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Abstract. Witten’s gauge fields are interpreted as motions on an infinite-
dimensional Grassmann manifold. Unlike the case of self-dual Yang-Mills
equations in Takasaki’s work, the initial data must satisfy a system of
differential equations since Witten’s equations comprise a pair of spectral
parameters. Solutions corresponding to (anti-) self-dual Yang-Mills fields are
characterized in the space of initial data and in application, some Yang-Mills
fields which are not self-dual, anti-self-dual nor abelian can be constructed.

0. Introduction

Consider a gauge field V in the eight-dimensional complex space €* satisfying

3 3
[V}'u’VYV]:(1/2) z Z Su\'aﬂ[vywvyﬁ] s

=0 f=0

3 3
[Vz“sVz\,]:(_1/2) Z Z Suvaﬂ[vzaa Vz;y] s

x=0 g=0
[V, V.1=0, (tv=0,1,2,3), (0.1)

where (y,2)= Vo, V1 V2, V3. 20, 21, 22, 23) are coordinates of C8, Vy. and V, are
covariant derivatives, and ¢,,,; denotes the totally antisymmetric tensor such that
o123 =1.

Setx=(y+z)/2, w=(y —2z)/2. Witten [9] pointed out that Eq. (0.1) imply the full
Yang-Mills equations

3
Z Wipos Vs Vi, J1=0 (v=0,1,2,3) 0.2)
u=0

on the diagonal subspace 4 = {(», z) € €C*|w =0}, and further, that a gauge field on 4
satisfies (0.2) if and only if it can be extended to a neighborhood of 4 consistently to
(0.1) mod (wg, wy, wy, w3)*. Here (wo, wy, w,, w3)? denotes the square of the ideal
generated by wg, wy, w,, and wy.
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In this paper, we rewrite (0.1) in the language of Sato’s soliton theory [4, 5] and
investigate the structure of the solution space of (0.1) on the analogy of Takasaki’s
work on self-dual Yang-Mills fields [7, 8]: we solve an initial-value problem of
differential equations with respect to functions with values in an infinite-dimen-
sional Grassmann manifold (see Theorem 2).

In our case, there appear a pair of spectral parameters A, 4,. The main
difference from the case of one spectral parameter is that the initial data must satisfy
asystem of differential equations if the problem is solvable (see Proposition 5 and cf.
Takasaki [7, 8]).

Through the restriction to the diagonal space 4, the totality of gauge fields
satisfying (0.1) can be regarded as a class of Yang-Mills fields including all the self-
dual or anti-self-dual fields. From our point of view, it is interesting to characterize
self-dual or anti-self-dual fields in terms of initial data. In fact, a simple
characterization is obtained (see Sect. 3) and in application, we shall construct an
example of Yang-Mills fields which are neither self-dual nor anti-self-dual (sec
Sect. 4).

The announcement of our results [6] was already published in 1984. Ueno
treated the same problem independently and gave it a cohomological formulation
(unpublished).

Notations. We shall use the following standard notations: IN denotes the set of non-
negative integers. Z denotes the set of integers. € denotes the complex number field.
M, (C)denotes the total matrix algebra. 1 denotes the unit matrix of size n x n. Let R
be aring. Then we denote by R [x] the ring of polynomials of x with coefficients in R,
and denote by R{[[x]] the ring of formal power series of x with coefficients in R.

1. Linearization

Set x4 =y0+l/——1)’1, hi=y2+ |/ —1y3, X12=), —]/1_1)’3, lip= —yo“'[/j{yla

Xo1=2¢ +l/—‘1zl, h1=2Z,— —123, Xo2 =2y +1/j23, and = —2y +1/j121 .
Then, introducing parameters 4,, 4,, we can rewrite (0.1) as follows:
=AWV + Vi = AV s+ Vi J=0  (a,b,c,d=1,2) . (1.1)

Throughout this paper we discuss in the category of formal power series.
Hence the gauge potentials 4,,,, 4,,, belong to the ring of formal power series
with matrix coefficients M,(C)[[z, x]], where V,,,=0,,, +4.,,» Vs, =0x0 + Axess
t=(t11, t12, a1, t22), and x=(X11, X12, Xa1, X22)-

Now we “fix”’ the gauge, namely, restrict the freedom of gauge so that 4, , =0
for a,b=1,2. (The gauge-fixing is analogous to that of Chau et al. [1] and
Pohlmeyer [3] for self-dual Yang-Mills equations.) Then (1.1) reads

[—4a0xy+ Vi » —A0x Vi 1=0 (a,b,c,d=1,2) . (1.2)
More precisely, we have

Proposition 1. For any V satisfying (0.1),~ there exists a gauge transformation
VoV=g Vg,geMJCT)[[t,x]), such that V. ,=g~ ' V,,9=0.,, for a,b=1,2.
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Proof. Equations (1.1) imply that [V, ,, V. ]=0 for a,b,c,d=1,2, which are the
integrability conditions for the linear equations

<6 + A, b>g 0 (a,bh=1,2). (1.3)
axal:v ¢

Thus for any 4, , € M,(C) [[¢, x]] (a, b=1,2) satisfying (1.1) there exists a solution
g= Y YiuXiix{2x5x5, of (1.3) such that g;3,€ M,(C)[[r, x]] and goooo=1.

