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Abstract. The Cauchy Problem for the relativistic Vlasov-Maxwell equations
is studied in three space dimensions. It is assumed that the initial data satisfy
the required constraints and have compact support. Tf in addition the data have
sufficiently small C 2 norm, then a unique C 1 solution to this system is shown
to exist on all of spacetime.

1. Introduction

A plasma is said to be collisionless if the collisions between the particles are
unimportant relative to the electromagnetic forces. Such a plasma is governed by
the Vlasov-Maxwell equations. An ionized gas which is sufficiently hot, such as
a powered-up fusion reactor, or sufficiently dilute, such as the solar wind, the
ionosphere or a collection of galactic nebulae, is thought to be well modeled by
these equations. In this paper we prove that if a plasma is sufficiently dilute initially,
then it remains so for all time and no shock or other singularity can ever develop.

We postulate several (N) species of particles (electrons, different types of ions,
etc.) with masses mα, charges ea and densities fa(t,x,υ) (t ^ 0, xe(R3, veU3,
1 ^ α ̂  N). The total charge and current densities are

afadv, (1)

Λ/«^. (2)

where, in the relativistic version we consider,

has the interpretation of velocity, v is the momentum, and c is the speed of light.
Each /α will satisfy a continuity equation (the Vlasov equation) which is coupled
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to the Maxwell system:

3tfa + K^xfa + ea{E + c-HaAByVJa = 09

(RVM) Et = c curl B-j; V £ = p;
Bt= -ccurlE; V £ = 0.

These are the relativistic Vlasov-Maxwell equations (RVM). Cauchy data are
prescribed

f.(0,x,υ) = faO(x,v), E(0,x) = E0(x), B(0,x) = Bo(x) (4)

which satisfy the necessary constraints.
In [GS1] we have given a general sufficient condition for the existence of a

global (^-solution; namely, that there exists a continuous function β(t) such that
any solution /α (or any iterative approximation /£°) vanishes for \v\ > β(t) and all
x, α, t. In this paper we verify this condition under a smallness assumption on the
data, which we state precisely as

Theorem 1. For each k > 0, there exist constants ε0 > 0 and β > 0 with the following
property. Let fa0(x, v)(<x= 1,2,..., iV) be non-negative C1 functions with supports in
{\x\ ^ fe}, [\v\ f^k}. Let E0(x),B0(x) be C2 functions with supports in {\x\ ^ k] which
satisfy the constraints

$ΣJ«odv, V Bo = 0. (5)
U3 α

// the data satisfy

ΣWf«o\\σ + \\Eo\\ci+\\Bo\\c^εo, (6)
α

then there exists a unique solution o/RVM for all xeU3 and all veU3 and all times
t9 0^t< oo, withfa, E.BeC1 having initial datafa0,E0,B0 such that

fa{t,x,υ) = O for \v\^β for all a,t and x. (7)

Furthermore, E(t,x) = B(t,x) = 0 for \x\ > ct + fe. For all ε > 0, there exists εo>0
such that if (6) holds, then

\E(t,x)\ + i f l f c s J l ^ z - i w / , ^ Λ M (8)
(ί + l)(ct- \x\ + 2fe)

for all ί^O, xeR 3 .
To our knowledge this is the first global existence theorem for RVM with

assumptions only on the initial data. As mentioned above, in [GS1] we proved
the global existence provided we knew a priori that the supports of fa(t, x9 v) in
the momentum variable were bounded for bounded times. In [GS2] we improved
this to the condition that the kinetic energy density

be bounded for bounded times.
If the magnetic field vanishes (B — 0), there is an electric potential φ satisfying

Vφ = E and the Maxwell equations reduce to Λφ = p. This equation coupled to
the (non-relativistic) Vlasov equation is called the Vlasov-Poisson system (VP).
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Bardos and Degond [BD] solved the small data Cauchy problem for VP. The
case of an external magnetic field is considered in [BDH]. Horst [H] solved a
small data problem for RVM of an unusual type with data at finite and infinite
times. He assumed / α 0 are small and constructed solutions of RVM which satisfy

fa(0,x,υ) = faO(x,υ)9 E(co9x) = 0, B(ao,x) = 0

in the sense of scattering theory. We are indebted to Bardos, Degond and Horst
for some of the key ideas used in this paper.

