3. As we have seen in Sect. 1, Du = (u*β)hor = u*ω — ω. Thus u E /ω(P, G) if and
only if DM = 0 if and only if M is a gauge covariant constant if an only if (1), (2), and (3)
above hold. Π

The infinitesimal version of Proposition 2.1 is the following.

2.2. Proposition. Let P(M,G) be a PFB, let φe^ω(P,(δ) = kerD. Then
(1) φ is constant on every holonomy sub-bundle P(p);
(2) for peP, φ(p)EcG{¥ίo\p(ω)) = {Ae&\Ad(b)Ά = A for all beHolp(ω)};
(3) φ is determined by its value at a single point. In particular, if φ(po) = 0 for

some POEP, then φ = 0 on P.
Conversely, if φe C%d(P, (5) is constant on a particular holonomy subbundle, then

Dφ = 0, and (1), (2), and (3) above hold.

Proof If Dφ = {dφ)hor = dφ + \_ω, φ] = 0, then on a horizontal curve c(2),

(A) = dφ(c(λ)) c'W = (φ o c)'(λ) - 0.

Thus φ is constant on horizontal curves and hence is constant on every holonomy
sub-bundle. The proof now proceeds as in Proposition 2.1. Alternately, the
proposition can be proven by taking curves in /ω(P, G) and using
Proposition 2.1. Π

Remark. In terms of JJP)= {Te3^ert(P)|Lτω = 0}, property (3) can be rephrased
as

2.2.1. Proposition. // Te Jω(P) satisfies T(p0) = 0 for some p 0 e P, then T = 0. Π

Using Proposition 2.1, we can now derive a "formula" for Iω(P, G).
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2.3. Theorem. Let P{M,G) be a PFB, let ωe#(P), and let poeP. Then the
evaluation map at p 0,

evalpo: IJP, G) - CG(HolP0(ω)), u ^ φ 0 ) ,

is a group isomorphism. Similarly, the evaluation map

evai;0: JJP, G)->cG(Ho]p oM), φ w φ(p0)

/s a Lie algebra isomorphism.

Proof. By the definition of the group structure in C£ut(P, G),

eval^Mi u2) = uί(p0) u2(p0) = (eval^wj) (evalPo(u2)),

and so evalpo is a group homomorphism. It is injective by property (3) of
Proposition 2.1.

To show surjectivity, let aeCG(tlolpo(ώj), and define a function u\P-+G such
that

if

~x a b if pe P(p0 ft)

u is well-defined, for if p e P(po)nP(po • ft), then ft e Hol p o (ω) [and P(p0) = P(p0 ft)],
and thus b~ι-a b=--a since aeCG(Ho\po(ω)). To find the transformation pro-
perties of w, let p E P(p0 ft), so u(p) = b~ι a b. Then for c e G,

so

u(p-c) = (b -c)~ι •a'(b-c) = c~ί -(ft""1 α fe) c = c~1 w(p) c.

If Hol/,o(ω) is a closed subgroup of G, P(p0) is an embedded submanifold, and
since by construction u is constant on the holonomy sub-bundles, it follows that u
is a C00 function on P. Thus ueC%ut(P,G), and by Proposition 2.1, u*ω = ω.

If Holpo(ω) is not closed in G, then by Lemma 1.5, CG(Holp(ω)) = CG(Holpo(ω)).
Thus if a centralizes Holpo(ω), a centralizes Holpo(oj). Thus u defined above is
constant on the embedded submanifold P(po) = Q(M, Holpo(ω)). Thus, as above, u
is a C00 function on P, ueC£ut(P, G), and as u is constant on the holonomy sub-
bundles, U*O) = O). •

Remark. Another approach to the surjectivity of evalpo that avoids the complic-
ation of non-closed holonomy groups is as follows. Let x 0

 = π(Po)> a n d let HolX o

denote the holonomy group with reference point x0. Then HolX o is a Lie subgroup
of GXo = (GAuί(M))Xo, the group of automorphisms of the fiber PXo. If a e CG(Holpo),
let aXQ E GXo be the corresponding element in GXo. Then aXQ e CGχ (HolXo). We
construct a smooth section uM e C^iG^M)) as follows. Iϊx1 e M, let c: [0,1] ->M,
λ-^c(λ), be a smooth curve from x0 to xλ, let cι(λ) = c(\ —λ), let τc: PXo-+PXι denote
parallel translation of the fiber PXQ along c, and let τ~ι: PXi->PXo denote its inverse.
Define uM{xx) by
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Then wM(Xi) is independent of the curve c from x0 to x1 since if cx and c2 are two
such curves,

τ C l ° flχoc τ c r * = τ c 2 ° (τC2-1 ° τ C l ) c α X ϋ o ( τ c f t o τ C 2 ) o τ c _ ,

where y = c1 c^ 1 is the closed composite curve based at x0, and the last equality
follows since τv e HolX o and βXo e C G χ (HolXn). Let u e CA u t(P, G) correspond to
wMe C°°(GAut(M)). Then by construction of uM, u(po) = a and u is constant on the
holonomy sub-bundles of P, and so u*ω = ω. Π

By Lemma 1.5, CG(Holpo(ω)) is a closed subgroup of G, and hence a closed Lie
subgroup. In particular, CG(HolPo(ω)) is an embedded submanifold in G. We put a
Lie group structure on Iω(P, G) by declaring that the group isomorphism

evalp o:/ω(P,G)^CG(Holp o(ω))

is a Lie group isomorphism. With respect to this Lie group structure,

evai;0 = Teevalpo: Jω(P, ® ) ^

is the induced Lie algebra isomorphism.
Clearly, for different peP, the Lie group structures induced on Iω(P, G) are all

isomorphic. Moreover, any other second countable Lie group structure on
7ω(P, G) must be isomorphic to that induced by evalpo (see e.g., Helgason [1962],
p. 109, or Warner [1971], p. 95). Thus the Lie group structure on /ω(P, G) is unique
(up to isomorphism).

Using the group bijection between /ω(P) and /ω(P, G), we carry the Lie group
structure of Iω(P, G) back to /ω(P). With respect to this structure, the map

UP) - CG(Holpo(ω)), F ^ uF(p0)

is a Lie group isomorphism, where uF corresponds to F by Proposition 1.1. Thus
we have the following "formula" for /ω(P), 7ω(P)^CG(Hol(ω)), where Hol(ω)
denotes any one of the holonomy groups Holp(ω), peP.

Remark, lϊaeCG(Holpo(ω)), poeP, FeIω(P) is determined by the equation F(p0)
= po a [since FeIω(P), F is uniquely determined by its value at a point]. Note,
however, that although Ra solves this equation, Ra is not the corresponding
internal symmetry of ω unless a e Z(G), and then Ra e Aut(P). Thus Iω{P), although
isomorphic to the subgroup CG(Holpo(ω)) of G, does not in general have a
representation as a subgroup of G(P) = {Ra\aeG}. Indeed Iω(P) is a subgroup of
Aut(P), and G{P) is a subgroup of Diff(P).

