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Abstract. A detailed analysis is given of the two main types of degeneration of
Riemann surface of arbitrary genus by domain variational theory. Explicit
estimates for first and third Abelian functions are given. These estimates are
used to analyse the possible divergences of type II or heterotic superstring multi-
loop amplitudes for the scattering of massless particles. They are all shown to be
finite at arbitrary loop order.

I. Introduction

A vast mood of euphoria has swept over the theoretical high-energy physics
community with the discovery of five superstring theories as putative candidates for
a unified theory of the forces of nature. These are the 0(32) Chan-Paton model,
equal to the even G-parity sector of the 1971 dual pion model for the bosonic sector
[1], the 0(32) or E(8)xE(8) heterotic strings [2], and the chiral or non-chiral
versions of the closed superstring [3]. It is supposed that these theories all give a
viable quantum gravity, though their phenomonological features may single out the
E(S) x E(S) heterotic string as most promising [4]. Yet the euphoric atmosphere is
based only on results of finiteness of tree and one-loop amplitudes. There is almost
no information on the finiteness properties of higher-loop super-string amplitudes,
nor on the convergence or otherwise of the loop perturbation expansion. Indeed
there are no specific evaluations of any higher loop amplitudes. However, on the
basis of general arguments, using supersymmetry and/or functional methods, it has
been claimed [2, 5] that all closed superstring amplitudes are finite at all loops. It is
the purpose of this paper to analyse that situation.

Only heterotic and type II closed superstrings will be discussed here, and that by
means of functional techniques in the light cone gauge. Closed superstring theories
are chosen rather than the open case mentioned above since the former are much
simpler to consider. In the case of open superstrings there are mathematical
complexities arising from the fact that the corresponding world sheets Σ are open
Riemann surfaces, and some difficult mathematical problems ensue (due to the
continuous part of the spectrum of the Laplace-Beltrami operator). Functional
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techniques [6] will be used since they will allow deployment of powerful conformal
mapping techniques pioneered by Mandelstam [7] to obtain an explicit form for
closed superstring amplitudes.

The light-cone (LC) gauge will be chosen since only physical modes appear in
that case [8]. Moreover it has proven possible to give a specific and complete
construction of the second quantised field theory for type II superstrings in the LC
gauge in a particularly useful form [9]. This can be reduced, by the methods of Kaku
and Kikkawa [10], to a first quantised form. Thus functional methods can be used
directly in that case. Such a construction can be extended to the heterotic string,
since that for type II superstrings involved a separate construction for the left and
right movers. Results obtained in this way should agree with those obtainable by
covariant methods when those are available. Since the LC theory is the simplest
available it seems appropriate to use it for the purpose at hand, viz divergence
analysis.

Using these methods it has been possible to construct a closed form for the
0-loop amplitude for any number of external massless particles [11]. These
expressions involve solely the geometric quantities on the surface Σ, besides the
external sources and momenta. They also involve an integration over parameters
similar to those of Ahlfors [12] describing conformally inequivalent Riemann
surfaces Σ. Besides divergences which may arise from integration over the external
source variables there may also be difficulties from integration over the Ahlfors
variables. The purpose of this paper will be to discuss, in detail, what such latter
divergences might be. They correspond especially to degeneration of a compact
Riemann surface Σ corresponding to the superstring world sheet.

The problem of divergences for bosonic string amplitudes were analysed in the
70's [13], though with inconclusive results as to their renormalizability. It was
already appreciated then that divergences did not arise from the ultra-violet regime
of the constituent string modes, but rather from infra-red divergences due to the
presence of a tachyon and of a massless scalar particle (the dilaton) with non-zero
vacuum expectation value. The divergences of the planar one-loop open bosonic
string amplitude can be recognised as arising from these sources [14]. The one-loop
finiteness of the 0(32) Chan-Paton model [1] has been argued [15] as being due to
the absence of the tachyon and of dilaton tadpole-type divergences, due to
supersymmetry annihilating the tachyon and causing the dilaton vacuum expec-
tation value to vanish.

Attempts were made to give a detailed analysis of higher loop bosonic string
amplitudes, especially in the last reference in ref. [13]. New developments,
especially through the use of more sophisticated mathematical techniques, have
allowed a more precise analysis to be made of divergences in the bosonic string
multi-loop partition function. The tachyon and dilaton divergences are seen as
arising from degenerations of the Riemann surface into one with the same number
or fewer handles, with pinches at certain waists' or dividing geodesies or at the
handles. Such degenerations produce new zero modes which cannot be removed
from the laplacians on Σ. In particular the partition function (det' Ao)~12 (in the
bosonic case) is then divergent as a function of the length / of a vanishing geodesic.

Initial analysis [16] of the bosonic string dilaton divergence by Selberg ζ-func-
tion techniques has more recently been superseded by use of the more powerful
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techniques of algebraic geometry [17]. These have allowed, in particular by the
work of Belavin and Knizhnik [18], an elegant understanding of the dilaton and
tachyon singularities in terms of a section of the appropriate holomorphic
determinant line bundle on Σ. Poles in this section at points on the boundary of
moduli space, obtained by adjoining stable curves with nodes, are the sources of the
above-mentioned divergences in bosonic string amplitudes. Extension of the
algebraic geometric approach to superstrings has been conjectured in the above
Refs. [17,18], but no results yet obtained on divergence analysis for any superstring
case. In this article the explicitly constructed multi-loop amplitudes for type II and
heterotic superstrings [11] will be analysed directly for such divergences (and any
others); results from the bosonic analysis of refs. [17, 18] will be used where
appropriate.

The multi-loop superstring amplitudes constructed in the LC gauge by
functional methods [11] involve the first and third Abelian differentials and the
period matrix for the relevant Riemann surfaces Σ. The manner in which these
depend on the parameters ί etc. as these become zero near a degeneration of Σ can
be determined by domain variational theory [19]. Such an approach leads to
integral equations for the third Abelian differentials which may be solved by
perturbation theory. Those solutions may then be used to analyse the possible
singularities in the multi-loop amplitudes. This procedure had already been used for
the bosonic string by Alessandrini and Amati [13] and by the authors earlier for the
superstring [20]. It is proposed to give a more detailed analysis of the divergence
question in this paper using the above techniques this paper is to regarded as an
amplification of the papers in ref. [20].