The key step in all these proofs is to show that the paths of the particles spread
out with time. So only a small set of momenta (of diameter O(l/ί) in momentum
space as t -> oo) could reach a given point (ί, x) from the support of the initial data.
Then p(ί,x), which is an integral over a set of momenta of volume 0(£~3), is itself
of that order. Since the particle paths are given by the equations

x = ύa9 v = ea(E + c'1vaAB\ (9)

the particles would move in approximately straight lines if E and B were small.
Thus we must also prove that the electromagnetic field decays as t-• oo.

For the case of VP there is no explicit time dependence in the field equation
(Δφ = p) so that Bardos and Degond were able to iterate in a space where E decays
in L00 at the rate O(Γ2) and VE at the rate O(t~5'2). For RVM, the field satisfies
inhomogeneous wave equations like

(df-Δ)E=-Vp-dtj. (10)

So the best possible L00 rate of decay for the field is O(t~1), which is far too slow
for the methods of [BD] to succeed. Horst, on the other hand, imposed conditions
as t -• oo designed to allow more rapid decay of the field. For our problem with
arbitrary initial conditions and a magnetic field, we introduce a weighted U° norm
for the field, as was pioneered by John [J]. We use the weight

(ct + \x\ + 2k)(ct-\x\ + 2k).

By causality we know that | x | g ct + k on the support of the field, so that the
second factor simply introduces an extra decay factor of t ~1 inside the light cone.
In order to use this extra factor when solving RVM, one must show that |x| stays
well inside the cone. Since x = va this is true if the momenta v remain bounded.
This means that the Vlasov and Maxwell characteristics are well separated; that
is, the system RVM effectively is strictly hyperbolic. Thus we have come full circle
to a condition on the behavior of the momenta. To carry out the process we also
need to estimate the spatial derivatives of the field, for which another weight
function is used.

We maintain the notation of [GSl]. In particular, y A Z denotes the ordinary
cross product of vectors in R3. Constants which change from line to line are
simply denoted by c.

2. Outline of the Proof

The main structure of the proof follows [GSl]. Uniqueness is proved in Theorem 1
of [GSl], under condition (7). For the existence in [GSl] the following construction
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is made. Given Ei0)(t,x) and 5(0)(ί,x), we define E{n)(t,x\ B(n)(t,x) and fn)(t,x,v)
inductively as follows. Given the (n — l) s ί iteration, we define f{"] as the solution
of the linear equation,

3J2 0 + K-VJ{:] + e a(£ ( n-1 } + K A B<wyvΌf™ = o,

/?)(0,x,ι;) = /βo(x,t;). (11)

For simplicity we have set the speed of light equal to unity (c = 1). Then we define
pW = AπΣeJfdυ and / n ) = 4π]>>α\vj% ]dυ. Finally we define £ ( n ), 5 ( n ) as the

α α

solution of Maxwell's equations,

3tE
in) = V x £ ( " } - j ( Π ) , VΈ{n) = pin\

dtB
{n) = - V x Ein\ V-B{n) = 0, ( }

with data E{n)(0,x) = E0(x),B(n)(0,x) = B0{x).
Theorem 1 of [GS1] states that if there exists β > 0, independent of ί, x, α and

n, such that

/? )(ί,x,ϋ) = 0 for |t;|>)S, (In)

then ( / ^ E ^ , ^ ^ ) converge to a C 1 solution {fa,E,B) of RVM. The rest of this
paper is devoted to proving (In) under the "smallness condition" (6).

We abbreviate the field as K(t,x) = the pair (E(t,x), B(t,x)). Define the norms

)|}, (13)

where EX,BX denote the gradients of E, B in the x variable and | |X|| = | |X | | 0 +
|| KII!. Let ε > 0 and let

Jf = {K\K is C\K = 0 for | x | > ί + fc, | | X | | ^ c } .