i,j,k,120

This g is invertible in M,(C)[[z,x]] and satisfies g~ V,,,g=9 " (0s,,+4,,,)d

ég
=g‘1gﬁxub+ef‘<aY +Ax@g) Oy qed.
ab

We shall investigate the structure of solutions to Eq. (1.2). First we note that the
system of Eq. (1.2) is nothing but the integrability condition for the linear equations,
(—240x,, +0:, + A4, )w(A)=0 (a,b=1,2) . (1.4)

Proposition 2. 4, , € M, (C) [[¢, x]](a, b=1, 2) are solutions of (1.2) if and only if there

exists a solution w(2)= Y wyk ‘A7 of (1.4) such that woo=1, namely,
i, j20

wi € M (C) [[1, x]] which satisfy woo=1, w;;=0ifi<0 or j<0, and
a»"lwa’l J (al1b+At1b)Wij:0 ’ (]5)
ar’CZle jt1 +(at2b +At2b) le >
forany i.jeZ, b=1,2.
Proof of sufficiency. Suppose that there exists w(/l)z' wijdy Ay 7 satisfying
(1.4) such that woo=1. Equations (1.4) imply that hjz0
[—=2aCry +Vieps =4y, AV, IWw(A)=0 (a,b,c,d=1,2) . (1.6)

Note that the commutator is a differential operator of order 0, namely, an element
of M,(C) [[z, x]]. Multiplying both sides of Egs. (1.6) by w(4) ™! from the right, we
obtain (1.2).

Proof of necessity. For any i,je Z, consider a system of four equations
(Ey) = 0xyWij+ (0, + A4, )Wi-1,;=0
_axzbwij+(at2b+At2b)Wi,j"l:O (b:192) s

which is a part of the system of Egs. (1.5). The integrability condition for the
equations (£;;) with w;; as the unknown function is as follows:

(axu 12 53617 t11)wl 1 J_O (173)
(axn 122 xzz 121)wt ji—1 _O (17b)
ax;b Vtzdwlj 1 deVIflle 1]_0 (b d 1 2) (170)

Now we define woo =1 and w;;=0 for any i, j, e Z such that i <0 or j<0. Then
(E3;) 1s trivially satisfied for i=;=0 and for any i, je Z such that i <0 or j<0. For



158 N. Suzuki

i,je N, we define w;; inductively. Assume that {w;;}; en,,+,<m are defined to satisfy
(£;;) for any i, je N such that i +/<m. (This assumption actually holds for m=0.)
We shall prove that for any i,je N such that i+j=m+1, therc exists w;; which
satisfics (£;;). To prove this, it is sufficient to prove the integrability conditions
(1.7a), (1.7b) and (1.7c).

Proof of (1.7a). (i) Equations (1.2) imply [V,,,, 0x,,1—[Vi,,> Cx,,1=0.

t12°

(i) By the assumption, w;_; ; satisfies (£;_, ;). Especially,

6 M)i—l,j:Vt;bn)i-Z,j (b:1,2) .

X1b

(i) Equations (1.2) imply {V;,,.V;,,1=0.

It follows from (i), (ii), and (iii) that
(Exu ti2 Xlz tu)nl 11_'(171‘12 X1t Vtuonz)wi‘l,j

( ti2 111 Vlu le)Ml 2.
[Vnz’ Vl“] i—2.j
=0 .
Equation (1.7b) can be derived in the same way.
Proof of (1.7¢).
(i) Equations (1.2) imply [0,,,, Vi, J=[0x, 45 V3,1 =0.

(i) By the assumption, w; ;_; satisfies (E; ;_;) and w;_, ; satisfies (£;_; ;).
Especially, we obtain

A )
OxyW ij-1= =V, Wi- 1,j-1 » OxzaWi-1,i=ViyaWi-1,j-1 -

(iii) Equations (1.2) imply [V, ,, V;,,]=0.
It follows from (i), (i1), and (ii1) that

axlb VtZdM)i»j_l “Cxya Vhbwi—l iT VtZdo\lb i,j—1 _thb(’:-\zdwi—Lj
VlZthlbwl_I»j 1 VlleIzdni*l.j—l
=V, l7:,},]Wi—1,j—1

=0 .

Thus we can obtain {w;;}, en satistying (1.5) inductively (more precisely, by
using Zorn’s lemma). q.e.d.

When i=;=0, (1.5) reads
“axle\’l,o"i‘Allb:O 5 ~ax2b}V0.1 +A12b:0 . (]8)
Therefore, to solve Eqgs. (1.2), it is sufficient to solve the equations
— 0y, Wit1,jF 0y, Wij+(0x,, Wi 0)Wi;=0
—@x%wu+1 +aubwl’j+(6x2bW0‘1)Wij=0 (19)
(i,jeZ,b=1,2).
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More precisely, we have

Proposition 3. The relations (1.8) give a one-to-one correspondence between
(1) solutions A=(A,,)ap=1. to (1.2)
and
(i1) equivalence classes of solutions w(i)= z wijig 4yl to (1.9) such that

i,j20
woo =1 modulo right-multiplication by v(A)= Y wvii /57 satisfving veo=1
and i.jz0

(= s+ )02 =0 for ab=1,2 . (1.10)
Proof. A surjection {solutions w(4) of (1.9) such that wy,=1}—{solutions 4 of

(1.2)} is established by Proposition 2. Now let w(4) and w(4) be solutions of (1.9)
both corresponding to 4=(A,,,)ap=1.2. Set v(4)=w(4L) "Ww(4). Then we have

tab
(—=/4Cryy + 0 V(A =((—AeOxyy + 01, )W(A) ™ M5 (A)

+ W(;L) ! ( _)"aaxab + (}tab)w()”)
=w(i) A, W(A)—w(h) T 4, W(h)
=0 .

