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Abstract. The local generators of symmetry transformations which have
recently been constructed from a quantum field theoretical version of
Noether's theorem are shown to converge to the global ones as the volume
tends to the whole space. The proof relies on the continuous volume
dependence of the universal localizing maps which are associated to the local
split W*-inclusions.

1. Introduction

A new approach to a quantum Noether theorem has recently been set up [1-3] in
the algebraic formulation of quantum field theory [4]. In a given theory, let tF(G)
be the von Neumann algebra which is generated by the field operators which are
localized in the bounded space-time region G. Let G be the group of space-time and
internal symmetries, and let Ju for each u in the Lie algebra ^ of G denote the
corresponding selfadjoint generator of the global symmetry transformation. The
quantum Noether theorem then asserts that there exist local field operators which
induce that symmetry locally.

The construction of these local generators is based on the so-called split
property [5] (see below) which may be understood as the possibility to decouple a
region G completely from any other region which is separated from G by a finite
spacelike distance. Assume that 2? possesses the split property, and let G and Θ be
bounded space-time regions such that G + x C G for all x in some neighbourhood of
the origin. Then for each u e & there is a selfadjoint operator J®u'® which is affiliated
to 3F(φ) and induces on 3F((S) the infinitesimal symmetry transformation w, i.e.

(1.1)

and for sufficiently small λ

- iλJu / j 2)
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Actually there is a canonical choice for JjJ * which depends only on the triple
Λ = (tF(0\y(@)9Ω\ where Ω is the vector representing the vacuum [2].

The local generators JΘ

U'Φ are analogues of the (regularized) integrals of the
zero-component of the Noether current associated to u in a Lagrangian field
theory. Similarly to them they transform covariantly under global symmetry
transformations. It is a major open problem in the general setting to recover such a
current from the correspondence 0,$-»JjjΛ

However, the correspondence u^>J®u'® has some unexpected remarkable
properties which are not shared by its analogue in Lagrangian field theory:

(i) It is a representation of .̂ This leads to a rigorous variant of current
algebra, which relies on first principles only [2].

(ii) It is quasi-equivalent to the global representation w-> Ju of ̂ , in particular,
the local energy momentum operators have the same spectrum as the global
ones [3].

The construction of J^'^ is rather indirect, and it seems to be very important for
further applications to understand the functional dependence of Ju on the pair Θ, Θ
in more detail.

In this paper we want to study the question whether J&

u>® tends to Ju as & and &
tend to R4 in a suitable way. Actually, for the integrated densities this question is
nontrivial either; in this case, it has been answered in a satisfactory way first by
Requardt [6].

In Sect. 2 we prove a very general result: for every non-decreasing sequence of
regions 0n there is a sequence &n 3 Θn such that

Ji»*"->JB (1.3)
in the strong resolvent sense.

Actually we find a convergence which is even somewhat stronger. To explain
this recall that

, (1-4)

where ψΛ is the "universal localizing map" associated to the triple
A = (3?(Θ\ 3?(Θ\ Ω) [5, 3]. ψΛ is a "-isomorphism which maps @(3f\ 3f being the
Hubert space on which the von Neumann algebras ^(Θ) act, onto the canonical
type / factor JfA between &(Θ) and &(&) [2, 5]. For the sequence 0Π, &n alluded to
before we show that ψΛn, Λn = (^r(@n),^r((9n\Ω) converges pointwise strongly to
the identity,

WΛ (B) - > B strongly for all B e $(2%} . (1.5)
n H-+OO

Now let A be a (possibly unbounded) selfadjoint operator on J^. Then
An = ψΛn(A) is a selfadjoint operator with the same basic measure class1 as A and

g(An) - >g(A) strongly (1.6)
n->ao

for each bounded Borel function g on R.
The convergence (1.5) of the localizing maps follows from a generalized cluster

property. Let ω0 denote the vacuum and φn the product state on

1 By the split property 3? is automatically separable [5]
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which coincides with ω0 on ^(On) and on ^(&n)'. Then (1.5) is a consequence of

0. (1.7)

The generalized cluster property (1.7) is always fulfilled in theories with the split
property if @n tends to R4 sufficiently fast. In general, there is no control on the
required increase of Θn. In the special case of a dilation invariant theory, with &n

and Θn denoting the double cones centered at the origin with radii rn and Rn9

respectively, (1.7) holds if and only if RJrn tends to infinity (Sect. 2); in the case of a
£

massive scalar free field with mass m it suffices that rn-»oo and Rn — rn^ —logrnmm
for some constant c which depends on the space-time dimension (Sect. 4).