Given KeJf, we define the characteristics as the solutions X = Xa(s, ί,x, v),
V — Va(s,t,x,v) of the ordinary differential system (9), that is,

^=V=V(ml + \V\2rί'2, (15)
OS

~ = eJE(s,X)+VΛB(s,X)), (16)

with the "initial" conditions Xa(t, t, x,v) = x and Va(t, t, x, v) = υ.
Next we define

/α(ί, x, υ) = fa0 (Xα(0, ί, x, υ), Fα(0, ί, x, v)). (17)

Thus fa(t,x,v) is the solution of the Vlasov equation,

dJΛ + ^α'Vx/α + e,(E + ία Λ β) V,/α = 0, (18)

with the initial condition /α(0, x, v) = /α0(x, u). We define p and j by (1) and (2) and
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define X* = (E*,B*) as the solution of Maxwell's equations,

dtE* = V x B* - j; V £* = p,

dtB*=-VxE*; V β* = 0,

with the initial conditions E*(0,x) = E0(x), B*(0,x) = B0(x).
Thus the iteration scheme may be summarized as K{n) = (K ( Λ~1 ))*. We begin

the scheme by defining K{0) = 0 (that is, E{0)(t,x) = B(0)(t,x) = 0). We shall prove
the following two theorems.

Theorem 2. If KeJf and ε is small enough, then there exists β>0 depending only
on k,ε and ε0 such thatfa(t,x,v) = Q for \v\ ̂  β and for all ac,x,t.

Theorem 3. If KEJ^ and ε is small enough, then K

Proof of Theorem 1. We define the sequences f[n\K{n) as above. Since K(0)eJΓ,
Theorem 3 states that K(n)eJf for all n. By Theorem 2, f{^ = 0 for \v\ ̂  β. By
[GS1], f("\ K(n) and their first derivatives converge pointwise to / and K. Therefore
K e J ί . Hence (8) is valid, as well as

for all t ^ 0, xeU3. As we mentioned earlier, (f,K) is a solution of RVM.

3. The Characteristics

The characteristics are the curves defined by (15) and (16). They exist as C 1 functions
of s, t, x, v for some time 0 rg t < T*, 0 ^ s < T* because E and B are C 1 functions.
For as long as the characteristics exist, we define

P(t) = sup {I VΛ(s,0,x,υ)\:\x\ ^ fe, \v\ ^ fe, 0 ^ s S U 1 ύ α ^ JV},

that is, the largest momentum up to time ί emanating from the support of / α 0 .
Then P(ί) is a continuous function of t for 0 ^ ί < T*.

Lemma 1. IfO^s^t and fa(t, x, i?) ̂  0,

s - \Xa{s, t,x,υ)\ + 2fc ^ (fc + s)(2 + 2P 2(ί))" 1-

Proo/. If 0 ^ s ^ ί, IXα(0, ί,x, y)| ^ k and | Kα(0, ί, x,v)\^ k9 we have

|Kβ(s,ί9x,ι;)|^P(ί). (20)
Hence \υ\^P(t) and

I Xa{s, t,x,υ)\^\ Xa(0, t, x,υ) \ + } | 7α(τ, t,x,υ)\dτ^k + sP(t),
o

where, assuming ma = ea= 1 for simplicity,

P(ί) = P(ί)(l -f P 2 ( ί ) ) ~ 1 / 2 < 1
But
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which implies Lemma 1.

Lemma 2. If KEJΓ and if ε is sufficiently small, say ε < ε 1 ? then the characteristics
Xa(s), Va{s) exist for all s (T* is infinite) and P{t) is bounded, say P(t) ̂  β. Here ε1

and β depend only on k. Therefore, iffa(t,x,v)φ0 for some (α,ί,x), then \v\^β.

Proof We have for t ^ 0, writing X{s) = Xa(s, t, x, υ) and V{s) = Va(s, t, x, v),

( Va(09 t,x,v)-v\^ $\E(s,X{s)) + V(s) A B(s,X(s))\ds
o

S IIK\\0\(s + \X{s)\ + 2k)~Hs-\X(s)
o

by Lemma 1, provided \XΛ{0,t,x,υ)\^k and |F α (0 , ί ,x,υ)\^ k. Let y = Xα(0,ί,x,u)
and w = Fα(0, ί, x, υ), so that x = Xa(t, 0, y, w) and i; = Fα(ί, 0, j ; , w). Then

for Iw| ^ k and |y| ^ fe. Thus

If | | X | | 0 is sufficiently small (depending on fc), this implies that P(ί) is a bounded
function of ί.

Proof of Theorem 2. By Lemma 2, the characteristics exist for all time. If
fa{t,x,υ)φ0 for some (x,ί,α,u), then by (17) |y | - |Z α (0,ί,x,t;) | ̂  k and |w| =

7α(0, ί,x,u)| ^ k. By the definition of P(ί),

Lemma 3. // ε is sufficiently small, there is a constant oQ so that

\Xa(0,t,x,v)-Xa(0,t,x,w)\^ct\v-w\

for all t, x, v and w such thatfa(t, x,v)^0 andfa{t, x, w) φ 0.