=w(A) "W () e M, (O) [[t, x]1{[A; 1, A7 1] and vge=1.

> A2

Conversely, let v(2)e M, (C) [[t, x]1[[41 1, 45 1]) be a solution of (1.10) such
that vge=1, and let w(A)e M (C)[[t,x]1[[A1 ", 4; *]] be a solution of (1.9)
corresponding to A such that wyo=1. Set W(l)=w(4)v(4). Then we obtain
w(i)e My(©) [[t, 11 {[41 ', 42 '], woo =1, and

(2l 00 VWD) = (— gy + 0ryy) (W(AIV(2))
= {(~ iy + )WV ()
Ay, (e ()
= A, ()

Namely, Ww(2) is a solution of (1.9) corresponding to 4. q.e.d.

It w ()) WA e M, (O [[t. x4 Y 221 and  woo=Weo=1, then v(2)
y,
[

2. Motions on an Infinite-Dimensional Grassmann Manifold

Let Z=ZXxZ, N=NxN, N°=Z\_N and R be a ring with a unity 1. For any
w(i)= Y wyi A 'eR[[A7 A4, ']] such that woe=1 and w;;=0 for
(.j)eZ ..
(1,j)e N¢, define a matrix of infinite size &=({i)q, j). ez k. nene Dy the product of
matrices (Wi - )i jyeziknene  and Wik ;- ez, kpenes 1.€. by it
= Y Wi, j-wWy-wn-i» where wf are coefficients of w™', ie w!
(g,heN©c ) ) o
= whi Ay 7. Then we obtain ¢f=066/1 if (i,j)e N, =0 if i<k or
i 2 k1= Ok J

i.j)e”
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j<l and A,£=¢C, (a=1,2), where
A4 (5li+léliﬂ)(i,j)ez,(k,l)ela
A, :(‘Sliélj+ lﬂ)(i,j)eZ,(k,l)eZ s
L

C =&

Vi R
Crt i, jpene, nene s

C= (5H+ l)u,j)eNv,(k,z)ch .

Here 0f denotes Kronecker’s delta. Furthermore, the converse is true:

Proposition 4. The above definition of £ gives a one-to-one correspondence between

) w(D)eR[[A Y, A5 Y]] such that woo=1,
and
i) E=(EWjrez. wryene CHE R, satisfying the following conditions :

=011 if Gj)eN* (2.1a)
EH=0 if i<k=0 or j<I=0, (2.1b)
N C=EC , A X=E(C, for some  N€x N-matrices C;,C, . (2.1c)

Here the inverse correspondence E—w(2) is defined by w, j=—&%0 ;.

Proof.

1) Proof of (2.1b). If i<k, then wi , ; ,w, 4 -, =0 for any g,heZ because
i—g<0 or gy—k<0 holds for any geZ. If j</, then w¥ , ; ywy—4 s =0 for
any ¢g,heZ because j—h<0 or h—I/<0 holds for any heZ. Therefore
=Y wk,jwWy—pn—1=0if i<k orj<l.

(g,h)eN¢

2) Proof of (2.1a). By the definition of wf, we obtain Y WwEWy

=64681. If (i,j)e N¢, i=k, and j=I, then itk=g,jt1=h
cif "
= Z Wi-g,j—nWg—k,h—1
(g.h)eN¢e
! Jj
— *
=) X W i-nWe-knt
g=k h=1
— *
- Woihi Woana
g1tg2=i—khy+thy=j—1
=857k
=6L0/1 .

3) PVOOf O‘f (21(:) We denote A=(A1,A2), éo=(6,25{1])“,1')52'(1(’1)6]\1:, and
Aoy ="¢ A& for a=1,2. Note that A,&y=¢gAq—) for a=1,2, and

S (¥
¢= (”’i—k,j— 1)(i,j)ez.(k,z)sNC(Wi—k,j—1)(i,j)eNC,(k,z)eNc

=w(A) & Eow () & =w(A) w(A) -
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where we denote w(A)-,="¢,w(A4)&. Then we obtain
Al =Aw(A) " eow(A) =y =w(A) " A Eow(A) -y
=w(A) oAy éow (M) & =w(A)  éow(A) -, Co=EC, ,
where C,={w(A)-)} " Ay w(A) -,
4) Mapping (1)—(ii)—(1) is identity. In fact, if w(1)—>E&—-W(A), then
W= — %7

ij= —J

E3
= Z Wy, —nWg+ih+j
(g.h)eN<

Il

*
Z Wy, —nWytih+j
(g,h)eN

:‘vij .