3. Some Examples

We now give some examples of the formula /ω(P)»CG(Hol(ω)).

3.1. Example. Let P(M, G) be a PFB with Abelian structure group G. Then
Z(G) = G, and so for all aeG, RaeAut(P). Let ωe^(P) with holonomy group
Hol(ω)£G. Note that since the holonomy group of ω with respect to different



Internal Symmetry Group 245

points are all conjugate to each other in G, Hol(ω) is independent of reference
point.

Since G is abelian, CG(Hol(ω)) = G, and so Iω(P)πG. But since for all aeG,
Ra e Aut (P), and R*ω = ω, {Ra\a eG}g Iω(P), so that Iω(P) = G(P) ={Ra\aeG}πG.
Thus in the Abelian case, for any connection ω, Iω(P) is actually isomorphic to the
structure group of the bundle. The Lie algebra of Iω(P) is Jω(P) = {A*\Ae(&}
= ©(P)»®. Similarly,

Iω{P,G) = {u:P-*G\u is constant on P}

with Lie algebra

is constant on P}.

In physical field theories, the Abelian case is of interest inasmuch as
electromagnetism can be formulated in terms of a connection ω on a U(1)-PFB
P(M, U(l)) over a Lorentz manifold (M,g). For any such connection the internal
symmetry group is then given by Jω(P) «U(1). Since Iω(P) leads to global
conservation laws, in this case (or more generally, in any Abelian case), the
structure group U(l) gives rise to global conservation laws for the resulting field
theory (see also Sect. 4), and Fischer [1985]).

3.2. Example. Let P(M,G) = M xG be the product bundle and let ω 0 be the
canonical flat connection on P. Thus if π2:M xG-^G, (x, α) i—> α, denotes
projection onto the second factor, then ω o = πf#, where θ is the Maurer-Cartan
form on G. Then Hol(ω0) = {<?} (again independent of reference point), and
CG(Hol(ω0)) = CG({e}) = G, so that Iωo(P)&G is again isomorphic to the structure
group of the bundle. In this case however, /ωo(P) is not equal to G(P), since the right
translations jRα :P~>P are not automorphisms of the bundle [unless aeZ(G)~].
However, on a product bundle, G can be represented as a group of left translations

a n Lα = (idM xLa):M x G-^M x G, (x,b) \-+ (x,ab),

where La is left translation on G by a, and this action of G on M x G commutes with
the right action of G on M x G,

La o Rb(χ, c) = (x, acb) = Rb o La(x, c).

Thus for all αeG, LαeAut(P), and also

L*ω0 = *ίπ*0 = (π2 ° LJ*θ = (La o π2)*0 - π*L*θ = π f0 = ω 0 ,

since 0 is invariant by left translations. Hence LaeIωo(P). Thus /ωo(P) can be
displayed concretely as the group of left translations of M x G,

Iωo{M x G ) - {La: M x G->M x G\a e G} = GL,

where GL is defined only for product bundles, or for bundles isomorphic to product
bundles.

The Lie algebra of GL is given by

© L - {(0, A) e ΓG

eri(M x G)\A e © } ,

where A is the left-invariant vector field on G corresponding to A e (5. Thus for
aeG, Ά{a)=TeLaΆ.
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3.3. Example. As a slightly more general example, let ω be a connection on a PFB
P(M,G) whose holonomy group Hol(ω) = {e}. Then for poeP, the holonomy
bundle P(p0) is an {e}-PFB over M, or a global cross-section of P(M, G). Thus
P(M, G) is bundle isomorphic to the product bundle M xG (but not canonically)
and ω is isomorphic to the canonical flat connection ω 0 on M x G.

Then as above Iω(P) ~ G, and using an isomorphism of P(M, G) with M xG,
Iω(P) can be represented as a group of "left translations" on P{M, G).

As a particular subcase, if M is simply connected and ω is a flat connection on
P(M, G), then Hol(ω) = {<?}, and so / ω (P)« G. This case is of interest for Yang-Mills
field theories over a simply connected spacetime M, often taken to be either R 4 or
S4. In this case, if the connection ω on P(M, G) is flat, then Iω(P) ~ G. Ignoring the
distinction between left and right translations, the structure group G is said to
induce the global conservation laws of the associated Lagrangian field theory (see
also Sect. 4). •

We now give some examples where we must compute the centralizer
CG(Hol(ω)).

3.4. Example. Let M = Sn taken with its usual metric g0 and orientation as the unit
sphere in R π + 1. Let L(Sn) denote its frame bundle, and let ω 0 be the Levi-Civita
connection of g0 on L(Sn). Then Hol(ω0) = SO(n) (see Poor [1981], p. 64, for the
calculation), so that

Iωo(L(Sn))xCGLin)(SO(n)).

Let R*=R-{0} . Then we have the following.

3.4.1. Lemma. For
CG L ( B )(SO(n)) =

For n = 2,

CGL(2)(SO(2)) = R*-SO(2) = {A-fl|A6R* and aeSO(2)}.

Proof. Since SO(n) acts irreducibly on R", if AeGL{ή) commutes with every
element of SO(n), then by Schur's lemma (see e.g., Kobayashi-Nomizu [1969],
p. 277), if n is odd, then A = λl, A G R * , or if n = 2m is even,

I»; bI

bIm al

Since for all n e Z + , Z(GL(n))ξ=CGL{n)(§O(n)\ for n odd, we have equality. If n is
even, let BeSO(2n). Then a conjugate of B can be put into the standard form

B(Θu...,Θm) =
B{θγ)

where Biθλ = ( . \ " 1. A matrix computation shows that if m > 2 and A
\ smθ cosθj

above commutes with B(θu ..., θm) for all θi9 then b = 0. Hence in this case Z(GL(nj)
= CGL{n)(SO(ή)). If n — 2, all elements ,4 of the above form commute with SO (2), so
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that

CGL(2)(SO(2)) = R+ SO(2) = K* SO(2).