Proof For simplicity, since α is fixed, we drop the subscript α. Following Horst
[H], we rewrite the characteristic equation for dv/dt in terms of ΰ, as follows:

—^m-^l ~\υ\2)112{E + v A B-{ϋ E)ϋ} = J{t,x,ϋ). (21)

Since (1 — \v\2)112 = m(m2 + \v\2)~112 < 1, the derivatives of J can be estimated as

^ c IIKII! (ί + r + 2fc)""' log (ί + r + 2k)(ί - r + 2k)" 2

9



Initially Dilute Collisionless Plasma 197

where r = | x |, and

\VΰJ{t,x,ύ)\^c(l-\v2yι/2\K\^c{l + \v\2)1/2\K\

^c{l + \υ 2 ) 1 / 2 || K | |0(ί + r + 2/c)"1(t - r + 2k)'1.

For the characteristic passing through the point (ί, x, u), where /(ί, x, υ) φ 0, we
abbreviate X(s) = X(s, ί, x, ι;) and F(s) = K(s, t, x, t;). Then we substitute s for ί, ̂  (s)
for x and F(s) for v to obtain

|(Vμ)(s,X(s), V(s))\ S: c(l + i^2)2 || K ||(fc + s)~3 log(k + s) = ̂ (s), (22)

and

by Lemma 1.

Now let ί, x, v and w be fixed so that fit, x,v)φθ and fit, x, w) φ 0. For brevity

we denote AΊ(s) = X(s, ί,x, f) and X 2( s) = ^ ( s ' t » x

;

v v ) - By (15) and (21) we have, for

XM V^s)) - J(s,X2(s), V2(s)U dsdτ.

Hence by (22) and (23), we have

\Xxiξ)-X2iξ) + it-ξ)iv-w)\

where

£ίί iβis)ί I Vi(θ) - V2iθ)Idθ + his)I Vγis) - V2is)\}dsdτ
ξ τ s

ί Γ ί

^ J $g(s){D(s) + (t-s)\

+ ]h(s)ds\ΰ-w\ \dτ.In the first part of this expression, we switch the order of integration, obtaining
the factor (s — ξ) ̂  s. In terms of
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we therefore find the estimate

ξ

After changing variables ξ-+(t — ξ), we apply GronwalΓs inequality to obtain

D{ξ) ύ { t - ξ ) \ ϋ - w | J e x p ]lsg{s) + h{s)~]ds ^{t~ξ)\v- w | J e x p J .
ζ

We choose ε so small that /exp / < 1/2, recalling that || K || < ε. Choosing ξ = 0,
we therefore have

t(v - w)| ^ D(0) S (t/2)\v - w\.

Therefore

\X1(0)-X2(0)\^(t/2)\ϋ-ti\. (24)

Now v = mv(l - \v\2y1/2, so that

Idvjdΰjl S c{\ - \ϋ\2yV2 = c(m2 + M 2 ) + 3 / 2

for each i and j . Since f(t,x,v) / 0 , we have \X1(0)\^k and | ̂ (0)1 g k, whence
\υ\S P{t) g j8 by (20) and Lemma 2. Similarly | w| g j8. Therefore

| ι ; - w | ^ c ( l + yβ)3 |z3 — w|.

By (24), we have |X 1 (0)-X 2 (0) | ^ c ί | u - w|.

4. The Particle Densities

We assume that ε is small enough for the validity of Lemmas 2 and 3.

Lemma 4. There is a positive constant c such that

forallt^O, where \\fo\\o ssup |/ α 0 (x,y) | .
a,x,v

Proof. We recall that fa(t9x9v) = fa0{X9 V), where X = Xa{0,t,x,v) and V=Va

(0,t9x,v). We have |X| g /c and | K| ^ k soNthat | ι; |^)8 by Lemma 2. So Lemma 4
is valid for ί g l . Now the integration in \ f^dv may be taken over the set
J3/ = {^:|X| ^ fe}. By Lemma 3 the diameter of sd is at most 2k/(ct), and so its
volume is at most O(t~3). Therefore \ fadv is at most c | | / 0 | | 0 ί~ 3 . The last inequality
follows from the vanishing of fa(t,x,υ) for |x| > t + k.