5) Mapping (ii)—>(1)—(ii) is identity. A,E=¢Cy means &)= ) ELCH.
g,h)eN¢

which reads &1/ = C¥, when (i, ) € N¢ because &}, = 8.0 1 for (l,])GNC Similarly,
Ay E=EC, implies Ci, = 4™ for (i), (k,1) e N°. Therefore, if A;&=¢C; and A,¢
=¢C, for some N°¢x N”-mamces C,,C,, then
j
= Z g{foH P=pd i+ Z Eo4 Wl
K=0

(g.h)eNe

4 (22)
Geltt= Y Gderrtt =g+ ) Gl gl
(g,h)eN¢ g=0

This means that for any meN, {éA,ﬁ.{}(,»,j)eN,(k_,)ENc,i.+j:,,,.+1 are determ_ined by
1Cku(1 Deneneneitjem- 1hus E=(Ed) jez. (enene 1 uniquely determined by
(0 b eve. provided that ¢ satisfies (2.1a), (2.1b), and (2 Ic). Now we set
Eow(i)-E Then both & and € satisfy (2.1a), (2.1b), (2.1c)and £’ = —w_, _, =&,
from which ¢=7 follows. q.e.d.

Remark. The matrix ¢ can be regarded as an N°-frame in the vector space R?,
which represents a point in an infinite-dimensional Grassmann manifold. Then
E=(ED 0 hen. w.nene s regarded as a local coordinate system for the Grassmann
manifold. Equations (2.1b) and (2.1¢) are the defining equations for the relevant
submanifold.

Now we rewrite Egs. (1.9):

Theorem 1. Through the correspondence w(i) <&, Eqs. (1.9) are equivalent to the
existence of N¢x N-matrices By, (a,b=1,2) such that

(_Aagxab_’_atab)é:éBab (a’b=1>2) . (23)
Here By, (a,b=1,2) are uniquely determined by & if they exist, and (2.3) can be
regarded as non-linear equations for & as follows:
=0y, Gt 0, Gl = = Y EM 0L, 80
hz0 (2.4)
= Sl T 0, Gl = — Y Epl0,,, 880 (b=1,2) .

920
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Proof.
1) Proof that (1.9) implies (2.3).
(= Aulyy, +Cr)E=(—Auly,, +00,,) (W(A) 1" Eow () o)
= {(—=Aulsy, +00) (W)™ Ew(A) -
+w(A) N =A,0,,,+0ry) Eow(A) -
=w(A) A, Eow(A) o)+ w(A) (= A0, +0ry) Eow(A) -,
=w(A) N(=A,0y,, + V) Eow(A) -,
=w(A) " (= Ay 0+ Vi) W(A) )
=w(A4) blfoW(A)(—)Bab:éBab )
where B, = {w(/l)(_ = A=) Cry F Vi) W(A) -, for any a,b=1,2.
2) Proof that (2.3) implies (2.4). In terms of entries, the equation ( — A, ¢, +0,,,) ¢
= ¢By, can be rewritten as

] Zi+1,j Jal Zij zij h 5
—Cxyp Gkt Oy, Q= Z Cah Bl (2.5)
(g.h)eN©

which reads

A o

) sitlj A 2if  Rij
=03,k 10, Gkl = By

when (i, /) e N¢. Substituting this into (2.5), we obtain

o) cit1.j ] 2ij [ zg+1.h ) zgh
—Ox,p Skt 0, Ch = Z a( Oy " 01, S
(g,h)eN®
_ ij Oh
= — Z ¢ n0xy, Ch
h=0

because &' =0¢6{1 for (g, h) e N¢. The second equation of (2.4) can be derived in

the same way.

3) Proof that (2.4) implies (1.9). When i=j=0, Egs. (2.4) read

A 210, A £00_ _ 20,0 00
— xSkl + 00,60 = —€21,000, 6k
A 201, A 200 £0,0 A  £00
~ Oy Skl T 000, Sk’ = — €021 015, Sk -
Substituting &’ = —w; -1 —wiow 1, = —w_ -y, and Y= —wop o

—w§ w_y, -, into the above, we obtain
—Oay Wik =1+ 0, Wk 1+ (O, Wi0) Wi -1 =0
— Oy Wk -1+ O, Wy, 1+ (g, Wo )W -k, 1=
forany (k,/)e N¢. Thus (2.4) implies all of Egs. (1.9) except some trivial ones. g.e.d.

To investigate the structure of the solution space of (2.2), we consider an initial-
value problem with respect to the subspace ¢ =0. Unlike the case of self-dual Yang-
Mills equations, we cannot solve it for arbitrary data; the data for which it is
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solvable must satisfy a system of differential equations. In fact, we have
Proposition 5. The system of equations (2.1a), (2.1b), (2.1c), and (2.3) implies that
if k=0 and p+q>i—k , then 0F,08,51=0 ((i.j)eZ, (k.[)e N°) ,
if (=20 and p+qg>j—I, then 0%, 0%, =0 ((i,j)eZ, (k,[)e N°) .
(2.6)

Under the conditions (2.1a), (2.1b), and (2.1c), Egs. (2.6) are equivalent to the
Jfollowing equations :

If p+g=i+1, then 02, 08,E9=0, (p,q,i=0,1<0)

X1t

and

if prg=j+1, then 01,0%,8d=0 ., (p.¢.j=0,k<0) (2.7
Proof.
1) It is obvious that (2.6) implies (2.7)

2) Proof that (2.4) implies (2.6). It follows from (2.1b) that £ =0 for k >0. Thus
the first equation of (2.4) reads

— 0y it 00,6 =0 (2.8)

for £>0. Thanks to this formula, the first equation of (2.6) can be proved by
induction starting from the case i —k= —1 which is trivial. We cannot use the
formula when k =0, but Egs. (2.6) also hold for k=0 because &= &% for any
k=0. The second equation of (2.6) can be derived similarly.