The paper begins with a description of domain variational theory using the
notation of Lebowitz [21]. This is given both to outline the concepts and also to
specify the functions needed. In the next section this description is given explicitly
for the case of a handle degeneration, and in the following section for a dividing
geodesic degeneration. The form of the multi-loop superstring amplitude for
external bosonic states is specified in Sect. 4. The degeneration analysis is then
applied to the type II superstring in Sect. 5 and to the heterotic string in the
following section. The succeeding section considers degenerations arising from the
coalescence of punctures (external sources) with the handles, so corresponding to
another way of reducing the genus. The bosonic partition function is then analysed
at such degenerations. The final Sect. 8 contains conclusions and discussion.

2. Handle Degeneration

Handle degeneration may be analysed by starting with a Riemann surface S, of
genus g — 1, and attaching a handle of small size to it to construct a new Riemann
surface S* of genus g. All quantities on the new surface are starred to distinguish
them from the unstarred quantities on S. S* is constructed from S by deleting the
interiors of two parameter-discs on S, and identifying their boundaries.

To describe this in detail let (Γ, Δ) be a fixed one-dimensional homology basis on
S, with Γ = (y1,. . . ,7 9-i), A=(δί,. . . ,δg-i) with only yt intersecting with <5;. A
basis of the first Abelian differentials on S is denoted by (Jw1?. . . ,dug-\), with
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normalisation j duj = δij. The period matrix Π^ is defined by iTί7 = J duj = Πji, and

has Im Π > 0. A normal third Abelian integral ηxγ has poles in dηχγ with residue — 1

at Xand + 1 at 7 and is normalised so that j dηxγ = 0. For any two points Po and go

of S not on (Γ, Zl), the parameter disks DPo, DQo are defined about Po and <g0 with
boundaries CPo: Re ηPoQo(P) = log ε, C Q o : Re ηPoQo(P) = -log ε, respectively.
Points P', β ' on CP o, CQ 0 are identified if

ηPoQo(P')-ηpoQo(Q') = 2\ogε + 2ίa . (2.1)

A Jordan arc is drawn from CPo to CQo so as to have no intersection with (Γ, A) and
Cp0 = CQo is denoted by (5. Then the surface S* obtained by deleting the interiors of
CPo a n d CQo a n d t a k i n g Γ* = ( y x , . . . , γ g - ί 9 γ ) , A * = ( δ l 9 . . . , δ g - ί 9 δ ) i s ί i R i e m a n n

surface of genus g.
The basic variational equation relating normal third Abelian integrals ηXY and

ηzw* m terms of the difference AηXY = ηXY—ηXY is [21]

ΆηXY(Z)-AηXY(W)=— j ηXYdηiw , (2.2)
Z π ι ds0

where So is the common domain of S and S*, so is the whole of S outside CPo and
CQo. The integral Eq. (2.2) may be solved by expanding ηXY on the right-hand side of
(2.2) about Po and keeping only the lowest order term. From (2.1), [2 In ε + 2/α]" 1

ηPoQo has the same discontinuity in W on *S* as (2π/) - 1 J dηXY the right-hand side
δ

of (2.2) thereby reduces to an expression purely in terms of η to give

(2.3)

Moreover the new first Abelian differential is therefore [21]

. (2.4)

The remaining first Abelian differentials are obviously duf = duι (i= 1, . . . , g — 1).
Besides the first Abelian differentials the object on Σ of crucial importance for the
construction of the multi-loop amplitudes [11] is the Greens function G defined
from the first and third Abelian integrals. This is defined to have real part G = Re G
single-valued round (Γ, A), and may be given in terms of the real parameters ocf, β?
(l^ί^g) specifying the interior string widths and twists. In terms of the oaf, there is
the explicit formula [5]

Then

*f = Im[GflPN(yiP)-GtlPN(P)] , (2.6)

since η* is single-valued and w* has change δjk around y7 . The string width variable
j8f* is then defined by

(2.7)
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From the residue theorem

J dηh = 2πi[uf(Y)-uf(X)]

and the definition of the period matrix,

The condition of single-valuedness of Re GPIPN on Σ leads directly to the condition

af = 2π(lmΠ*)]k

1 Im Mr(Λ)-«?(Λv)] (2.9)

Equations 2.8) and (2.9) may be combined together as

fΠ* . (2.10)

The notation being used here is that of ref. [21], in which capital letters denote
points on the surface and small latin letters denote their uniformizations. Then Px

and PN are usually denoted by the Koba-Nielsen source values zί,zN, and the
mapping function for the string from the z to the ρ-plane is usually [11] denoted
Q = GZιZN(z). I n the above notation

Q = F*(P) = G*PlPN(P) . (2.11)

Equations (2.3) and (2.4) may be used to give, to first non-trivial order, the functions
and parameters on the surface S* in terms of their values on S, provided that the
period matrix 77* is written explicitly in terms of 77. Using (2.4) and the definition of
the period matrix this results in

779*=2πi[21nε + 2/α)]"1 , (2.12)

Π j = 2πi[2 In ε + 2/α]-1 t^(δo) -Uj(P0)] (1 £j£(g-ί))

with the associated inverse

= Π-1\nε , (2.13)

(Im Π%1 = - Ϋ (Im Π)jk

ι Re [uk(Q0) -uk(P0)] .
k lk = l

Using (2.3), (2.4), (2.8), (2.9), (2.11), (2.12), and (2.13) leads to

-ηPιPN(Po)

(2.14)
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with

v.J = aj = 2π(lmΠ)jk

ιlm[uk{Pί)-uk{PN)] (j<g) , (2.15)

of = Im {[ηPlPN(Po)-ηpίpN(Qo)-2πi((uk(Qo)-uk(Po))] [1 -/α(lnε)- 1]}

• (Im Π)kj

ι x Im [Uj{Pγ) -Uj(PN)] , (2.16)

βf = βj (J<9) ,

j8*= +(π/lnε){Re [ ( ^ 1

) " 1 *+ αα*(ln ε)" 1 - £ α; Re [(«,(β0) -
j=ί

(2.17)

where terms of (9(lnε)~2 in (2.14) and ^ ( l n ε ) " 1 in (2.16) have been dropped,
though the terms O(α(ln ε)" 1) in the latter have been kept. The analysis of handle
degeneration has now reached the point at which it can be applied to the specific
analysis of the superstring amplitudes of ref. [11] by solving for the interaction
points P for which

dF*(P) = 0 . (2.18)

This will be considered after the degeneration of a dividing geodesic is analysed in
the next section.

3. Dividing Geodesic Degeneration

Degeneration as the length ί of a dividing geodesic tends to zero has been
considered in detail in ref. [21] and also by Fay [22]. It will turn out that there is
further work to do beyond a simple application of these references, since the
degeneration parameter (Σ of ref. [211 or f of ref. [22]) is not directly related to the
length /. Since this latter parameter enters the superstring amplitude in a crucial
fashion, the relation between these parameters £ and ε (or t) must be determined
that will be discussed at the end of this section.