For / I E R * , denote by λ also the map

λ:L(Sn)-+L(Sn), p*->λp,

where ifp = (X1,..., Xn) is a frame at x, λp = (λXί,..., λXn) is also a frame at x. Thus

for n Φ 2,

/ω o(L(^)) = μ : L(S"HL(S")μ E R * } ^ R * ,

with a similar result for n = 2.
Now let 0 + (Sn)£L(SM) denote the SO(n) bundle of positively oriented

orthonormal frames on Sn, and let ω'o denote the Levi-Civita connection of g0 on
0+(Sn). Then ω'o is the reduction of ω 0 to 0 + (S"), and so Hol(ω'0) - Hol(ω0) = SO(n).
Thus

ί {/} for n odd

/ωό(0+(SII))«CSo(II)(SO(n)) = Z(SO(n)) = | { + /} for n even ^ 4

lSO(2)forn = 2. D

Remark. The above example shows that the internal symmetry group of a
connection can change when the connection is reduced to a sub-bundle (although
it need not necessarily change; see Example 3.6). For comparison's sake, note that
the classical affine group Aω(M) is independent of any reduction of ω to a sub-
bundle. In the case at hand, for n^2,

Also, we remark that Aωo(Sn)QΌiϊϊ(Sn\ whereas /ωo(L(Sn))Q Aut (L(SΠ)), so that

AUT(β,ωo)(L(S"))n/ωo(L(Sn)) = {idL(^}},

where θ is here the canonical 1-form on L(Sn).

3.5. Example. Let P(M, G) be a PFB with dim M ^ 2, let Ή be a Lie subgroup of G,
and let z: β(M, H)-+P(M, G) be a reduction of G to H. Assume that Q is a connected
manifold. Then there exists a connection ω 0 on β(M, if) such that Hol(ω0) = H (see
Kobayashi-Nomizu [1963], p. 90). Also ω 0 induces a unique connection ωί on
P(M,G) such that ω o = i*ω1 and Hol(ω1) = Hol(ω0) = //. Now

Lo(Q) * CH(Hol(ω0)) = CH(H) = Z(H),

and

Iωi(P)κCG(Hol(ω0)) = CG(H). Q

We give two special cases of this example.

3.6. Example. Let M be a 2m-dimensional orientable manifold, m ^ 1, J an almost
complex structure on M ( J 2 = —/), and g a Hermitian metric on M, g(JX,JY)
= g(X, Y). Consider M with the natural orientation induced by J and let

= P(M,GL(m,(£)) denote the complex linear frame bundle;



248 A. E. Fischer

0 + (M) = P(M, SO (2m)) the bundle of oriented orthonormal frames and
U{M) = C(M)nO + {M) = P{M, U(m)) the unitary frame bundle.
In the real representation of Gl(m, (C),

GL(m,CHGL(2m,IR), AViB^ί

where A and B are real mxm matrices,

U(m) = GL(m, <C)nO(2m) = GL(m, (C)nSO(2m),

the latter equation following from the fact that GL(m,(ϋ) is connected and hence
lies in GL°(2m, 1R), the connected component of the identity of Gl(m, 1R).

Let i: U(M)-+0 + (M) denote the bundle reduction of 0 + (M) to U(M) induced by
the almost complex structure J. Since M is connected and since U(m) is connected
(m ̂  1), it follows that the total space U(M) is connected. Also, dim M = 2m ̂  2, and
so there exists a connection ω 0 on U(M) such that Hol(ω0) = U(m). This
connection then induces a unique connection ωγ on 0 + (M) such that ω o = ϊ*ω 1 ?

and such that Hol(ω0) = Hol(ω1) = U(m). For these connections,

/ω o(U(M))« CU(m)(U(m)) = Z(U(m)) =

and

/ω i(0+(M))«CS O ( 2 m )(U(m)),

where U(m) is taken as a subgroup of SO(2m) in the real representation.

3.6.1. Lemma.

CSO(2m)(U(m)) =

Proof. In the real representation,

where /m is the m x m real identity matrix. Let A e CSO(2m)(U(m)). Since yl commutes
with J, A e GL(m, <C). Thus A e GL(m, C)n SO (2m) = U(m), and so yl e U(m). Since
Z(U(m))£ CSO(2m)(U(m)), we have equality. Π

Thus in the above example, the internal symmetry groups of ω 0 and ω x are
isomorphic,

7ω i(0+(M))« /ωo(C7(Λf))« Z(C/(w))« [/(I).

3.7. Example. Let G = SU(n), n ^ 2 , and let P(M, G) = M x SU(n) be the product
bundle, d i m M ^ 2 . Let H be a closed connected proper subgroup of SU(n) such
that H acts irreducibly on (Cn [for example, in the real representation,
SO(n)gSU(n), n ^ 2 , acts irreducibly on €" ] . Let z: M x i ί->M x SU(n) denote the
reduction of SU(n) to H. Let ω 0 be a connection onM xH such that Hol(ω0) = H,
and let ω x be the connection pushed over to MxSU(π). Then Hol(ωx)
= Hol(ω0) = H5 and so

J ω i (M x SU(n))« CSU(B)(H) = Z(SU(n))=
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since by Schur's Lemma (valid for any field), if H acts irreducibly on (Cn, then
Csυ{n)(H) = Z(SU(n)). ωx is an example of a generic reducible connection (see
Sect. 5).

3.8. Example. Let P{M, G) be a PFB such that the total space P is connected, and
such that G is a discrete Lie group. Then © = {0}, and π:P-^M is a regular
covering manifold of M. Let

Cov(P) = {Fe Diff(P)|π o F = F}

denote the covering transformations of P. Then

where πx denotes the first homotopy group of M (respectively P) based at x0 e M
[respectively poeπ~i(xo)~]. Also, Aut(P)£Cov(P), and so Aut(P) «Z(G).

Since (5 = {0}, there exists only one connection ω o = 0 on P, which is flat.
Moreover, since every curve in P is horizontal, Hol(ω0) = G. Thus

/ω o(P)«CG(Hol(ω))«Z(G),

so that Iωo(P)&Z(G). Note that since ω o = 0, /ωo(P) is the entire group Aut(P),
which is, however, only the 0-dimensional Lie group Z(G). Also, see
Proposition 5.4. •

Finally, we give an example where the holonomy group is not a closed
subgroup of the structure group G.

3.9. Example. Let P(S\Sι) = Sι x S1 be the product bundle, where
Sί = υ(ί) = {eiω\ωelR]. Identify S1 xS1 with the square E of length 2π in R 2

with opposite edges identified. Let λ be a fixed irrational real number, and for
(x, y)e£g]R2, take as the horizontal subspace the line with slope λ. Let ω0 denote
the corresponding connection 1-form. Then since any connection over a 1-dimen-
sional manifold is flat, ω 0 is flat, and its holonomy group is the discrete subgroup of

Thus Hol(ω0) is not a closed Lie subgroup of U(l). Since the structure group is
Abelian, by Example 3.1, /ωo(P) = U(l).