3) Proof'that (2.7) implies (2.6). We shall prove the first equation only. (The second
one can be proved similarly.) Since &} = & 7% for k =0, it is sufficient to show that

if p+g>i, then 07 04,&5=0 . (2.9)

We shall prove this by induction on j. The case j=01s just (2.7). Assume that (2.9)
holds for any j<m. When k=0, the second equation of (2.2) reads

flmﬂ & Z g-1fgl (‘)'z" 1+ Z fo ey .

Differentiating both sides, we obtain
axnaglz 1”1+1 afllaglzié:'ln—l
i p 4 D
r s £l mA
+ Z Z z av’lgll 5"12 0 "gl ;11 xlzégl N
g=0 r=0 s=0 r

If p+g>i, then 02,04, &6~ 1 =0 and either 62,704 59" =0 or 0%, ,05,, 580 =
holds by the assumption of induction. Thus (2.9) holds for j=m+1. q.ed.

Conversely, for any initial datum satisfying (2.6) (or (2.7)) we can solve the
initial-value problem:
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Theorem 2. For any O =) jez.w.nenes E8 7 e M(C) [[x]] satisfying (2.1a),
(2.1b), (2.1¢), and (2.6) (or (2 7)), there exists a unique solution ¢ to the initial-value

problem, i.e. & =) jyez, nene E € Mu(C) [[t, x]] satisfying (2.1a), (2.1b), (2.1¢c),
(2.3), and &l—o=E©). The solution & has the following form:

E=2E), i
where
é:exp (z Z tlleﬂaxab> 5(0) ’ (210b)
a=1 b=1
e S
C:<%(+>> o ST =G jene wpene
; (2.10c)
2 = @i pen.tunenc -
Proof.

Proof of the uniqueness. Set

W(A):' Wi (A) 11ty 15, 13,

i, j,k, 1=

<.
=)

and

()= g —h
Wijr(4) = Wi ijki 1 Aa
420

Then (1.9) are recursion formulae for w;(4):
(1+1)W1+1}k1(}) ) axllwl]kl(/t)

1
Z (6x11WlO;i—p,j—q.k~r,l—s) qurs()*)
s =0

etc. Thus {w;u,(4)}: jx120 are uniquely determined by woooo(4) if they exist. This
completes the proof because of the one-to-one correspondence w(A)<¢ in
Proposition 4.

Proof of the solution formulae
1) Let

A= {A=(A) j)ene. @nexel Aif € M,(C) [[x]], there exists an integer m such that A}
=0ifi—k<morj—I<m},

F ={E=(EW . jyer. wnenelEie M () [[x]], there exists an integer m such that &
=0ili—kZmor j—I<mj,

and 7 {z Gillée }

A 1s a C-algebra on which A, -,eZ(a¢=1,2) and 0., (a,b=1,2) act. F is a right
A-module with #-action defmed by multiplication as matrices. A (a—l 2) and
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Oy, (@,b=1,2) act on Z from the left. Since £©@ e 7,
. N »
é'—: 2 —‘<Z Z tabAaaxab> é(o)
p;oP! a=1b=1

is well-defined as an element of # [[¢]].
The following proposition is important because it means that the system of Egs.
(2.1¢) and (2.3) defines a motion on an infinite-dimensional Grassmann manifold:

Proposition 6. The system of equations (2.1¢) and (2.3) is invariant under change of
frame : let E€ F[[t]) and Cy, By R[[t]]) (a, b=1.2) satisfy (2.1c) and (2.3). For any
invertible element Pe R ([t]], set E'=E(P, Cj=P 'C,P, and Byy=P " (B,—C,0y,,
+0,,,) P for a,b=1,2. Then &', C,, and By, (a,b=1,2) also satisfy (2.1c) and (2.3).

Proof. The following calculation proves the proposition:
N &' =N EP=CCP=EPP T CP=C"Ch(a=1,2) ,
( —Aaaxab + arab) ¢'=( _A(laxab + atab) (<P)

=((—4,0,,,+0,,)5)P—-A,0,,P+E0,, P
=By P—CC05,, P+C0,,, P
=C(Bsp—C, aXab + (}tab) P
=CPP (B —Cols,,+01,,) P
=¢'B'ypla,b=1,2) . qe.d.

2) In terms of entries, the definition of & can be written in the following form:

p.420
2.11)
Since ¢©@ satisfies (2.6), we obtain
=0 if i<k=0 or j</=0 . (2.12)
3) It follows immediately from the definition of & that
(= A4y, +0,)E=0 (a,b=1,2) . (2.13)
4) There exist C,, C,e Z[[t]] such that
N,E=E8C(a=1,2) . (2.14)

This can be proved as follows: let w@(1)«<¢&@ through the correspon-
dence in Proposition 4. Then &@=wO(A) 1w O(A) ), where w®(A)_,
2 2
="Cow ()&, Set A=Ay -, Ay -), P(A)= Z Z lapAaCy,,» and P(A-)
2

a=1 b=1

2
= Y fwAe-Cy,. We note that A,ég=Eo Ay, for a=1,2 and hence that
a=1 b=1
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P(A)éy=CE0P(A( ). Then it follows from the definition of ¢ that

> 1 i -1z
E=3 o PWO)HEw () -

i20

L pay oy P(/l)’éoW‘O’(/l)
i20 j=0 (i=n!