Lemma 5. There is a positive constant c such that

and
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Proof. Write Lα = dt + va Vx + (E + ύa A B)-Vυ9 so that the Vlasov equation is
Lα/α = 0. Again we drop the subscript α. Write X(s) = X(s, t, x, υ) and V(s) =
V(s,t,x,v) as before. Fix a coordinate Xj and let δ / = df/dXj for brevity. Then

L(3/) - - (dE + 0 Λ dB)-Vvf = ή(ί, x, z;).

Thus

^ [δ/(5, X ( 4 K(s))] = h(s, X(s), V(s)).
ds

Integrating from 0 to τ g ί, we have

5/(τ5X(τ), K(τ)) = δ/o(X(0), 7(0)) + ]h(s,X{s), V(s))ds,
o

so that

4-

o U + 5J

by Lemmas 1 and 2. We write this for short as

Wxf(r)\^\\fo\\i + c]l(s)\VΌf(s)\ds. (25)
o

Now let Df = df/dVj for brevity. Then

\L(Df)\ = I - (Dύ) (Vxf + BΛ Vvf)\ ^ \VJ\ + \B\ \VJ\.

Integrating as above, we have

\VΌf(τ,X(τ)9 7(τ))| ^ | | / 0 Hi + J {I V x/| + \B\ \Vυf\}(s9X(s)9 V(s))ds
o

\VJ\ds
°ί(s + \X(s)\ + 2k)(s-\X(s)\ + 2ky

where Vxf and Vvf are evaluated at (s9X{s)9V(s)). The last kernel is at most
c(ί + s)~2, as above. Since it is integrable, GronwalΓs inequality yields

h (26)

We now have (25) and (26), where I(s) = (1 + s)" 3log(2 + s). Substituting (25) into
(26) we have

where c0 — || / 0 1 | i Therefore

g(τ) = (1 + τ)"11VΌf(τ)\ ^ c^c, + c2 }(1 + s)I(s)g(s)ds.
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Since (1 + s)/(s) is also integrable, we deduce by Gronwall again that g(τ) is
bounded. By (25), | V x/| is also bounded for 0 ̂  τ ̂  t. The bounds are independent
of τ, t, x and υ. Putting τ = t we conclude that

and

\VΌf{t,x,v)\ = \VJ(t,X(t\ 7(ί))I ^ c(l + 0-

5. The Field

As we showed above, the characteristics, defined by (15) and (16), exist globally.
Because \dX/ds\ = \ V\ < 1, and fa0 has support in {\x\<^k}, the particle density
fa(t, x, v) defined by (17) has support in | x | g t + k. Therefore so do j and p. Therefore
£* and 5*, defined by (19), also have supports in \x\^t + k. In order to prove
Theorem 3, it remains to show that || X* || < ε for ε and ε0 sufficiently small.

L e m m a 6. There is a constant c>0 so that

for all Ke^ί provided ε is sufficiently small.

Proof. We begin with the representation formula for E* from Theorem 3 of [GS1];
namely,

E* = E* + E$ + Eξ, (27)

where the terms are given explicitly as follows:

- Σ Ί ί J

where fa = fa(t-\y-x\,y9v), E = E(t-\y-x\,y), B = B{t-\y-x\9y), ω =
(y - x)/\y -x\ and Sa = dt + ία Vx by Eq. (55) in [GS1].

The term £* is the sum of the solution ${t, x) of the homogeneous ("free") Maxwell
equations with the same initial data and of the boundary term from Eqs. (21)—(22)
of [GS1]. The latter involves the expression

Therefore

ωi-(va'ω)vai
) ωiaί = — .

*(t,x) = *(t,x)-Σe-r ί \-^^fM(y,v)dvdSy, (28)
a t |3,_x | = ί L -f- Va CD| 3 |

where

^ (29)
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Now E* is easy to estimate. Both of its terms have supports in\t — \x\\^k because
fa0(y,v),E0(y) and B0(y) have supports in \y\ :g k. Furthermore, both of them have
a factor ί"1. Therefore we can replace t~ι by (ί + |x | -f 2fc)~1, and we can insert
arbitrary factors of t — |x | + 2/c. Hence

As for the main terms £ f and E$, we note that the kernels are bounded because
\v\ ̂  β (by Theorem 2) and | ω | = 1. Thus