If λ is a fixed rational number, and if the horizontal subspaces are taken as the
lines with slope λ, then the holonomy sub-bundles are the n-fold covering
manifolds S1 -+S1,z-+zn, for some neZ+ depending on λ, and the holonomy group
is

2πik

Hol(ω)='

the cyclic group of order n.
Thus the possible holonomy groups for connections on S1 x S1 are Z and ZM,

neZ + , and each of these holonomy groups is attained.
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Remark. In contrast, on the "cylindrical" PFB P(S 1,R) = S1 x R , the holonomy
sub-bundles of each connection produces either a spiral or circular foliation of
S1 x R . Thus the possible holonomy groups are integer multiples of the vertical
distance d^O attained in one spiral. Thus the possible holonomy groups are

4. Connections with Internal Symmetry Group as Large as Possible

From the realization of Iω{P) as a closed subgroup of G by the map

e v a l p o : / ω ( P ) , ^ C G ( H o l » ) £ G, F^ uF(p0),

we see that Iω{P) cannot exceed G. Thus we have the general estimate on the
dimension of Iω{P\ dim Iω{P) ^ dim G = k.

It is of interest to know when Iω(P) is as large as possible, i.e., when Iω(P) is
isomorphic to G. In this case we shall say that Iω(P) (or that ώ) is maximal If the
weaker condition dim/ω(P) = fc holds, we shall say that Iω(P) has maximal
dimension. Again, we note that Iω(P)~G does not imply that Iω(P) is equal to
{Ra\a e G}, but merely that the internal symmetry group is isomorphic to G (see last
paragraph of Sect. 2).

In Lagrangian field theories, there is some confusion over the role played by the
symmetry group Iω(P) and by the structure group G of the PFB P(M, G). The
symmetry group Iω(P) generates global internal conservation laws, whereas in
general the structure group G does not. Thus it is of considerable interest to know
when these groups are isomorphic. Thus, although the cases discussed below are
special and "rare," they are many of the cases that have been considered in great
detail classically, often resulting in the unfortunate confusion between the different
roles played by Iω{P) and G. (See Fischer [1985] for more details regarding these
differing roles.)

The formula of Theorem 2.3 gives an easy criterion in terms of the holonomy
group for when Iω(P) & G.

4.1. Proposition. Let P(M, G) be a PFB, and let ω e #(P). Then Iω(P) « G if and only
if Hol(ω)g Z(G).

Proof. If Hol(ω)gZ(G)5 then CG(Hol((ω)) = G. Thus 7ω(P)«CG(Hol(ω)) = G.
Conversely, if Iω(P)« G, then CG(Hol(ω)) = G. Thus for all a e G, a b = b a for

all b e Hol(ω). Thus if b e Hol(ω), then b e Z(G), and so Hol(ω) Q Z(G). Q

Examples 3.1, 3.2, and 3.3 are special cases of the above criterion. In
Example 3.1, G is Abelian and so Hol(ω) QZ(G) = G for all connections ω e %\P). In
Examples 3.2 and 3.3, Hol(ω) = {e} QZ(G) for all Lie groups G, and so again the
above criterion is satisfied. Using Example 3.3 and Proposition 4.1, we can also
give the following criterion for maximality of flat connections.

4.2. Proposition. Let ω be a flat connection on the PFB P(M, G).
(i) // M is simply connected, then Iω(G)« G.

(ii) If G is connected and Hol(ω) is a normal subgroup of G, then Iω(P)&G.
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Proof, (i) If ω is flat and M is simply connected, then Hol(ω) = {<?}, and so Iω(P)~ G
(see Example 3.3),

(ii) If ω is flat, Hol(ω) is discrete. But a discrete normal subgroup of a
connected topological group is central (see e.g., Greenberg-Harper [1981], p. 18),
and so Hol(ω)£ Z(G). Thus by Proposition 4.1, Iω{P)xG. D

We can also give a criterion for when Iω(P) has maximal dimension. Let G°
denote the connected component of the identity of G.

4.3. Proposition Let P{M,G) be a PFB, let k = dimG, and let ωe^(P). Then
dim/ω(P) = fc if and only if Hol(ω)QCG(G°). In particular, if G is connected, then
Iω(P)&G (Iω(P) is maximal) if and only if dim Iω(P) = k (Iω(P) has maximal
dimension).

Proof From Theorem 2.3 and Lemma 1.5, Iω(P)« CG(Hol(ω)) Q G, and CG(Hol(ω))
is a closed subgroup and hence a closed submanifold of G. Thus if dim/ω(P) = fc
= dimG, then CG(Hol(ω))2G°. Thus if aeG°, a-b = b a for all foe Hoi (ω), so if
foe Hoi (ω), then b commutes with all αeG° ? and so foeCG(G°). Thus
Hol(ω)gCG(G°).

Conversely, if Hol(ω)£CG(G°), then if foe Hoi (ω), then b commutes with all
elements in G°, b-a = a-b for all aeG°. Thus if aeG°, a commutes with all
foeHol(ω). Thus

G°QCG(Άol(ω))QG,

and so dimCG(Hol(ω)) = fe. Π

4.4. Example. For an example of a connection with maximal dimension but which
is not maximal, let P^S1 x 0(2) and let ω 0 be a connection on P such that the
horizontal subspaces on each component of P have a fixed irrational slope / (see
Example 3.9). Then Hol(ω0) = {e ί w λ |neZ}, and Hol(ω0) = SO(2). Thus

U P ) « CO(2)(Hol(ω0)) = CO ( 2 )(Hol(ω0))= CO(2)(SO(2)) = SO(2).

Thus dim/ ω o (P)=l, but /ωo(P)ή= 0(2), so ω 0 has maximal dimension but is not
maximal. Π

In Example 3.3 we saw that if M is simply connected and ω is flat, then
Iω(P) % G. As a partial converse, we have the following.

45. Proposition. Let P(M,G) be a PFB with G semi-simple, and let ωe^(P) .
(1) // Iω(P)^G, then ω is flat,
(2) //' G is connected and dim Jω(P) = A: = dim G, then ω is flat.

Proof lϊIω(P)^G, then by Proposition 4.1, Hol(ω)£Z(G). Since G is semi-simple,
its center Z(G) is a discrete subgroup of G. Thus Hoi (ω) is a discrete subgroup of G,
and so by the Ambrose-Singer Theorem (see Kobayashi-Nomizu [1963], p. 89),
the connection is flat.

If G is connected and dim/ω(P) = k, then by Proposition 4.3, Iω(P) Λ G, and so
by (1) the connection is flat. Π

In Yang-Mills field theories, G is often assumed to be compact, connected, and
semi-simple (see e.g., Mitter [1980] or Singer [1978]). With these assumptions
(even without G being compact), a maximal dimension connection must be flat,
thereby indicating the "scarcity" of maximal dimension connections.
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5. Connections with Internal Symmetry Group as Small as Possible
and Irreducible Connections

We have seen that for all a e Z(G\ R*ω = ω for any connection ω e ^(P). Thus the
inclusion Z(G)QIω(P) holds for all connections ω, so that Z(G) is the smallest
possible symmetry group for any connection. We shall say that the connection ω is
generic if Iω(P) = Z(G). Thus if ω is generic, Iω(P) is as small as possible. By
Theorem 2.3, a criterion for ω to be generic is given in terms of its holonomy group
as follows:

ω is generic if and only if CG(Hol(ω)) = Z(G).
We let

denote the space of generic connections on P. The term generic is justified by the
fact that if ^ o ( P ) φ 0 , then ^0{P) is an open dense subset of %>(P) under the
assumption that P is a compact connected manifold [see Singer [1978] for this
result for irreducible connections (see below)].