The principles of the degeneration anylysis of the last section can be used
to go beyond the analysis of Lebowitz [21] to produce the equivalent to
Eqs. (2.4), (2.12), (2.14), (2.15), and (2.16). The degenerating surface S* is obtained
by gluing together two surfaces Su S2 of genus gγ and g2 respectively at points Ax

and B2. This is achieved across the boundaries CPι:t1=Qxp[ — ηAιBlΛ(P)],
CQ2 : t2 =exp [ηA2B2,2(Q)] o n ^i a n <^ ^2 respectively with |ίx | = \t2\ =ε, where Au Bt

are points on St and rjAiβij a r e normal third Abelian integrals on St (/= 1,2). The
identification is by means of the condition

ht2 = t , (3.2)

where / is a small parameter (in the notation of Fay [22]) equal to ε2 φ (in the
notation of Lebowitz [21]) with \φ\ = l. Following the arguments of ref. [21] it is
possible to obtain the equivalent integral equation to (2.2), in terms of Ληxγ = dη%γ
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— ήxY, when X and Y are both in the interior of S^nS*, with

ηXY1 on

on

The resulting integral equation is

^ , (3.3)
Zπι cB 2

where t2 is the local parameter on C β 2 given above. The standard relation

\ dηxγ=[ut(Y)-uΐ(X)] (3.4)
δ*

allows an evaluation of the right-hand side of (3.4) using the value of dηxγ on the
left-hand side given by (3.3), with that on the right-hand side of (3.3), dη%w = O(ε2)
on S2 if Z, We SΊ, and dηξw = [dηzwa + O(ε2)] on S2 if Z, We S2. Then for δ?e SΊ,
(3.4) leads, for Z G 5 1 9 to

Λ (3.5a)

with cx = (2π/)" x j t2~
1 dηzwa as ε ~ 0. Similarly if δf* e 5*2, then (3.3) and (3.4) lead,

cB 2

for XeSinS*, by use of the residue theorem, to

= tu'i{B2)dxηXYΛ{A1) ((gi + l)^iSg2) (3.5b)

A similar result follows for Xe S2 n 5*, using the appropriate version of (3.3) with
5i and S2 interchanged, to give

duHX) = dutl (X) + tc2dxη'XYa(B2) (3.5c)

with c2 = (2πi)~ι j hιdr\ZWΛ, for ^ e S j . Finally for δ?eS1 and
then c^i

dunX) = tu'i(A1)dxη'XYa(B2) . (3.5d)

Equations (3.5a)-(3.5d) agree with the values obtained by Fay [22] by a different
method. These values may then be used, together with the definition of the period
matrix to lead to [22]

Π* = ΠUj , lύhjύQi (3 6a)

= Π2ij , (ffi+ 1 ) ^ , . 7 ^ ( 0 i + 0 2 ) , (3.6b)

(3.6c)

It is finally possible to deduce from (3.3) that for X, Y,ZeSιnS*

dη*χγ(Z) = dηXYΛ(Z) + O(t2) (3.7a)

and for ZeS2nS*9X9 YeS^S*,

= tηXYΛ(A1)dzηzwa(B2) . (3.7b)
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The construction of dη*γ(Z) for X, ZeSinS*, YeS2nS* is simple, since to O(t),
dη$γ{Z) only has a simple pole at X, and so in this region

=Z2 = z . (3.7c)

Similarly for XsSίnS*, 7,ZeS 2nS*,

dη$γ(Z)= -d/δZιηZιZ2,2(Y)\Zί=Z2 = z . (3.7d)

The above equations now lead to the values

^jduj(P) (3.8a)
7 = 1

(3.8b)

for P,Pί9PNeS1 n 5 * , whilst for P,Pί9PN€S2nS*9

dF*(P) = dηPlPNi2(P) + i Σ ocjduj(P) .

In the case P1,PNeS1nS:i: and PeS2nS*,

dF*(P) = tη'PίPNιl(<A1)dpηPW92(B2)+ Σ ocitu
f

i(A1)dPη
/

PW,2(B2)

+ X α;jM, (P) (3.8c)

and for P^PeSinS*, PNeS2nS*9

dF*(P) = d/dZίηZίZ2Λ(P)\Zί=Z2 = p + i Σ « ^ i ( ^ ) ( 3 8 d )

Moreover

For P^PtfeS^nS*,

α ; = - 2 π ί Σ ^ ( 2 ) ^ ( 1 ) [ k ( Λ ) fc(^)]

^1p,,i(^i) , (3.10a)

whilst for P1eS1, PNeS2,

(3.10b)

Σ
k>θί
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The values of βj are accordingly

(3.11a)

= 2πtuί(B2)[dpNηpNpίtl(A1)-dPlηpίpNtί(A1)]

Σ *fReΠ2ij

(3.11b)

= -2πui(P1)+ X

P 1 6 5 1 n S ί * J P J v e 5 2 n S ' * ) (3.11c)

Σ 2π(Im772)ji;1Im«Jk(PJV)ReJ72y

This completes the analysis of the relevant functions on the surface associated with
the dividing geodesic degeneration.

There is still the relationship between the vanishing parameters £ and t
or ε. Upper and lower bounds on this relationship may be obtained by using
the inequalities of Masur [23] relating the Poincare metric ρ* on the annulus
At : |ί|(l —δy1 < \z\ <(1 —δ) around a uniformization of CA, with the Poincare
metric ρ on S*. For small enough t, Masur showed that there is a constant C so
that on At,

. (3.12)

Moreover ρ^ is given explicitly by

ρHc(z) = π[|z|log|ί|sin(πlog|z|/logk|)]-1 . (3.13)

As pointed out by Wolpert [24] the dividing geodesic has |z| = |/|* (by symmetry,
as can be seen by uniformising in a strip by w = logz). Then from (3.12) and (3.13)

or

2π 2 ( log | ίΓ 1 Γ 1 ^/^2π 2 C(log | ίΓ 1 Γ 1 . (3.14)

This [21] proves a conjecture made earlier by one of us (J.G.T.) that

^OKlogl/IΓ 1 ] (3.15)

in which also the left-hand inequality in (3.14) was proved. The Weyl-Petersson
3^-3

measure Π dτ x/\dίi [23] (where the τx are the Fenchel-Nielsen twists
i = l

associated with the geodesic length parameters / f), near a degeneration £ ~ 0 has
/-dependent part /d/d(argτ). Use of (3.14) allows this to be rewritten as
d(arg OkΓ 1 fln kl)~3^kl This measure will be used later in analysis of the dividing
geodesic degeneration in the heterotίc superstring amplitude.
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4. The Form of the Multi-loop Amplitude