7

^ cε0 j (ί — |x — y| + ly

where φ = l for |_y| < t — \x — y\ + k and φ = 0 for \y\ > t — |x — y| + /c, since
/α(τ,)>5u) = 0 f° r | ^ | > τ + fc and j/ α (τ,x, ι ; ) r f i ;^c | | / 0 | | 0 ( l + τ ) ~ 3 ̂ c ε o (τ-h | j; | +2/c)~ 3

by Lemma 4. Similarly

« \y-x\St

Scεo\\K\\o

ly - x| £ i

By Lemma 7 below, we can reduce these triple integrals to double integrals:

|£?(t,x)| ^ — f f (τ + λ + 2kΓ3λdλ-^-, (30)
r oα t — τ

cp II KII f b

|£ | ( t ,x) | g °" "°-J}(τ + A + 2fe)" 4 (τ-λ + 2kyιλψdλdτ, (31)

where φ = 0 for A>τ + /c, α = |r — ί + τ |, fc = r + t — τ, r = |x|,A = 13;| and τ = ί —
|x-.y | . It suffices to show that |£ί(ί ,x) | ^ cεo(ί + r + 2fe)~1(ί - r + 2/c)-1 and
£ | ( ί , x ) | ^ c ε o | | K | | o ( ί + r + 2/c)~1(ί-r + 2/c)~\ plus the same estimates for

B*(t,x), which are very similar.
We continue our analysis with the integral in (31). We estimate (τ + 1

and (τ — λ + 2k)~1φ^k~ί. Then the integral in (31) is less than

τ + λ + 2/c) ^αλ dτ = - J —-y.

4r ( r 7 + ί + 2/c
= —- —y- -—y ατ

/c o \t — r + 2/c) (ί H- r + 2/c)

2 j. ( ί - τ ) ( 2 r + 2τ + 4/c)rfτ
+ fe(t J ) + (2τ + r - ί +~2k)2(ί + r + 2/c)2'

The first integral is at most cr(t — r + 2/c) ~ 1(t + r + 2fe)~ι. In the second one, we
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use t — τ^r and 2r + 2τ + 4k^2(t + r + 2fc)5 so we get at most

cr j. dτ cr °° dτ

t + r + 2/c(t

 }

r] (2τ + r - t + 2/c)2 ~ ί + r + 2/c(t

 J , (τ + 2/c)2'

which is also less than cr(t — r + 2k)~x(t + r + 2k)~1, since r ^t + k.
The integral in (30) is also broken up at τ = (ί — r)+. For τ 5Ξ (ί — r) +, we write

λ^Lb = r-\-t — τ ^ 2 ( ί — τ) in order to reduce it to one of the integrals already
estimated. On the other hand, for τ ^ (t — r)+, we estimate λ :g τ + Λ + 2/c to obtain

1 « dλdτ Λ ί. dτ

since r^t + k. Thus both integrals in (30) and (31) are O(r(ί + r + 2/c) - 1 (ί-
r + 2k)~1). This establishes the required estimates for £* and essentially completes
the proof of Lemma 6 since the estimates for B* are identical.

Indeed, from Theorem 3 of [GS1], we have (for a single species, say) the
representation

B* = B* + Bt + Bξ, (32)

where £* is given by a formula similar to (28) (and hence depends only on the
data), and

Λ ' — x

Again the kernels appearing here are bounded because | υ \ ̂  β by Theorem 2 and
|ω | = 1. Hence B% and B$ too are estimable exactly as in (30) and (31).

Lemma 7. For any continuous function g(τ9λ) of two real variables, and h(σ) of one
real variable,

J g(t — \x — y\,\y\)h(\x — y\)dy = -—-J J g(τ,λ)λdλ(t — τ)h(t — τ)dτ,

where the integration on the left is over a ball in U3 and c is an absolute constant.

Proof. The left side can be written as

} f g(τ,\y\)dSyh(t-τ)dτ.

So it suffices to show

J ^ ( τ , l y l ) ^ ^ 2 π ( t ~ τ ) | X ' 7 X g(τ,λ)λdλ.
|v-vl = ί-τ X\ llxl-ί + τl
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That is, for any function /,

2πσ | x | + σ

ί f(\y\)dsy = — I λf(λ)dλ.
\x-y\ = σ \X\ \\x\-σ\

By symmetry we may take x = (0,0, r). Then

J f(\y\)dSy = σ2 J f(\x + σω\)dω
\y-x\ = σ \ω\ = ί

π

= 2πσ2 J s inφ/((r 2 + σ2 + 2rσcosφ)1/2)dφ.
o

Changing variables now by λ = (r2 + σ2 4- 2rσ cos φ) 1 / 2 , we obtain the desired result.