In the special case when G is Abelian, CG(Hol(ω)) = G = Z(G) for any
connection ω (see Example 3.1), so that C€O(P) = (£(P). Thus in the Abelian case,
every connection is both generic (Iω(P) = Z(G)) and maximal (/ω(P) = G), since
Z(G) = G.

Returning to the general case, we remark that although Iω(P) = Z(G) is constant
as a function of ω e ^0(P% the holonomy group Hol(ω) may depend on ω e ^0(P).
For example, if P = S 1 x S 1 (see Example 3.9), then # 0 (P) = #(P), but Hol(ω)
depends on ωe^(P) .

We shall also need the following result regarding generic connections.

5.1. Proposition. Let P(M, G) be a PFB, and assume # 0 (P) φ φ. Let ω e # 0(P). // for
some peP, Holp(ω) is Abelian, then G is Abelian.

Proof Let H = Holp(ω) be Abelian. If aeH, a-b = b-a for all beH, and so
a e CG(H). Thus H Q CG(H). Since ω e %0(P) + φ, CG(H) = Z(G\ Thus H Q Z(G\ and
so CG(H) = G. Thus Z(G) = G, and so G is Abelian. •

Remark. Note that under the conditions of the proposition, ω is also maximal. •

We now go on to study the irreducible connections, which turn out to be a large
sub-class of the space of generic connections. Unfortunately, there are at least three
definitions of an irreducible connection in the literature.

If ω is a connection on P(M, G), then by the Holonomy Reduction Theorem
(see Kobayashi-Nomizu [1963], p. 83), ω can be reduced to a connection on the
holonomy sub-bundle P(p0) = Q(M, Holpo(ω)). Thus it is reasonable to define a
connection to be irreducible if Hol(ω) = G, and this is in fact done by several
authors (see e.g. Atiyah-Jones [1978], p. 101, Daniel-Viallet [1980], p. 186, or
Rawnsley [1978], p. 35). However, if Holpo(ω) is not a closed subgroup of G, P(p0)
will only be an immersed and not an embedded submanifold of P. The connection
ω could then be reduced to a connection on the closed sub-bundle P(p0)
= 2(M, Holpo(ω)). Thus if one wishes to rule out reductions of ω to immersed sub-
bundles as not being "proper" reductions, then an irreducible connection should
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be defined as a connection such that Hol(ω) = G. This weaker definition is chosen
by other authors (see e.g. Atiyah, Hitchin, and Singer [1978], p. 442). Finally, for a
matrix Lie group G£GL(n,IR), Singer [1978], p. 9, defines a connection to be
irreducible if its holonomy group Hol(ω)£G acts irreducibly on IRΛ

Since for a general PFB this last definition requires a representation of the
structure group G on R", we do not take it over to define an irreducible connection
on P(M, G). Since non-closed holonomy groups are a fact of life in the theory of
connections, we will consider reductions to immersed sub-bundles as being bona
fide reductions. Thus we end up with the following.

5.2. Definition. Let ωe^(P) be a connection on P(M,G). Then ω is irreducible if
Hol(ω) = G, and ω is weakly irreducible if Hol(ω) = G. ω is irreducible if Hol(ω) φ G,
and ω is weakly reducible if Hol(ω)ΦG.

T pt

^j(P) = {ωe <β(P)\ΐlol(ω) = G}

denote the space of irreducible connections on P, and let
<MP) - {ω e #(P)|Hol(ω) = G}

denote the space of weakly irreducible connections on P. Thus

5.3. Proposition. // ω is a weakly irreducible connection on P(M, G), then

Thus every weakly irreducible connection is generic, and in particular, every
irreducible connection is generic.

Proof Since ω is weakly irreducible, Hol(ω) = G. Thus from Theorem 2.3 and
Lemma 1.5,

IΛP) ~ CG(Hol(ω)) = CG(Hol(ω)) - CG(G) = Z(G).

Since for any connection, Z(G)QIω(P\ it follows that Iω(P) = Z(G). •

From the above proposition, we now have the following inclusions:

In general, the inclusion ^W(P) £ ̂ 0(P) is proper. For example, if G is Abelian,
(see Example 3.1), and so any weakly reducible connection

(Hol(ω) φ G) will be in ^ 0 (P) but not in ^V(P). Another less trivial example is the
canonical connection ω0 on the frame bundle L(Sn) with n ̂  3 (see Example 3.4).
Here Hol(ω0) = SO(n), and so ω0 is reducible and so weakly reducible to the
proper closed sub-bundle 0 + (S"), but Iωo(L(Sn)) = Z(G), and so ωoe%o(L(Sn)) is
generic, but ω0 φ ̂ V(P).

The above inclusion is proper even in the case when G is compact, connected,
and semi-simple, as shown in Example 3.7, where a generic connection ωλ is given
on M x SU(n), d i m M ^ 2 , n^.2. By construction, ω 1 is reducible and so strongly
reducible to a connection ω 0 on the proper closed sub-bundle, M x H.

Regarding the existence of irreducible connections, we have the following.
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5.4. Proposition. Let P(M, G) be a PFB where the total space P is connected and
d i m M ^ 2 . Then there exists an irreducible connection on P, so that

Proof. By a theorem of Kobayashi-Nomizu [1963], p. 90, there exists a connection
ω 0 such that Hol(ω0) = G. This ω 0 is irreducible, and so

P). •

The one-dimensional case is an interesting curiosity. The variety of possi-
bilities, listed below, is somewhat unexpected.

5.5. Proposition. Let dimM = l5 so that M is either diffeomorphic to IR or to Sι,
and let P(M, G) be a PFB over M.

If M «IR, then P{M, G)«IR x G. // G is Abelian, then # 0 (P) = C€{P) ^φ.IfGis
not Abelian, then <gJ(P) = <gw(P) = <g0(P) = φ. If Gφ{e} (G Abelian or not), then
^j(P) = Ψow(P) = φ.IfG = {e}, then <g,{P) = «V(P) = «'o(^) = c^(p) = {ωo} + Φ, where
ω o = 0 is the zero connection on P(lR{e}) (see Example 3.8).

If M&S1, and if G is Abelian, then ^0(P) = ̂ (P)ή^φ. If G is not Abelian then
%I(P) = <gw(P) = V0(P) = φ. If P(S\G) is connected and d i m G - 0 , then G is
isomorphic to either Z or Zn for some neZ +, and P{S\ G) is bundle isomorphic to
either covering manifold IR—^S1; />->eιλ, for G~Z, or S1 —>Sι z\-*zn for G^Zm

and where S1 = {ze(£\zz = 1}. In either case

where OJ0 = 0.
If G is Abelian and dimG ^ 1, then c€j{P) = φ, but whether %>W{P) is empty or not

depends on the bundle P(Sι,G).