In more general theories information can be obtained from the behavior of a
generalized "partition function" ZBW(β, Θ\ This quantity has been introduced in
general quantum field theories by Buchholz and Wichmann [7] and is defined as
the nuclearity index of the set e~βH^(&)ιΩ9 where H denotes the Hamiltonian, Ω
the vacuum vector and 3F(&}± the unit ball in 2F(&\ If the Buchholz-Wichmann
partition function is finite for finite volumes and does not increase too fast with the
temperature, the theory has the split property [7, 8]. Moreover, if the volume
dependence is reasonable, one expects that KMS-states for all positive tempera-
tures exist [9], and one may hope that the theory has a complete particle
interpretation (asymptotic completeness) [10]. In Sect. 3 we show that the
generalized cluster property (1.7) and therefore also the convergence of local
generators of symmetry transformations can be controlled by the Buchholz-
Wichmann partition function. This yields the desired convergence whenever

c

r

rπ-»oo and Rn — rn^ — (logmrj2, for a suitable constant c' depending upon the
m

"effective" space dimension.
In the second part of Sect. 4 the estimates for the norm difference between the

product state and the vacuum in the case of the free scalar massive field are used to
construct theories which have a minimal splitting distance.

We close this section with some comments on our basic assumptions. They
concern the local field algebras ^(&) which, in presence of superselection rules, are
not generated by observable quantities. However, it is worth stressing that the
existence of the compact group G of gauge transformations of the first kind, and of
the net 0-^^(0) of algebras of field operators with normal commutation
properties [so that the G-invariant part of ^((ΰ] coincides with an appropriate
representation of the algebra 21(0) of all observables that can be measured within
(9~\ can be derived from few basic principles on the net of local observables 0-*3l(0)
given as von Neumann algebras on the vacuum sector Hubert space J f0 [11];
when G is commutative, see [12].

Our main assumption is that, whenever 0, Φ are double cones and (9 lies in the
interior of @, (3?(Θ\3?(@),Ω) is a standard split W*-inclusion.

Recall that a standard P7*-inclusion is a triple A = (31,93, Ω) consisting of von
Neumann algebras 31C 93 acting on a Hubert space 3? and a vector Ω e 2tf which is
cyclic and separating for 21,93 and 3IΆ 93, 3Γ denoting the commutant of 31.
Moreover A is split if there is a type / factor Jf so that 31 C./ΓC 93 [5].
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Under the split assumption, by the normal commutation properties of
spacelike separated field operators, the standard character of the vacuum vector Ω
follows from the Reeh-Schlieder theorem [2]. The most characteristic assumption
is the split property, which as discussed above seems to be characteristic of
reasonable theories.

The split property for the net of observables 91 can be interpreted as a principle
of local preparation of states [3, 27]. The split property for 3F implies the split
property for 21; the converse holds in special cases, e.g. if G is finite abelian, and
it is an interesting open problem whether it holds more generally [1].

2. Cluster Properties and Continuity of ^-Inclusions

In this section we shall investigate the connection between clustering and
continuity properties of inclusions of von Neumann algebras.

Given a standard split W*-inclusion A there is a normal state φΛ (the product
state) on 21 v 95' (the von Neumann algebra generated by 21 and by 95') with

φA(Aff) = ω0(A)ω0(Bf) , A e 21 , ff e 95' , (2.1)

where ω0 denotes the state on $(2tf ) induced by Ω, and a unique vector ηΛ in the
natural cone Pβ.gjvs' which induces φΛ. ηΛ is cyclic and separating for 2Iv33'
(hence for 2l'n95).