6. Derivatives of the Field

In this section we shall estimate || K* || x. Lemma 8 (below) together with Lemma 6
will provide the bound

\\κ*\\
Therefore if \\K\\ ^ ε, if ε is sufficiently small for the validity of the previous
estimates, if ε < 1/2 and if ε0 < ε/(2c), then || i£* || < ε. As remarked earlier, this will
prove Theorem 3 and therefore Theorem 1.

Lemma 8. There is a constant c such that

Proof. We differentiate the representation formula (27) for E*, repeating the
technique of [GS1]. Thus the derivative d/dxk of the zth component of £* is

d υ ^ ( 3 3 )

integrated over |y — x\ ^ t and over all ueR3. The derivative dk is broken into T7

and S components as before. Each integration by parts in the tangential variables
Tj brings in a term at the base t = 0 of the cone. Repeating Theorem 4 of [GS1]
with a bit simpler notation, we write the result as

3kE*' = Az + Aw + Λττ + Aτs + Asτ + Ass. (34)

The various terms are given as follows. (For notational simplicity, we drop the
subscripts α and take mα = ea = 1.)

dy

2 J J v^x^i wJ \^ ' w ' x *-*)J ^ w I
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s s J J ' \y-χ\9

where the kernels a, b and c are given explicitly in [GSl] and the integration ranges
over \y — x| g t. The expression Az is the sum of all the terms involving the initial
data, namely,

Az = dkEf + ^j J d{ω9ύ)f0{y9υ)dυdSy + -$ J e{ω9ύ)Sf{09y9υ)dvdSy9

(35)

where d and ^ are kernels which once again are bounded for bounded υ. These
integrals come from the passage from E% to Aττ, and from £ | to Asτ, respectively.
However in the passage from E* to Aττ we also pick up the term

Aw= -$d(ω9ύ)f(t9x9v)dυ9

because of the singularity \y — x\~2 at the vertex of the cone where y = x. Now
we shall estimate each term in (34).

The "vertex term" is estimated using Lemma 4 as

which is more than sufficient. The "base term" Az has several parts. One is ΰk$'\
which is an integral involving derivatives of Eo and Bo up to order two, obtained
by differentiating (29). Since the integration is on the sphere \y~x\ = t and since
\y\ g fc, it has support in \t — \x\\^k. Also, it is of the order Oit'1). Hence it is
O((t + I x I + 2k)"x (t - I x I + 2k)" 2 ) . The second part of Az is the derivative of the
second term in Ef given in (29). It is O(t~*) times an integral over \y — x\ = t, and
so is estimated in the same way as the first part. The integrals appearing in (35)
have the same general form. In the last term in (35) appears the expression
Sf(0,x,v)= —(E0 + VΛ Bo)'Vυfθ9 which once again has its support in
Therefore

The kernel a(ω, v) in Aττ is bounded because \v\^β. We break Aττ up into two
parts. The part over the "base" or "shell" 1 g \y — x\ g t is less than

- _ ιι r π Γ / u . i . . . . i , i . . i i Λ j Λ - 3 J

where a = \r — t + τ\, b = r + ί — τ and r = |x| as before, by Lemmas 4 and 7. The
last integral is estimated as follows. (Assume t > 2 or else the estimate is trivial.)
It is broken into the intervals [0,ί/2] and [ί/2, ί — 1]:
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' ^ 4 ' / " dλ
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= t2 i ί(λ + τ + 2k)2 τ = t2

2r

b-a

Λ

2k)(b + τ + 2k)

' 2(t-τ)
J

since r^

g c(ί + r + 2fc)~~2(ί - r + 2fc)"1r,

k. On the other hand,

ί/2 ί/2 α ί/2

+ log (ί/2)) g
(ί -h r + 2k)3

since r^t + k. This takes care of the "base" part of ATT.
Because of the singularity at y = x, we must use the fact that the kernel a(ω, v)

has zero average on |ω | = 1. Therefore the "tip" of Aττ, that is, the integral over
l y - x ] < 1, is