Proof From Example 3.1 and Sect. 5, if G is Abelian, then ^0(P)=--ci(P) + φ, for any
PFB P(M, G).

If dimM = l, then the curvature 2-form of connection ω on P(M,G) must
vanish, so that any connection on P(M, G) must be flat.

Now let M ^ R . Since IR is contractable, P(R, G) is bundle isomorphic to
IR x G. Let o) e (€{P) Since ω is flat and IR is simply connected, Hol(ω) = {e}. Now
suppose # 0 (P)Φφ. Let ω 0 G^ 0 (P), so that Z{G) = CG{Hol(ω0))= CG{{e}) = G, and
so G is Abelian. Thus if G is not Abelian, c£0(P) = φ, and so c£W(P) = %> j(P)
= %0(P) = φ.

Since Hol(ω) = {e} for every connection ω e ^(P), every connection is reducible
to the zero connection ω o = 0 on the closed holonomy sub-bundle P(p0)
= β(M,{e}). Thus if GΦ{e}, then <gw(P) + φ, and so also c£j{P) = φ. If G = {e},

ί h e n « Ή ( ^ ) W ) ^ ( ^ ) ^ ) = K } Φ 0.
Now let MπS1. For poeP(Sι,G), let xo = π(po)eSι. For ωecβ{P\ let

denote the holonomy homomorphism (see Kobayashi-Nomizu [1963], p. 93).
Z

Since π 1 ( S ι , x 0 ) » Z and since /z is surjective, Holp 0 (ω)%-—- is isomorphic to
Ker n



Internal Symmetry Group 255

either Z or Zn=— for some neZ + . Thus Holpo(ω) is Abelian, and so by

Proposition 5.1, if ^ 0 (P) φ φ, then G is Abelian. Thus if G is not Abelian, ^0(P) = φ,
and so cβw(PΛ) — cέι(P) — c€ς)(P)-=φ.

Tf dimG = 0, G is a discrete Lie group, and so if P is connected, by Example 3.8,
P-^S1 is a regular covering manifold of Sι. But every connected covering manifold
of Sι is equivalent to either R-+S 1 , λ->eιλ, or S1-+Sί, z-^zn, for some neZ+ (see
Spanier [1966], p. 80). Thus G must be either Z or Z n for some neZ + . In either
case, there is only one connection ω 0 = 0 on P, and Hol(ω0) = G (see Example 3.8).
Thus

Now assume d i m G ^ 1, G Abelian. Since every connection ω on P(Sλ, G) is flat,
the holonomy groups must be discrete subgroups of G. Thus if d i m G ^ l ,
Hol(ω)ΦG for any connection ω on P. Hence c^I(P) = φ.

Example 3.9 with P = SιxSι and with connection ω 0 determined by
horizontal subspaces with irrational slope gives Hol(ω0) = S1, and hence
ω 0 e ^W(P) Φ φ. On the other hand, the holonomy group of any connection on
P = S1 x R is a discrete subgroup of R (see Example 3.9), and so Hol(ω) φ G for any
connection ω on P. Hence ̂ W{P) = φ> Thus whether ^W{P) is empty or not depends
on the bundle P{S\G). •

We summarize the above results in the following tables, with ω o = 0.

Group G

G Abelian, GΦ{e}

G not Abelian

Subspaces

np)

φ

φ

of 'β(P)

φ

φ

'UP)

{«>o}

ίfo(P) = «(P)Φφ

Φ

Case

Subspaces of (6\P)

Group G

P{S\G) connected,
dimG =• 0 => G^Z or Zn,

G Abelian, dimG^l

; not Abelian

depends on
P(S, G)

φ φ

Case 2, M
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6. Iω(P) as a Lie Group of Transformations

In Sect. 2 we showed that Iω(P, G), and hence Iω(P) has a Lie group structure. In
this section we show that Iω(P) is a Lie transformation group that acts properly
and freely on P.

Let P(M, G) be a PFB over M, let g be a Riemannian metric on M (M is
paracompact and hence admits Riemannian metrics), let ω e ^(P), and let y be a
positive-definite inner product on ©. We are not assuming that y is adjoint-
invariant. Indeed, such a y does not exist on a general Lie algebra. Using g, ω, and y,
we construct a Riemannina metric g on P by g = π*g + y (ω®ω), so that

where peP, Zl9Z2eTpP, x = π{p), and X1 = Tpπ Z1, X2 = Tpπ Z2eTxM. Note
that if y is not Ad-invariant, then g is not G-invariant (R*g + g for all aeG).
However, we shall see below that g is /ω(P)-invariant. This observation is the key to
Theorem 6.2 below.

Let Iύ(P) = {H

denote the group of isometries of P. Note that an isometry need not be an
automorphism of P. A classical result of Myers and Steenrod ([1939]) states that if
P is connected, then with respect to the compact open topology, Ig(P) is a Lie
transformation group of P; i.e., Ig(P) has a Lie group structure such that the action
I$(P) x P-^P, {H,p) i—> H(p) is a C00 map. Also, the Lie algebra of Ig(P) consists of
the complete Killing vector fields on P,

jfg(P) = {WeX{P)\W is complete and Lwg = 0}.

As part of this classical result, it is shown that if {Hn} is a sequence in Ig(P) such
that Hn{pQ)-^pu then there exists &nH e Ig(P) [with H(po) = p1~] and a subsequence
{Hnk} of {Hn} that converges to H in the compact open topology (see Helgason
[1962], p. 167 or Kobayashi-Nomizu [1963], p. 47). This latter result can be
rephrased as follows.

6.1. Proposition. // P is connected, then the action Ig(P) x P^P, (H,p) \-^ H(p) is a
proper action.

Proof. The above action is proper if the map lg(P) x P^Px P, (H, p) i—• (p, H(p)) is a
proper map, i.e., if the inverse image of a compact set is compact. This is equivalent
to showing that if {pn} is a sequence that converges in P, and {Hn} is a sequence in
Ig(P) such that {Hn(pn)} converges in P, then {Hn} has a convergent subsequence in
I${P). Thus let (pn, Hn(pn))^>(p0,px)eP x P. Let d be the metric on P associated with
g. Then since g is /^(P)-invariant, so is d. Thus

d{Hn(p0),Pι) ^ d ( H n ( p 0 ) , H n ( p n ) ) + d ( H n ( p n ) , P l ) = d(pθ9 p n ) + d ( H n ( p n ) , P l ) .