It is now proposed to apply the technology developed in the last two sections to
superstring multi-loop amplitudes. The rules for constructing the latter were
established in ref. [11]. They can be given in terms of string-Feynman diagram
rules, which involve an amalgamation of string diagram factors and two-
dimensional quantum field theoretic factors. The former correspond essentially to
the Veneziano-Virasoro-Shapiro type expression exp [prpsG(zr, zs)] associated with
a set of TV source points zγ (1 ̂  r ^ N) and contain the singular factors \zr — zs\ ~PrPs as
zr^zs. The quantum field-theoretic factors involve a set oflg interaction vertices za

(α = 1,. . ., 2g), which are the zeros of

dF(za) = 0 , (4.1)

where Fis defined by (2.11). From now on the points Pr and their uniformisations zr

will be identified, as will Pa and za. Then the field-theoretic factors arise from either
(a) bosonic Feynman lines 2dAdBG(A, B), where A, Bean be either a source point Pr

or an interaction vertex P, with G(A,B) = Re GBPN(A), (b) alternatively bosonic
N-l

Feynman lines £ dAG(A, Pr)Pr, with Pr the external momenta, or (c) fermionic
r = l

Feyman lines d?ΛG(zα,zr) from an interaction vertex zα to an external source zr.
There are at most two such lines from a given zα, and at most one to each zr. There
cannot be both a bosonic and a fermionic line between a zα and a zr. There must
always be one bosonic line from each interaction vertex (IV), the latter having
associated with it the factor [F"(Pα)]~3/2. There is also a tensor Γj ({?}) when there
are no fermionic lines, depending on the positions of the IV's and defined, by

= ί Π d*θt n i t θiγu'iγ(z~y)) , (4.2)
ϊ = l y = l Vy = l /

where {θi} (1 f^ί^g) form a set of Grassmann variables circulating around the loops
of the string Riemann surface, and Θ2j = ρj

ABθ
AθB, with ρJ

AB being the SU(4) Dirac
matrices. Consider first the contribution with no fermionic lines. Let there be r lines
of type (a) joining sources to IV's, alines of type (a) joining IV's to each other, dines
of type (b) joining sources to IV's and u lines of type (b) joining sources to each
other. Then the Feynman diagram factor is [11]

Λ<'.».'•"> = Π dzrdrj}{zr,zjζr Π δr. |δf..;G(z«(,z«i)^.1Λ;
Ar As

• Π (Y dz\G(zγ,z()pXLUT; n [F'(zα)Γ3'2 . (4.3)
At V = l / α = l

In (4.3), Ar denotes the set of paired sources and IV's (zr, zαr) for type (a) lines, As the
set of paired IV's {zΛι,zΛ) for type (a) lines, and At the set of IV's zy for type (b) lines.
The remaining factor Luin (4.3) is a function only of the external source points zu, to
which (b) lines are attached, and their polarisation vectors ζι. These latter occur
either in scalar products with each other or with the external momenta. The function
Lu was discussed in detail in the last ref. in [11 ]. When fermionic lines are present, it
is easiest to consider solely the case N=4, though the results can be generalised
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directly. The tensors Γj(z) of Eq. (4.2) are now replaced by multi-spinor tensors

τABi(zA,zB'9ϊ-a)=S π d% π Γ Σ Θ * X ( * / 0 ~ Γ '
i = l β*x ]_iβ J

•WMizjrWjU'jizs)]* , (4.2a)

where zA = z2 or z3, zB = za, } = {jβ}, z-a = {zβ}β**, and by

• Π [ΘMzA)]A . (4.2b)
Λ,B,C,D

The resulting Feynman diagram factors in these cases are, for one fermionic line

{[CiαCsΛl tr Uzξitf'T,[z2,z« z.x)]G'(z3,z1)G'(zx,z2)

+ tr [ Λ ί 3 ^ η ] ( 2 δ Z 2 )Γ+ V'tfίC C4)G'(fe> z3)G'(z2, z j

+ tr \J2ξ2hΪ3QJ" Tt)(dU)G'(z3,22)G'(f,, Z3)}
2 9 Γ JV-1 -\jβ

•Π 23f)l>Γ+ Σ G'(zβ,zr)pr\ (4.3a)

where [/'i/72P3P4] = tr(eaiea2e<>3ea'1)K'/'22P33/'44, and for two fermionic lines

'G'(za,z2)G'(za,z3)}xn \2d*y^+Σ G'(zy,zr)ΛΐV

y=i L r=i J

•Π [*"'&)] ~3/2 (4 3b)

(and not all external factors have been included in (4.3a, b)). The total amplitudes
for external bosons can now be written down by taking factors (4.3), multiplying by
the Veneziano amplitude, and integrating over the interaction positions ρa = F(za)
and source points zr and the internal string loop widths α,, βt (1 S i^g). These latter
have been discussed fully in Sect. 2. Thus for type II superstrings the amplitude has
contributions of form (4.3) from both left and right modes (with z and z
dependence), and is therefore

2g g J V - 1

Amplitude = J Π d2ρa Π d^{dβ{ Π d2zrexp {prpsG(zr,zs)} {det Im/7}"4

Xf,r,s,t,u) J UfiF.r'.s'.ί'.M')

where /, g denotes the number of fermionic lines. The symbol * applied to a L-
polarization vector ζ takes it to i?-polarisation vector ζ.
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A similar expression is valid [25] for a heterotic string amplitude [11], now only
involving 7?-mode factors A ̂ ' r ' s ' ί ' " ) ; the L-mode factor being replaced by a bosonic
partition function. For non-gauge bosons the expression is:

2g g N-l

Amplitude = J Π d2ρa Π <MA Π d2zrexp {PrPsG(zr,zs)}
J α = 2 i = l r = 2

2g

•{detlm Π}-*P(Σ) Π [F\z«)Yi β(0|77(g)Γ)
α = l

*
(45)

The symbol P(Σ) denotes the partition function (det dz)~12 in the z-plane, where
dd is the Laplacian on Σ, and Θ(0\Π®Γ) is the theta function at zero for the
matrix Π ® Γ, Γ being the root lattice of the gauge group. The R-moάe factor in
(4.5) has arisen from the integration over the inexact Grassmann variables fl 4, so
has modular transformation by multiplication by [det (C77 + D ) ] " 4 under the

modular transformation with matrix ( J. The L-mode factor transforms

with [det (CΠ + D)] ~4, and the total expression (4.5) is seen to be modular invariant
on inclusion of the factor [det Im Π] ~4. An equivalent version to (4.5) may be
developed by using NRS version of the compactified bosons it is expected to be
identical to (4.5) and will not be considered further here.