I
dv

We use the Mean Value Theorem to represent the difference, and then use Lemma 5.
We note that the integration ranges only over the set

rf(τ) = {v:\X(09τ9z9v)\^k for all ze[_x9y\),

where \_x,y] is the line segment joining x and y and where τ = t — \x — y\. By
Lemma 3, this set has diameter at most c/(τ + 2). Therefore the integral is bounded
by

which is more than sufficient for our purposes. This completes the estimation of ATT.
Next, Aτs -f Asτ is bounded by

where φ = 0 for λ > τ + /c, as we did several times before by the definition of || K | | 0

and by Lemmas 4 and 7. To estimate this integral, we note that (τ — λ +
2k)~1φ^k~1 and τ + λ + 2fc ^ τ + α + 2fc ^ ί — r + 2fc. So the integral is less than

λdλ dτ

by the previous estimate of the integral in (30).
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It remains to estimate Ass. To do this, we decompose it into five terms following
Eq. (66) of [GS1] as

4πAss = 1 + 11 + 111 + IV + IV".

The first is

dvdy
ι\y-x\

\y-x

λdλdτ

by Lemmas 2, 4 and 7 again. The second is

_ dvdy

\y-χ

The integral in I is less than the integral in II, so it suffices to estimate the latter.
In the integral in II we replace log (τ + λ H- 2k) by log (t -h r + 2k) and λ by τ + λ + 2k
in order to obtain

dβ

= clog(ί + r + 2fc){(|ί - r| + 2k)~2 - (ί + r + 2fc) 2}.

We replace |ί — r\ by ί — r to obtain at most

4cr(t + 2k){t - r + 2fc)~2(ί + r + 2k)~2 log(ί + r + 2k)

^ 4cr(ί - r + 2k)~2(ί + r -f 2k)" 1 log(ί + r -f 2k),

as desired.
The third term in Ass is

= J J C * J J K

 ( J , _ X | '

where όJk = (δJk- Vjϋk)(\ + | u | 2 ) " 1/2c(α>, t)) is bounded. Hence III is estimated
exactly as II was. Next, the fourth term

vω

dvdy

-x\

,2 dy

\y-x\
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is estimated exactly as I was. The fifth term is

IV" =
l + ύ ω] \y-x\

As above, the integration ranges over the ball \y — x\^t. We integrate by parts
in Th obtaining on the one hand the term on \y — x\ = ί,

-jJ j cjkωj(l + ί̂  ω ) - 1 ^ + v A Bo)fodvdSy,
1 \y-χ\ = t

which is treated just like the integrals in Λz. On the other hand, we also obtain
terms bounded by

Of these resulting integrals, the first one is estimated just as II was, and the second
one is estimated just as Aτs + Asτ was. This completes the proof of Lemma 8.

7. The Non-Relativistic Model

The same techniques provide global solutions of the non-relativistic Vlasov-
Maxwell system (VM). The system VM is the same as RVM except that va is
replaced by υ/ma. The analogue of Theorem 1 is the following, where c is the speed
of light.

Theorem 4. For each k > 0 and c> I > 0, there exist constants εo>0 and c> β > 0
such that iffa0(x, v) are non-negative Cι functions with supports in {\x\ g /c, \v\ g /},
if E0(x) and B0(x) are C2 functions with supports in {\x\^k} which satisfy the
required constraints (5), and if the data satisfy (6), then there exists a unique C1

solution of'VM for all t,x,υ with the given initial data such that (7) holds.
Since the details are almost identical to those of Theorem 1, we sketch the

proofs of Lemmas 1 and 2 only. For simplicity we drop the subscript α and take
c = 1, mα = 1. Now / < 1, so we have P(0) < 1, where P(t) is defined in Sect. 3 (the
supremum is taken over \x\^K\υ\^l there). On the support of /(ί,x,v), then,
\X(s,t9x,v)\^k + sP(t), so that

5 - \X(s, t,x, v)\ + 2k ^ k + (1 - P(t))s ^ (1 - P(t))(k + s),

which is the analogue of Lemma 1. As in Lemma 2, we can write

V(0,t,x9υ)-v\^]\E(s,X(s)) + V(s) A B(S,X(S))\ds
o

ί\\K\\0(l + P(t))\(k + sΓ2(l -
0

which leads to the inequality
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Since the function x-»(l + x)(l — x)'1 is positive for 0 ^ x < 1, we conclude that
if / < jS < 1 and \\K\\0 is sufficiently small (depending on /, k and /}), then P(ί) < β
for all ί.
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