Since pn-*p0 and HJφ^^p^ the right-hand side converges to zero. Hence
Hn(p0)-^pv Thus by the classical result, there exists a convergent subsequence
{Hnk} in Ig{P). Hence the action is proper. Π

Our main theorem is now the following.
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6.2. Theorem. Let P(M, G) be a PFB, let ω be a connection on P(M, G), and let

/ω(P) = {FeAut(P)|F*ω = ω}

denote the internal symmetry group of ω. Assume that the total space P is a connected
manifold. Then with respect to the compact open topology on IJP),

(1) Iω(P) is a Lie transformation group of P, i.e., the action Ψ :Iω(P)x P-+P,
(F,p)ι—>F(p) is a C 0 0 action.

(2) The Lie algebra of IJP) is:

(3) The action Ψ is proper and free.
(4) dimJω(P)^dimffi.
(5) For peP, the orbits

ΘP={F(p)\FeIJP)}

are closed submanifolds of P, and the orbit maps Ψp:IJP)->ΘPQP, F κ+ F(p) are
diffeomorphisms onto the orbits. The differentiable structure on IJP) is given by the
embedding of IJP) onto the closed submanifold Θp.

(6) The orbit space

IJP)\P = {Θp\peP}

in the quotient topology has the structure of a C™ manifold such that the orbit
projection map P-*IJP)\P, p h-> @p is a submersion, and is also a left principal fiber
bundle with total space P, base space IJP)\P, and structure group IJP).

(7) For peP, the map

/ω(P)-+CG(Holp(ω)), F^uF(p)

is a Lie group isomorphism.
(8) // the structure group G of the PFB P(M, G) is compact, then IJP) is a

compact Lie transformation group.

Proof (1) For FeAUT(P), let / = π{F)eDiff(M), so that π o F = / o π . Then

F*g = F*(π*g) + F*(y (ω®ω)) = π*(/*g) + y (F*ω®F*ω),

where i7* pulls through the second term because of the bilinearity of γ. Thus if
FelJP), π(F) = idM, and F*OJ = OJ, so that F*g = π*g + y (ω®ω) = g. Thus
FeLg{P), a n d s o / ω ( P ) ς / ^ P ) .

Moreover, in the compact open topology, F*ω = ω is clearly a closed
condition, and so IJP) is a closed subgroup of /^(P). From the classical result
stated above, I$(P) is a Lie transformation group. Since any closed subgroup of a
Lie transformation group is also a Lie transformation group, it follows that IJP) is
a Lie transformation group.

(2) Let Fλ be a one-parameter group of transformations in IJP), and let

dλ

be its generator. Then Ffω = ω, and so L Γ ω = 0. Thus Te,f<0 (P).
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Conversely, let Te J>ω(P) Q 3£G

ert(P). Then since G-invariant vertical vector fields
are automatically complete, T is complete. Let FλeAut(P) be its flow. Since
L Γ ω = 0, Ffω = oj (see Kobayashi-Nomizu [1963], p. 33), and so FλeIω(P).

(3) The action is proper since the action of Ig(P) on P is proper (see
Proposition 6.1), and since the restriction of a proper action to any closed
subgroup is also a proper action.

Since P is connected, M is necessarily connected. Thus the action is free by
Proposition 2.1 and Remark 2 following it. Note that the action oϊIg(P) on P is not
necessarily free.

(4) Fix peP. Then the map / ω (P)->S, T \-+ω(p) T(p) is an injection by
Proposition 2.1 (and Remark 2 folio wing it) and so dim ϊω(P) = dim .fJJP)^ dim ©.

(5) and (6) follow for any smooth, proper and free action (see Abraham-
Marsden [1978], pp. 266 and 276). That the differentiable structure on IJP) is
induced by the embedding Φp: Iω(P)-+Θp9 F f—• F(p\ follows from the correspond-
ing result for Lg{P) (see Kobayashi [1969], pp. 15 and 41).

(7) Since CG(Holp(ω)) is a closed subgroup of G, the map

is a diffeomorphism onto the orbit. Hence the Lie group structure on Iω{P) induced
by the embedding Iω(P)-+Θp, F f—• F(p), coincides with the Lie group structure on
Iω(P) induced by the group isomorphism

Iω(P)->CG(Holp(ω))9 F^uF(p)

Thus (7) is a restatement of Theorem 2.3, again using the fact that M is connected.
We also note again that all second countable Lie group structures on a Lie group
are equivalent (see discussion following Proposition 2.3).

(8) Since Cg(Φp(ω)) is a closed subgroup of G, if G is compact, so is CG(Φp(ω)\
and hence also Iω{P). D

Remarks. 1. A similar but modified formulation of the above theorem is available
for the "action"

IJP,G)xP-+G, (u,p)\-+u(p).

Thus Iω(P, G) has a Lie group structure such that the above "action" is C00, it is free
in the sense that if u(p) = e, then u = e, and it is proper in the sense that

IJP, G)xP-^PxG, (M, p) ι-> (p,u(p))

is a proper map.
2. As we have noted, if P is connected, then M is connected. However, G need

not be connected. On the other hand, if both M and G are connected, then P is
connected.

3. Note that if G is compact, Hol(ω) need not be compact (see Example 3.9).
Thus it is of interest that /ω(P)»CG(Hol(ω)) is compact [since CG(Hol(ω) is a
closed subgroup of G]. Note the analogy with Riemannian geometry, where if M is
compact, then the isometry group Ig(M) of a Riemannian metric g is compact.
Thus in this regard, compactness of the structure group G, causing Iω(P) to be
compact, is analogous to compactness of M, causing Ig(M) to be compact.
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4. If P has a finite number of components, then Ig(P) is still a Lie
transformation group, but its action on P is no longer proper. However, if M is
connected, the action of Iω(P) o n P *s s t lΉ a proper action, inasmuch as F e Iω(P) is
determined by its value at a point.

7. The Lie Group of Transformations ίig ω)(P)

As noted in the introduction, there are several finite dimensional subgroups of the
infinite dimensional group AUTω(P) which are Lie groups. If P is a frame bundle,
then we can consider the Lie group of affine transformations of ω,

AJM)« AUT(Θ, ω)(P) = AυTΘ(P)n AUTω(F) = J(θ< ω )(P),

where θ is now the canonical 1-form on P = L(M). For a general PFB, we
considered in the previous section the Lie group Iω(P) = Aut(P)n AUTω(P). In this
section we put a Riemannian metric g on the base manifold M and consider the
larger subgroup

A,.ω)(P) = {F e AUT(P)|F*ω = ω and /*g = g} 2 Iω(P),

where / = π(F) e Diff(M) is the diffeomorphism of M induced by the automorphism
F of P. Thus /(ί7 ω)(P) is the group of automorphisms of ω that cover isometries of g.

Regarding /(9 ω)(P) we have the following result.