The domain J* denotes a fundamental domain of the modular group. This is
known to coincide with a fundamental domain of the Siegel upper-half plane [27]
when 0 = 2 and 3, where the shape of the fundamental domain is known in detail for
g = 2 [28]. Such a coincidence does not occur for g^4, and in that case J is not
known explicitly. The expressions (4.4) and (4.5) must now be analysed for possible
divergences.

5. Handle Degeneration Divergences

The analysis of possible divergences from handle degeneration in either the type II
or heterotic multi-loop amplitudes (4.4), (4.5) commences by solving the equation

dF*(z) = 0 , (5.1)

where dF* is given by (2.14). The term O(In ε~ *) on the right-hand side of (2.14) may
be neglected if P is not close to Po or β 0 , so giving

dF(z) = 0 . (5.2)

There will be 2(g — 1) solutions of (5.2). These correspond to the 2g —2 IV's of the
degenerated surface in which the degenerated handle plays no role.

On the other hand P may approach Po or Qo to OQnε'1). If Po and Qo are
uniformised byp+ ,/?_ in the z-plane there will be two further solutions z+ of (5.1)
given by

z±=P±+a±(lnεΓ1 . (5.3)
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Since dηPoQo(z±)~ + l n ε (α + )~ 1, then (5.1) will be satisfied provided

g-i Ί-i

,-(/>+) + / V α/«ί (P+) . (5.4)

To the order of (In ε)" 1 under consideration it is possible to write, from (2.16) and

(2.17), that
(Xg = oίg-\-oί(\nε)~1(Xg ,

β* = (\nε)~1 βg + oc(\nε)~'2βg , (5.5)

where <xg, a'g, β'g are independent of α and ε, and may be read off directly from (2.16)
and (2.17). Then

n ε ) - 3 . (5.6)
δ(α,lnε) ~°w~"' '

It is clear from the analysis of Sect. 3 that all of the functions entering the ampli-
tudes (4.4) or (4.5) have a finite, non-zero limit as ε->0 except for F"{z+) = O(ln ε)
and det (Im/7*) = 0(lnε)~ 1. For the type II string there is a total power of
(det Im 77*)~4. It is necessary to remove (det Im 77*)~3 from this to be combined
with the external measures so as to make the latter modular invariant. Combined
with the change of measure (5.6) to the variables α and (In ε) results in the
asymptotic value of the integrand of (4.4) as ε->0 given by (with x = (lnε) - 1 )

j x6dx J dot , (5.7)
o

which is clearly finite. On taking account also for the factor (det Im 77*) in det' Δo a
similar analysis for (4.5) gives the potentially dangerous term

ff xdxdoL , (5.8)
0

which is again finite. A similar analysis for multiple handle degenerations is
expected to give the same result.

It is clear that the degeneration of a handle (or any number of them) leads to a
pair of interaction points z + converging to the resulting punctures Po, Qo on the
surface. Such a degeneration does not bring into play the potentially lethal
Feynman ultra-violet divergences arising from the coincidence of two interaction
points. Such a further degeneration can now be performed in a controlled manner
by letting the points Po, Qo approach each other. This control cannot be easily
achieved without the handle degeneration occurring simultaneously. Thus g > 1
would seem to be required, since for g = 1 there is only one available modulus and
two complex degrees of freedom are not available. However there is still the variable
zγ, and a possible divergence from the above cause would also be expected here.
Since one loop amplitudes are finite this potential divergence should not be present.
This will be seen after the details of the singularity are determined.

The values of the parameters and functions given in Sect. 2 can now be analysed
further as the uniformising parameter δ between Po and Qo in the z-plane goes to
zero. For then some of the functions and parameters also vanish with δ, and a
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careful analysis must be given. If Qo = Po — δ, then the string parameters <xg, a'g, βg,
βg in (5.5) are all of order <5, with

α; = - R e [δη'PίPN(P0)] -2π Im [uί(P0)δ](lm Π)jk

ι Im [W j(Λ) -Uj(PN)] ,

'Σ α;R e K(^o)^]j', (5-9)

Γ ^-1 Ί " 1

I P N ( P 0 ) ] ηp.pΛ^ + i Σ ^ w i (^o)

It is now possible to evaluate the singular functions

The Jacobian / of (5.6) now becomes of order δ2(\nε) 3.
One can now use the above estimates to determine the putative divergence

character of the type II superstring. The relevant factor in (4.4) is

z + )F' / (z_)Γ 3 |3 f . + 5 ^ G ( f + , z _ ) | 2 , (5.11)

which reduces, using (5.10), to have order

( T 4 (5.12)

(where the ε-dependence is not of relevance). Combining with the measure
d2(ρ+ —ρ-)ocd2δ leads to the apparent singularity

ϊ\δΓ3d\δ\ = co2 . (5.13)
0

Since such a divergence can arise from each handle but one, the maximum apparent
divergence will be

oo 2 ( 0 " 1 } . (5.14)

On the other hand the factor for the heterotic string replacing (5.11) is

J[uf

i(z+)u'i(z^)f\F"(z+)F"(z^\-2 dr+d?_G(z+9z-) . (5.15)

This now has order, instead of (5.12), equal to

,5° , (5.16)
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and therefore (5.13) is replaced by the finite integral

j \δ\d\δ\- < o o . (5.17)
o

The heterotic string therefore does not suffer from the apparent divergence
afflicting the type II superstring. The ε-dependent factors in this case are also finite,
being (lnε)~~4, so are the same as before taking the δ^>0 limit. The modular
transformation properties of the 7?-moving factor discussed in Sect. 4 implies that
this factor is finite at the degeneration detlm77->oo obtained by taking the
modular transformation inverting the vanishing diagonal matrix element of 77. This
fact will be used in the later divergence analysis involving the bosonic partition
function in Sect. 7.

The amplitudes (4.4), (4.5) were defined by integration over a fundamental
domain,/ of the modular group. Can the moduli in the degeneration of Sects. 2 or 3
be shown, in particular for genus 2, to lie in the fundamental domain J2 of Siegel
[27]? This is an important question to answer for the type II superstring. For it is
possible that a narrowing down of the volume of J2

 n e a r its boundary could remove
the divergence discovered above. If all of the surfaces which possess the degenera-
tions being discussed lie in J>, that cannot happen, and the divergences still remain.