L payworn e, y J,]—'P(A(_))fw(o)(/l)(_

S0 k! i=o
=exp [P(A)]WO(A) o exp [P(A )W), .
and that
A= Agexp [P O(A) ™ & exp [P(A- )W (A) -,

= exp [P (A) " Ay exp [P(A )W () -,

=2c, .
where  C,={exp [P(A_ )W (A) =)} Ay exp [P(A-)]w(A) ). The in-
vertibility — of  exp [P(A-)]wP(A) -, in  R[[t]] follows from the

fact  that  exp [P(A- )W (A1), -li= 0o=wA)_-, and that wO()_,
=W i~ jyene wnyene IS invertible in 2.

S) It follows from (2.13) and (2.14) that & is a solution of the system of (2.1¢) and
(2.3) for B, =0(a,b=1,2). c’?,)e%[[t]] follows from that e #[[t]], and E(,) is
invertible in  Z[[1]] because - )li=o=(5£/1)i jyenc.qnenc=1€#. Then
Proposition 6 says that ¢=C&(E_,) ' e Z [[t]] satisfies (2.1c) and (2.3). Equation
(2.1a) follows from the definition of &. Thus the last to prove is (2.1b). Let

Ry={AeR|Ajj=0 il i<k=0 or j<I=0},

={leF|E=0 if i<k=0 or j<I=0},
and

7/71[[1]]3{2 éitilfieyl} .
iz0

Then #, is a subring of # and #, is an #,-module. & is an element of Z [[¢]]
and &, is an invertible eclement of #,[[¢]] because of (2.12). Therefore
§=5(5(~))’1 € 71 [[t]]. This completes the proof of Theorem 2.

In summary, by choosing the proper frame, the time evolutions in the initial-
value problem can be regarded as evolutions defined by /linear differential
equations, and the solution space of (1.9) is faithfully parametrized by the solution
space of Eqgs. (2.6)[or (2.7)] in the subspace t=0.

3. Relation to the Yang-Mills Fields

First we describe the procedure for obtaining Yang-Mills potentials from any
solution of Egs. (1.9) (or (2.4)):
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Proposition 7. Given any solution of Eqs. (1.9) (or (2.4)), set
Ax0: ”(A112+Atzz): '—(ax;zwlo+axzzw01):amzéo—ol 0‘1’8,\-22681071 ’
Axx V 1(At12+At22) V 1(@Mzn10_}_636221"701)

~ A
= _l/—l(0x126—1,0+0-’62260,‘1) >
~ A ) 00 ol £00
sz:Atu +At21:6x11wlo+0x21W01 = _(Ox“§~1,0+(”x21€0,—1)

A=)/ 1Ay, = Ay,) =)/ =1 (@1, W10+ sy, Wor)
= =/ =10, €% 0+, E801)

Substitute
X11 = Xoq :x0+l/—1 X1, tyq =f22:l‘2 "“/-1,\'3 N

lip=1ly= *x0+1/——1.xl,x,2=121=x2~\/~1x3

into the above. Then A=(A,,, A, . Ax,, Ax,) gives a set of Yang-Mills potentials (i.e.
a solution of the system (0.2)).

Proposition 8. Let V and V' be gauge fields in C* satisfying (0.1). If V and V' are
gauge-equivalent as Yang-Mills fields in the diagonal subspace A, then they are gauge-
equivalent in C®.

Proof. 1f V and V' are gauge-equivalent as gauge fields on 4, there exists
9= g(x)e M, (C) [[xo, vl,xz,xs]] such that V, =g A gondforu=0,1,2,3. Set
V=g 'V'gin C* Then ¥ is gauge-equivalent top’ by definition and l7 =V, on4
for ©=0,1,2,3. It is sufficient to prove that ¥ and V are gauge- equ1valent

First we note that Egs. (0.1) are rewritten in terms of V, «, and ¥, as follows:

\\ 5 Z Z (1/2)8uvki ] s
k=0 A=0 (31)
[Vw,u Vw‘,] = [Vx,u va] (.u’ V-_—O, 17 27 3) .

Expanding ¥ with respect to w as

Vi,=0x,+ )y Az wr . AL =A% () e My (C) [[x0,x;. X2, x3]]

veN*
V=t Y AL A= AL ()€ M) [y 335
e N*

and substituting this into (2.1), we obtain

(OC‘[+1)A:\T€“ = 6):\,"4\?"“ “Z [Aﬁ,‘ﬁ Aﬁ ]
B

3 3
=+ Z Z (1/2)&‘,‘,(/(6%(14:/—6 rk Z Aa # Aﬂ

k=0 4=0
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(ocu+1)Aije“(ocv+1)Af‘v:e“= —Z [Af‘v“ﬁ,Aﬂ ]
B
+aqu;v_ava;y.+Z [Ag:II?Aﬁv]) s
B

where eq=(1,0,0,0), ¢, =(0,1,0,0), ¢,=(0,0,1,0), e3=(0,0,0,1)eN*. We may
3
assume without loss of generality that ), Ay, =0 for any oe N* by virtue of

n=0
gauge transformation. Then {4} },en¢ u—0,1.23 and {AZ }yent u=01,2,3 are re-
cursively and uniquely determined by {AS#}FOMJ. Finally, we prove the
existence of such gauge transformation. Let m be any positive integer and let
j
m=1—=> grw* Then g¢g,'=) ( Y gf‘,,w"‘). Let A, —Adw,=9n' 4w, In