7.1. Theorenio Lβί P(M, G) be a PFB, feί ω be a connection on P, tfmί let g be a
Riemannian metric on M. Assume that the total space P is a connected manifold.
Then with respect to the compact open topology on J(j?<ω)(P),

(1) I{g^ω)(P) is a Lie transformation group of P, i.e., the action Ψ:

is a C°° action.
(2) The Lie algebra of1^ω)(P) is

•^(g.co)(P) ^ [Z e XG(P)\ Z is a complete vector field on P,

and Lzω = 0 and L xg = 0, where X = π^

(3) The action Ψ is a proper action.
(4) dimIig,m)(P)^n(η + l) + k9 where k = dimG.
(5) The isotropy group at an arbitrary point

is compact.
(6) For peP, the orbits COp = {F(p)\F e I(gω)(P)} are closed submanifolds of P,

and the maps

are diffeomorphisms onto the orbits.
(7) If P(M, G) is compact, then I(g^C0){P) is a compact Lie transformation group.
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Proof. (1) and (3). As in Sect. 6 and Theorem 6.2, let γ be a positive-definite inner
product on ©. Then g = π*g + y (ω®ω) is a Riemannian metric on P. If

so I{gω)(P) is a closed subgroup of I§(P). Thus /((3 ω)(P) is a Lie transformation
group on P, and the action is proper.

(2): If F; is a one-parameter subgroup of I{gω)(P) with generator Ze%G(P),
then Z is a complete vector field and F*ω = ω and f*g = g, where fλ = π(F ;). Thus
Lzω = 0 and L xg = 0.

Conversely, if Z E , / ( 9 C 0 ) ( P ) , then by definition of J{g>ω)(P), Z is complete and
L z ω = 0 and Lxg = 0. Let F λ be the flow of Z and / ; = π(Fλ) the flow of X = π^Z,
Then F*ω = ω and fλ*g = g. Thus FλeI{gt(O)(P).

(4): Note that since dimP = n + /c, we have the immediate rough estimate

dim 1^ ω)(P) <>%n + k)(n + k+\).

This can be refined as follows. For ZeJ{gω)(P), let X = π^ZeJg(M), the space of
complete Killing vector fields on M. Let O(M) denote the orthonormal frame
bundle of M, and for p e P and w G O(M), consider the map

Z ^ (ω(p) Z(p), Z(ι/)),

where X(u) denotes the natural lift of X to O(M). This map is injective, for if
ω(p) Z(p) = 0 and X(w) = 0, then X(x) = 0 and TXX = 0, where x is the base point of
u. Then since X is a Killing vector field, X = 0. Thus Z is a vertical vector field, and
so ZeJω(P). Since ω(p) Z(p) = 0, Z = 0. Since the above map is injective,

dim J^ ω)(P) ̂  dim G + dim TU{O(M)) = k + \n(n +1) .

(5): Since the action is proper, the isotropy subgroups are compact. Alter-
nately, (I{g ω)(P))PΌ is a closed subgroup of the compact isotropy group (Ig(P))PQ

= {FeIύ(P)\F(Po) = Pol
(6): This is a consequence of the properness of the action (Abraham-Marsden

[1978]).
(7): If P(M,G) is compact, Ig(P) is a compact transformation group. Since

I{g ω)(P) is a closed subgroup, it is also compact. •

Remarks. 1. Note that in contrast to J^ω(P), where infinitesimal vertical symmetries
of ω are automatically complete, infinitesimal symmetries Z oΐJ{g^ω) (i.e., Lzω = Q
and L xg = 0) are not necessarily complete, so the Lie algebra -/(0,ω)(P) must be
restricted to the space of complete infinitesimal symmetries.

2. Another difference between the groups Iω(P) and I{g>ω)(P) is that the action
of I{ΰi ω)(P) on P is not necessarily free. This is because if F e l{g% ω)(P) with F(p0) = p 0,
then f(x0) = x0, where / = π(F) G /^(M) and x 0 = π(p0). But an isometry which fixes a
point need not be the identity. Thus F need not cover the identity, and thus
Proposition 2.1 cannot be applied. Thus F fixing a point p 0 e P is not sufficient to
cause F to be the identity (see Example 7.2 below).

P
3. Since the action of 7(g ω)(P) is not necessarily free, the orbit space -— is

* P )
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not necessarily a manifold. However, since the action is proper, it is a Hausdorff
space. •

Here's an example of the non-freeness of the action of I{gω)(P) on P.

7.2. Example. Let Sn be the standard unit sphere in IR" + 1 with standard metric
g0, x 0 the north pole, and fe Igo(Sn\ an isometry fixing x 0 with / + idM. Let P(Sn, G)
= SnxGbe the product bundle, and let ω 0 = πf 0 the canonical flat connection on
P (see Example 3.2). Let

F:SnxG-+SnxG, (x, α) H+ (/(x), a).

Then FeAUT(P), F covers /, and

so that F e Iigot ωo)(P). Also F fixes (x0, α), F(x0, a) = (/(x0), a) = (x0, a), but F φ id on
Sn x G. •

For Z e £ G ( P ) and ωe^(P), the Lie derivative LzωeAι(P,(!b) can be further
examined. Let Z = T+ X be the decomposition of Z into its vertical and horizontal
part. Here Te£G

e r t(P) is defined by T(p) = TeΦp (ω{p) Z(p)\ and X is the
horizontal lift of X = π^Z e X(M).

7.3. Proposition. Let Z e XG(P), ω e <£(P), and let Z=T+X the decomposition of Z
into G-ίnvarίant vertical and horizontal vector fields. Let φτ = ω(T)eC^d(P,(^)
correspond to T according to Proposition ί.l, and let Ω = DωeA2(P,&) be the
curvature of ω. Then Lzω = Dφτ-

s

ΓiχΩ.

Proof By Lemma 1.4, Lτω = Dφτ. Since ω(X) = 0,

Lxω = iχdω + dixω = ixdω,
and also

ixΩ = iχdω + jiχ(\_ω A ώ]) = ixdω.

Thus

Lzω = L τ + ^ω = L Γ ω + Lxω = Dφτ + ixdω = Dφτ-\- ixΩ. •

Thus the Lie algebra «/(ff>ω)(P) can be described by

is complete and Dφr + ίxΩ = 0 and Lxg = 0},

where φ Γ = ω(T) = ω(Z), and X = π^Z. This description is important in Yang-Mills
field theories (see e.g. Forgacs-Manton [1980]; Jackiw-Manton [1979]; Fischer
[1985]).

Finally we remark that in Lagrangian gauge field theories, the Lie group
I(g,ω)(P) p l a v s a n important role as the generator of global conservation laws for
matter fields coupled to the fixed parameter fields (g, ω). This is analogous to the
role played by Iω(P) as the generator of global internal conservation laws, and to
the role played by Ig(M) as the generator of the global spacetime conservation
laws. Here g is usually a Lorentz signature metric (see Fischer [1984, 1985] for
more details).
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