In the case g = 2 a fundamental domain J' in the Siegel upper half-plane G2 is
defined by the conditions on the period matrix Π = X+iY as [27]

(i) |* y |gJ- , (5.18)

(ii) |det(C/7 + £>)|gl (5.19)

for all gx2g matrices (CD) which are the second row of a matrix in Sp(2g, Z),

(iii) (a) gjYgr2;er

ΓYer (r=ί,...,g) (5.20)

for all integer valued g-vectors gr, where (e r , . . . ,er) are the columns of the unit
matrix, with g r φ +e r , the last (g — r + 1) entries of gr being relatively prime,

(b) e f F e ^ O (r = 2,...,0) . (5.21)

By analogy with the case oϊg = 1 it is necessary to transform to another fundamental
domain J by means of the modular matrix with an=0, 0^ = 0 (/+/),
aa = \ (/ = 2,. . . ,g), bn= - 1 all other όii7 = 0, cn = l9 all other c o = 0. Then

i ϊ ί ^ - ί i ϊ n Γ 1 , Πίt^Πu/Πn , Πlj-Πtj ( toθ(αnε)" 1 ) (5.22)

so that 7722 = + *" In ε/77, 77^ = 77n, 77/; = 0(1). Condition (i) can easily be satisfied
without any restriction on 77̂ 2, as can (iii) (b). Moreover

Since g2

r^\ then (iii) (a) gives no restriction on 77̂ 2. Finally (5.19) is

and

2 (5.23)
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If both det C = 0 and cnd22 = c2i d12, then condition (ii) imposes a constraint on the
terms of 0(1) in 77; if det C = 0 or cnd22ή=c21dί2, then either has modulus at least
one and (5.19) is satisfied for ε < e~γ. Yet again there is no constraint to O(ln ε), and
there are only constraints on the 0(1) terms. It therefore does not appear likely that
the requirement that integration of the moduli be only over J require an ε-
dependent restriction on the other variables, and so bring about a reduction of the
volume of integration. It is to be noted that modular invariance indicates that the
singularity will also be present if J' was used directly.

It has already been remarked that for g = 1 (1 loop) the apparent oo2 divergence
is not present in the type II superstring amplitude [1,2,29]. There must therefore be
some way of removing the divergence (5.13) in the g = 1 amplitude. It is possible that
such removal occurs by reduction of the "raw" amplitudes of Sect. 4 to expressions
which do not involve the interaction points ρ. Indeed this can be shown (last paper in
ref. [11]) to occur at 1 loop to reproduce the known DRM results. A similar
reduction is not presently known in the case g > 1, so such a technique would not be
of help.

An alternative approach [20] is to remove the divergence by partial integration
[30]. This may be done in two stages in which integration by parts is followed by a
direct analysis. The expression under consideration has the form

lim f d2z + d2z-d?+d?_ηf_ZN(z+)d~+d~_ή*_ZN(z+)F(z + J-) .

(5.24)

In (5.24) .Fdenotes the factors which do not produce the \δ | ~ 4 singularity as z+~z-,
and so Fis finite in this limit. The integration region is over \z+ —z_| >ε, and the
limit ε->0 taken at the end. This limit in (5.24) corresponds to the usual definition of
an infinite integral in terms of first integration outside a neighbourhood of infinity
and secondly letting that neighbourhood contract to zero. The derivatives with
respect to z+ and z_ may be integrated by parts with respect to these derivatives.
Care must be taken in including the boundary contribution from C: \z+ — z_ | = ε in
(5.24) (other boundaries can be neglected since they would involve further
degenerations not considered). Then (5.24) can be reduced to

-j ηdAή^F+l ηδ&ήd&F , (5.25)
c

where 1 and 2 denote z +, z _ and d = dzd/dz as usual. The (5-functions arising say,
from dίδίη, have support outside the domain of integration, so give no
contribution.

The second stage in the analysis of (5.24) is to analyse the integration over
δ = z+ —z_ in (5.25). We may express (5.25), for ε~0, as

j j d2δδ~2f2(δj) , (5.26)
\δ\=ε \δ\>ε

where fx and f2 may be written near δ = 0 as

di + O(δ) , (5.27)

where at are constants (/ = 1,2). Only the constant terms at could give any divergence
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in (5.26). Inserting the form (5.27) into (5.26) results in the expressions

- - J dθew(aί + O(e)) + i— f dθe2iθ(a2 + O(r)) . (5.28)

The O(ε) and O(r) terms are finite as ε->0, whilst the terms proportional to aγ and a2

are both zero. Therefore the putative divergence (5.13) is not actually present in the
type II superstring at any loop order. A similar analysis of lower divergences arising,
say, from GG" factors for coincident interaction points is also clearly removeable
by the same technique. Moreover this use of a phase factor to achieve annihilation
of a putative divergence is also necessary for the heterotic string, as we shall see
shortly. In this latter case such a putative divergence would be regarded as arising
from tachyon or dilaton states. A similar interpretation of the type II putative
divergence (5.13) is also to be expected. The removal of (5.13) by general
supersymmetric features is loosely regarded as the general guarantee of fmiteness.
However the explicit removal noted here is not obviously related to supersymmetry,
and a closer understanding of the relation is called for.

In the heterotic amplitude (4.5) there is still a potential divergence from the
vanishing of the partition function P(Σ) at a degeneration. This will be discussed
separately in Sect. 7 after the effect of a dividing geodesic degeneration on the right-
moving supersymmetric vertex factors has been analysed.

6. Dividing Geodesic Divergences

An analysis may now be performed of the possible divergences which could arise
when a dividing geodesic length *f-»0 following the estimates of the various relevant
functions in Sect. 3. It appears necessary to consider separately the cases

(a) ΛeSΊnS*, PNeS2nS*,

(b) Pl9PNeStnS*.

But in fact case (a) cannot arise, since it is clear from Sect. 3 that none of the
variables ρ*, α ί? βt become of O{t) in that case. In other words the value £ = 0 does
not enter as a boundary point over the range of integration. Thus only the case (b)
need be considered in detail.