la}=m 20 \|a|=m

+gm (Ow,;gm) Then Awu _Af\t'“ Ifla] <m _1> Zviu:A\iu _(au + 1)g:’n+eu lfla| =

and hence Z A“f,H fu= Z A3, —mgny if || =m. Thus for any given 4, we define

n=0 n=0
{é]m =1- Y g,“nwa} inductively by
lal=m m=1
2 AI o Alywuzgl_lAwugl+g1‘1(avv“g1) s

gm= z Am= 1w, > Am,wu:gr:l‘lAm—1,w,,‘gm+gr;1(aw,_¢gm) s
and set =[] g;=9:19295.... q.ed.
jz1

For any self-dual Yang-Mills field V, i.e. covariant derivatives V, =0d,,
+ A, (x) satisfying

3 3
[qua va]:(1/2) Z z Euvaﬂ[mee ng] (Ms"=0,1,233) s
a=0 =0

define a gauge field ¥ on €® by

ﬁ’u:a "Z P A :Ax (y) 5
. e (3.2)
V., =¢.,+4., ., A.,=0 (up=0,1,2,3) .
Then we obtain
3
[ Yo )v (1/2) Z Z 8uvaﬁ[ Vo? ] )
2=0 =0
... 7.1=0, (3.3)

(7, Vo =0 (pv=0,1,23) ,

which imply Eqs. (0.1). Thus all the self-dual fields belong to the class of Yang-
Mills fields given by the restriction of Witten’s gauge fields (0.1). Note that the
trivial extension (3.2) is the unique one up to gauge equivalence by virtue of
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Proposition 8 and that Egs. (3.3) are gauge-invariant. Therefore, if any gauge
field V satisfies (0.1) and its restriction to the diagonal subspace 4 is self-dual,
then ¥ satisfies (3.3). Conversely, suppose that a gauge field ¥ satisfies (3.3). We
may assume that ,712“=0, because such a gauge can be taken by virtue of the
equatlons [ 20 Ve, 1=0 (,u,v—O 1,2,3). Then 0= [~ V. 1= [~ 0:]=—0.,4,,,
Le., A —A (v) Set A, —A () and V, =0, +A,, . Then we obtam Wi Vil

=(1/2) Z Z Cuvap Vs, Vil and W, =7, |,,—. Thus we have

2=0 =0

Proposition 9. The solutions V of (0.1) which correspond to self-dual or anti-self-dual
fields on A are characterized by

(7., V.]=0 (uv=0,1,2.3)
or
(7. 7] =0 (v=0,1,2.3) (3.4)

respectively. All the self-dual or anti-self-dual Yang-Mills fields can be obtained in this
way.

Rewriting (3.4) in terms of &, we obtain

Proposition 10. (i) A4 solution & to the system of Egs. (2.1a), (2.1b), (2.1c), and (2.3)
corresponds to a self-dual field on A if and only if it satisfies

5321g8 9l _B’Czlaxzzéo -1 _632258 (11 0 . (3‘5)

(i1) A solution ¢ to the system of Egs. (2.1a), (2.1b), (2.1c), and (2.3) corresponds
to an anti-self-dual field on A if and only if it satisfies

226270=0 . (3.6)

Proof. We prove (i) only. Noting that (x,;, X35, 21, t22) are the coordinates of
z-space, we can see that (3.4), the integrability in z-directions is equivalent to the
following system:

N2 VO O
Oxu axna

0.9 =0}

X12

[VX21’ szz]:[Vt21’ Vtzz]:() 5
Wisws Viry]=0 (a,6=1,2) .

The first two equations are trivial since we assume that the gauge field satisfies
(1.1). Substituting V,,, =0y,, and V,,,=0,,, —0.,, &6~ into the rest of them, we
obtain (3.5). qg.e.d.

X2b X2b

Remark. (3.5) or (3.6) is not stable under the time evolutions.
In fact, we have

Proposition 11. Suppose that ¢ satisfies the system of Egs. (2.1a), (2.1b), (2.1¢), and
(2.3) and corresponds to a self-dual (anti-self-dual) field on A. Then

if p+qzi—k, k=0, r+s>j—1 then 02 04,05 05,E0=0,
(if p+q>i—k,r+s=2j—1,1=0, then 07
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Under the conditions (2.1a), (2.1b), and (2.1¢), Egs. (3.7) are equivalent to the
following equations :

If p+q=i and r+s> —[, then 0F 34,05, 05,E0=0 .

(3.8
Ul p+q>—k and r+s=j, then 0P 04,05, 05,,E0d=0.) )

Proof. By using (2.8), the proposition can be reduced by induction to the case
p=g=i=k=0. (Note that &}f=¢l*/ if k=0.) Moreover, by using (2.2), it can
be reduced to the case j=0, i.e. 0;21(7§2sz, =01if r4+s5> —1, or 0y,,0%,,wo; =0 if
r+s>j. By using the second equation of (1.9), it can be reduced to the case j=1
which is nothing but (3.6). This completes the proof. (The latter half of the

statement can be proved as in Proposition 5.)

Theorem 3. A solution & to the system of Egs. (2.1a), (2.1b), (2.1c), and (2.3)
corresponds to a self- dual (anti-self-dual) field on A if and only if its initial datum E©
satisfies (3.7).