The discussion of Sect. 3 showed that there are gx ΠV's Pa on S2 n S*. Moreover
the following estimates result:

(6.1a)

= O(t) PaeS2nS* (6.1b)

3* = 0(1) l^i^g1 (6.1c)

= O(0 g,<

5* = 0(1) on

= 0(ή on SiπS* (6.10



464 A. Restuccia and J. G. Taylor

= 0(1) zeS1nS*,z1eS2 (6.1h)

= O(t) z,z1eS2nS* . (6.1j)

It is necessary to be more careful on the estimate (6.1h). In fact the results of Sect. 3
or of Fay [22] that the second Abelian differential

w(x,y) = O(t) xeS1nS*,yeS2nS* (6.2)

shows that

Ά'xM = ί Hx', z)dx' = } w(x', z)dx' + O(ί) . (6.3)
Y Λι

Thus ηxγ(z) is independent of Y in the region (6.2). The line factors

dtJr-Gr_ZN(z+) = O(t) if z+eS^S*, , S.eS2nS* . (6.4)

Similarly the line factors

Y Gίκ(z.,zs)Ps = O(t) if all z^S.nS* (6.5)
s = l

The contributions to these line factors for zseS2nS* are also O(t), by (6.1j).
The more detailed estimates given by (6.1)—(6.5) can now be applied to the type

II superstring amplitude (4.4). Then the crucial factors in that amplitude can be
written schematically as

Π \ul(P)\s Π F'(Pα)Γ3</2ρ* Π doiidβiTWd + d-G]2 . (6.6)

The leading order in t contribution from the first factor is 0(1), from the second
O(t~692) (where one ρeSΊ n S * has been fixed by translation invariance). The net
factor of t that results is therefore

tl92~ιdt . (6.7)

Since g2 = 1 this is finite and implies that the supersymmetric vertex factors give a
bounded contribution.

In the case of the heterotic string, (6.6) is to be replaced by

Π (u[(P)f Π [F"(Pα)Γ 2φ* Π daiidβiΠd + d-G . (6.8)
ί>9ί PaES2nS* ί:>9ί

The net factor of t arising from this factor is now

%***-*dt , (6.9)

which is integrable, since g2^l. Thus the heterotic string is also finite from this
degeneration.
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7. The Bosonic Partition Function

In the preceding two sections a careful analysis has been given of the possible
divergences which may arise from the right-moving vertex factor contributions to
the heterotic raw amplitude on degenerating Riemann surfaces as well as the
companion left-moving vertex factor contributions to the type II superstring raw
amplitudes. Putative divergences were discovered in the latter, which were shown to
be absent on use of integration by parts and phase factor integration. There is still
further analysis to perform on the heterotic amplitudes before it can be concluded
that they are finite. In particular it is still necessary to analyse the putative tachyonic
pole in the left-moving bosonic partition function PL(Σ) of (4.5).

Removal of the non-holomorphic factor [det Im 77]~6 from (det d)~12 has left
this partition function as a holomorphic section F of the determinant line bundle
λ ~12, where λ is the Hodge line bundle on the moduli space Mg. The extension of this
line bundle to the stable compactification Mg [31 ] leads to a pole in F(y) of order one
as the explicit calculation in ref. [18] shows. Thus

F(y)~— as ^ - 0 , (7.1)

where yu.. . ,3^3 -̂3 are the complex co-ordinates on Mg in which locally the curve
>Ί->0 is transversal to the boundary D = Mg—Mg. It is possible to relate this
degeneration to the one of Sect. 2 by taking, by a suitable modular transformation,

ilu=^ln^i (7.2)
2πι

The handle degeneration analysis of Sect. 2 can be related directly to (7.2) by the
modular transformation of (5.22), as was shown in Sect. 5. The dividing geodesic
degeneration of Sect. 3 cannot be so obtained, and will be discussed later.

The integration over the resulting singularity will then be of form

\d2yΛyi\yiΠin\yi\)TVL(yiM\yi\)fR(hM\yi\) (7.3)

In (7.3),/L,/# are the contributions from the L and R moving modes in (4.5) at the
degeneration, other than the yΐ1 arising from L-boson partition function. The
measure d2y±[\y^2 (In l^il) 3]" 1 comes from the identification y1 =(εeί<x)2, and the
original measure d(\n έ)da times suitable powers of In ε from the partition function,
as discussed earlier.

An alternative method of arriving at the measure in (7.3) multiplying/L and/R is
by changing variables to the analytic ones, yu on Teichmuller space by means of the
Jacobian, in the notation of ref. [18],

7 = (det Im Π) (det A _ 0 (det Ao),

and use of the work of Bost and Jolicoeur [17] (already incorporated in (4.5))

A factor of (detIm/7)~ 3 is then removed from the resulting heterotic am-
plitude non-holomorphic factor (detIm/7)" 5 , to leave the measure equal to
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dΩ(y) (det Im Π)~2. Near the degeneration yx ~0, dΩ~d2y(\y\2 In I J I ) " 1 , SO that
with (7.2) the value of the measure in (7.3) results.

The analysis of Sect. 5 showed that fR(y1, In \y1\) is bounded as yx ~ 0 (and even
as j>l5 }>2~0 jointly with coinciding internal interaction vertices). Moreover the
construction of fR from various products of derivatives of Green's function en-
sures that fR is a function of y or In |j;|, but not explicitly of arg^ other than as in
powers of y. This result is crucial to the analysis of (7.3), and follows from various
features (i) all Feynman line contributions can be reduced to products of sums of
third Abelian differentials dη or of first Abelian terms dui(Im Π)^1 Imuj or
dUiilmΠ)^1 duj. (ii) First and third Abelian differentials are analytic in the
modular variables, and the first Abelian integrals are also analytic, at a degenera-
t i o n ^ ~ 0. This can be seen, for example, by use of the explicit Burnside expansions
[32], or by general arguments [12,33]. Thus choosing j x to be the multiplier of the
first generator 7\, with fixed points 0 and oo, the possible singularities in dut(z) can
be seen explicitly not to be of form log w but always involve terms of O(w). (iii) Only
In \y\ enters in (Im 77) ~1, so that arg y does not enter, (iv) Factors F" are constructed
only from the third Abelian differentials dη. The fact that/Λ is a function only of yί

or In Iyγ\ then follows from the explicit expressions for the ^-moving Feynman line
contributions, together with (i)—(iv). The dependence of/L solely ony ί and In \yx\ as
yx ~ 0 is also discernable by inspection. This is immediate for the <9-function since it
is constructed using Π and not Im 77, and also in terms of the first Abelian
differentials.

If yχ =reιθ the integral (7.3) can be written as

2π

j dr [r2(ln r)2]~2 J e-iθdθfL(reiθ, In r)fR(re-iθ, In r) , (7.4)
o o

where as r ~ 0

fL~cL + c'Lrew + O(r2) ,
( 7 5 )

where the expressions on the right-hand side of (7.5) are to within powers of log r.
Thus cL,c'L, cR,cR are all functions of lnr. The function c'L9 cR when regarded as
depending on In r, are bounded as r -•0, since they both arise from powers (Im Π) ~x

~(ln r ) " 1 associated with the first Abelian factors discussed in (i) above. The only
possible singular term in (7.4), using (7.5), and integrating over the phase θ, is

\c'Lc'R{\nry2d{\nr) . (7.6)
o

The properties oϊc'L, cR noted above ensure that this integral is convergent. It is to be
noted that such a detailed analysis is already necessary at 1 loop where the integral
over the phase is crucial to remove the tachyon pole divergence this completes the
analysis of the divergences in ref. [2] and [29]. It disagrees with the remarks of
Martinec [5], whose claim to be able to avoid the putative divergence by
transforming to a different fundamental domain in Teichmuller space is clearly
wrong. For any divergence in a particular fundamental domain is carried by the
modular transformation to the new domain. However we would agree that the use
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of the degeneration domain Im Πn -> oo does seem to avoid the difficulty of detailed
analysis of the volume reduction factor at the degeneration point ImΠn^>0.

The degeneration of a dividing geodesic seems easier to handle, since there is no
singularity in Im 77, so it is effectively constant near the degeneration y1 ->0. All of
the other factors in/R are bounded near this point, as shown in the previous section,
and are analytic as y1 ~ 0 following the argument earlier for the handle geodesic
degeneration but without powers of In IjμJ entering. A similar feature occurs for

fL(y). The integral (7.3) still arises, but is now immediately seen to be finite without
the additional remarks associated with cR, etc. needed (since the quantities cR, c'R,
cL, c'L of (7.5) are now constants).

8. Further Possible Divergences

The topology changes considered so far have not included the case when sources zr

come arbitrarily close to some ΠVρα. Such a possibility does not appear necessarily
preventable since the z/s can move freely on Σ. Thus this possible source of
divergence must also be considered. The form of the divergent factors are either

(b) d^GZrtZN(za) .

These factors occur as the only possible source of divergence in the heterotic string
or multiplied by the complex conjugate for the type II superstring.

In the heterotic string case it is possible to integrate (a) in (8.1) by parts with
respect to zγ so as to leave a simple pole in (zα — zr), as occurs also in (b) in (8.1) both
of these cases are integrable singularities in the variable (z^Zz). Repeated factors
like (8.1) can be treated separately in the same manner, since at each I.I.V. only one
factor of type (a) or (b) can occur. Thus the heterotic string has no divergences from
this source either.

For the type II superstring the method of integration by parts may be used to
remove the apparently non-integrable singularity |zα — z r |~

4 which can arise in case
(a) or \za — zr\'2 if case (b) in (8.1). Thus yet again the type II superstring appears to
have no divergence after integration by parts has been performed.

There remains still the possible divergences which can arise when two loops
coalesce. Using familiar arguments on modular transforms [21,34], and already
used at the one-loop level [35], such a degeneration will be the modular transform of
the one we have considered in Sect. 5. Since this new degeneration will be of the
same form as that considered there, it will not cause any divergence.

9. Discussion

It has been shown in this paper that the matrix elements for the scattering of
massless states in type II or heterotic superstring theories are finite at each string
loop order. This result was proven here only explicitly for bosonic states, although
the remarks in the last paper of ref. [1] indicate that the same result is clearly true
when spinors are included. For the amplitudes in the latter case are very similar to
those in the former. It would be of interest to extend the analysis to the case of
massive states; this will be reported on elsewhere.
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There is an argument from unitarity that indicates that such amplitudes must be
finite if the massless ones are. An independent evaluation of the latter amplitudes is
possible along the lines of ref. [11]; that and the ensuing divergence analysis will be
reported on elsewhere. Another aspect of the above discussion which requires
further consideration is that of repeating the divergence analysis in terms of
"completely reduced" amplitudes instead of the raw amplitudes of Sect. 4. By
completely reduced we mean those resulting on all possible use of analytic properties
of the integrands on moduli space. The raw amplitudes may involve considerably
more superstring Feynman diagrams than do the reduced amplitudes. Thus for
0 = 1 there are 6 classes of raw superstring Feynman diagrams, each with various
permuted terms, as compared to the single completely reduced one, which is also in
much simpler form [2, 35]. Indeed the concept of superstring Feynman diagram
does not even apply in the one-loop case, as was noted in the last paper of reference
[11]. It may be the case that for g > 1 the same situation prevails, and there are no
Feynman lines for the completely reduced amplitudes. If so the above divergence
analysis would be considerably simplified. It is clear that the discussion of Sect. 7
could not be dispensed with even in that case, since it is required for the one-loop
completely reduced amplitude.

Even if type II and heterotic string amplitudes are finite order by order it is still
necessary to determine the radius of convergence of the perturbation expansion in
the over-all coupling constant G. A very rough (and possibly very misleading)
estimate of this may be given in terms of the order of increase of the number of
superstring Feynman diagrams with genus g. Using the Feynman rules of Sect. 4 (or
see last ref. in [11] for a more complete version of them) it is clear that there are at
least O(29) different Feynman diagrams. These arise by considering the choices of a
bosonic line from a IIV to an EIV to be either G" or G'. Similarly bounds arise from
the fermionic line possibilities. If this estimate is also an upper bound (after
reduction of the amplitude) then the series will have a finite radius of convergence in
G. This is a very important question which will be possible to analyse in more detail
when complete reduction has been achieved.

The initial impetus to the search for proof of finiteness in superstring theory was
the 1-loop finiteness results for the type I SO(32) superstring [15]. It is therefore
relevant to attempt to extend the above finiteness results to this case. The problem is
made more difficult by the need to regularise separate 1-loop diagrams in a special
way in order to obtain the SO(32) cancellation. A recent suggestion [36] that such
regularisation follows automatically from construction of the different diagrams
from the same closed surface is encouraging since this may lead to testing if a similar
technique will succeed at higher order. The analysis given in this paper will be of
relevance to such an attempt, as will the construction of type I multi-loop
amplitudes by L.C. gauge techniques [37].

Another question of great physical import is as to whether or not the above
results extend to a non-trivial background space-time. It may be that criteria on the
background in order to have finiteness at any loop order could be deduced so as to
give even stronger conditions than those obtained by ^-function conditions. It is
hoped to report also on this question elsewhere.
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Note added in proof. In order to preserve stability (and hence supersymmetry) of the L. C. gauge
field theory of ref. [9] it is necessary to add quartic contact terms to the cubic ones used in the
above analysis [38]. These terms have been constructed in detail [39] and modify the analysis of
Type II divergences of Sect. 5. In particular the boundary terms in (5.25, 5.26), which are
themselves of contact form, must be modified. It is expected that the total set of these contact
terms will be zero (by supersymmetry). The new contact terms do not appear to modify the results
on heterotic finiteness of Sects. 6 and 7. A more complete analysis of this will be presented
elsewhere [40].