Proof. Sllppose that £© satisfies (3.7). Differentiating both sides of (2.11), we can
see that ¢ also satisfies (3.7):

If ptqzi—k k=0, r+s>j—l then 2,09, 07,05 5{=0 . (3.9)

Set
Ry ={A € R,|A satisfies 3.7)} ,
Fy=1{Ee 7,|¢ satisfies (3.7))
and

%[[l]]:{z éttiléie%} :
iz0

Then #; is a subring of #, and #; is an Z;-module. It follows from (3.9) that
e 7([t]], &), - e A5 [[1]]. Therefore ¢=E-Ete #4[[t]]. qed.

4. Special Solutions

Proposition 12. Let w(l)«— ¢ through the correspondence in Proposition 4,
WO =w (D)o and EO=E,2o. Suppose that w(i) satisfies (1.9). Then the
following (1), (i), (iii), and (iv) are equivalent one another for any p,qeIN:
() If i>p or j>q, then w9 =0.
(i) If i>p or j>q, then w;=0.
(i) If k< —p or < —q, then EDU =515/ for any (i,j)eZ.
(iv) If k< —p or l< —q, then E{=5}6]1 for any (i,j)e Z.

Proof.

Proofthat (ii) implies (iv). When (i, /) € N¢, (iv) is trivially satisfied because of (2.1a).

Therefore we assume that (i,j)e N. Il k< —p, then &= — 3wk, i yWy—rni
(g.h)eN

=0because gy —k= —k>pforg=0.1f/< —g, then &= — > Wi, wWy—in—1
(g,heN

=0 because 1 —/=/>¢q for h=0.
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Proof that (iv) implies (ii). If i>p or j> g, then w;;= — &%) _;
or —j< —q.

=0 because —i< —p
Equivalence of (i) to (iii). This can be proved similarly.
Equivalence of (iii) to (iv). It is obvious that (iv) implies (iii). We shall prove that (iii)
implies (1v). Let

Ry ={A€ R |A satisfies (2.6) and

Ad=0i0/1 if iZk<—p or jzI<-—gq},
Fy={le 7| satisfies (2.6) and
Ed=0L0j1 if iZk<-—p or j=I< —q)
and
F,lt] {)ZO c,tléeﬁ} .

Then %, is a subring of #; and 74 isa right A4-module on which 4,6, , (a,b=1,2)
act. If ¢@eZ,, then &= pgop- <a21 bzlrbA 0xab> E@e Z,1[t]], and hence

a_)e%;[[l]]. Therefore {zg(é(_))'l € Z4[[t]]. This completes the proof.

Thus, starting from an initial value w® (1) which is a polynomial of 4; 1, 7, !, we
obtain such a solution.

Now we shall illustrate a simplest non-trivial cxample. Let

wO) =1 +w Qi L +w§ i !

Then &)= Z w3 w0 = —w@*wl) if i=0 and /= —1, and EH0=0
otherwise. {§% = — Z wE o w = —wiFw(lifj=0and k= —1,and /=0

h=0
otherwise. We can see that wiQ)* = (—w{y))' and that wi) * = (—w{}) because w(%) "

= z <l+]> w‘f@) (— )1)801))1/1 4y, Therefore (2.7) is written as

i.j=0

PR (O 10N o .
or o T W) W =0 for p=0,1,...,i+1,

(4.1)
CL ol )Wy =0 for ¢=0.1,....j+1 .

A21 0 X22

Since (4.1) reads ¢, w) =0,,,ws) =0, Wb =0,,,w% =0 when i=;=0, the gauge
field corresponds to a self-dual Yang-Mills field on A4 if and only if

A2 ,(0) 0) O b
CY21M’01 _()2164\72”}01) 0\2,)1)01) 0 5 (42)

and corresponds to an anti-self-dual Yang-Mills field if and only if

~2

C2 owi =0y, 04, W0 =07 Wy =0 . 4.3)

X12 X12

Now set Wi =c;,x7, +c1,x3,, w&l’zcﬂxﬁl + 3%, cae M, (T) for a,b=1,2.
Then (4.1) is satisfied for i=;=0. Equation (4.2) is equivalent to ¢;; =¢;, =0 and
(4.3) is equivalent to ¢,; =c,, =0. On the other hand, noting that 4% =2c¢,,x,, for
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a,b=1,2, we see that if the gauge field V' is abelian, then [c,, c4.] =0 for a, b, d, ¢
=1, 2. Note that the gauge field I corresponds to an abelian Yang-Mills field on 4 if
and only if V is abelian itself. Now set, for example,

C11=E21:(5i2(5j1)i=1 ..... nj=1,...n >
C12:E32:(5i35j2)i:1 ,,,,, nj=1,...n »
022=554=(5i55,’4)i:1 ..... nj=1,....n »
C22=Es5s=(0i60js5)i=1....n,j=1....n -

Then wiPw(l) =w{yw) =0 and especially (4.1) is satisfied for i >0 and j=0. Neither
(4.2) nor (4.3) holds because ¢, +0 for a,b=1,2. The gauge field is not abelian
because [¢y1,¢12], [€21,¢22]1%0. Thus we obtain a gauge field corresponding to a
Yang-Mills field on A which is not abelian, self-dual nor anti-self-dual.
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