The vector ηΛ can be used to define a unitary operator UΛ from 3C onto the
tensor product space

AeM, FeS'. (2.2)

The universal localizing map ψΛ is now defined by [5, 3]

. (2.3)

ψΛ is a *-isomorphism ofόSffl) onto the canonical type / factor JfA between 21 and
95, and it acts trivially on 21.

Crucial for the following discussion is the fact that the distance of vectors in the
natural cone can be estimated by the distance of the induced states, i.e. one has (see
e'g'[13]) \\ηΛ-Ω\\2^\\φΛ-ω0\\. (2.4)

This is the basis for a connection between the convergence of the universal
localizing maps and the generalized cluster property (1.7).

2.1. Theorem. Let An = (2ΪW, 33n, Ω) be a sequence of standard split W*-indusions
with 21 ! C 2ίπ for all n. If \\ φΛn — ω0 1| ->0 for n-+ oo the universal localizing maps ψΛn

converge pointwise strongly to the identity.

Proof. By (2.4) || φΛn — ω0 1| ->0 implies ηΛn-+Ω, hence from the definition of UΛn and
from 21̂ 21,, for all n

Ω is cyclic for 2I1? hence for all Φe Jf,
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In particular, for

But from the definition of ψΛn (2.3) this means

ψΛn(T)AηΛn^TAΩ.

ηΛn tends to Ω, Ω is cyclic for 91 ± and ιpΛn is uniformly bounded, hence ψΛn(T)
converges strongly to T. q.e.d.

2.2. Corollary. Under the same assumptions, the transpose of the maps ψΛn of
Theorem 2.1 converge strongly on the predual of (̂J f ).

Proof. By a 3ε argument it suffices to consider vector states ω = (Φ, Φ). By the
relations

l, UnΦ)-(Φ®Ω,

the assertion follows as in the Proof of Theorem 2.1. q.e.d.

As anticipated in the Introduction, a very restrictive notion of convergence on
operators follows immediately from Theorem 3.1.

2.3. Corollary. Under the same assumptions, for each selfadjoint (possibly un-
bounded) operator A on J f , the selfadjoint operators An = ψΛn(A) have the same basic
measure class as A and, for each bounded Borel function f on R, f(An) con-
verges strongly to f(A) as n-»oo.

The generalized cluster property (1.7) holds under very general circumstances.
The following result which we reproduce for the convenience of the reader follows
from a generalized Powers argument [14-16].

2.4. Proposition. Let ΛΠ = (9I, Sπ, Ω) be a sequence of standard split W* -inclusions
with an increasing sequence 93Π. Then

if and only if SB = \J 93 „ is irreducible.

Proof. Let fn be the ultraweakly continuous linear functional ψΛn — ω0 on the von
Neumann algebra ^π = 3IvS^. By the standard split property, Stn is spatially
isomorphic to 91(8)93; (see e.g. [17]). Thus if 23 is irreducible we have

Now /„ =/! \ @n and /„ \ 91 = 0. Then || /„ || ->0. Otherwise \fnk(Tk)\ ^ δ for some δ > 0
and for a sequence Tke^Wk, ||TJ = 1, nk->oo. The sequence Γfe has a weak limit
poiflt T. T belongs to 91 and |/ι(T)| ^<5, in contradiction with the definition of/!.
Conversely, if || (̂ n — ω0 1| ̂ 0, then φΛn — ω0 \ 9Iu95' = 0, i.e. ω0(^4C) = ω0(^4)ω0(C),
^ e 91, C e 23'. Since Ω is cyclic for 91 and separating for 95' C 93; we get CΩ = ω0(QΩ
and C = ω0(C)l. q.e.d.

The application of the abstract results to the field theoretical problem is easy.
Let ^((9) for bounded open regions 0 be the von Neumann algebras of local field
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operators acting in some Hubert space, and assume isotony,

(2.5)
and irreducibility

(2.6)

Furthermore, assume that for each (9 there is an $D$ such that
Λ0 ^ = (tF(Θ\ ^(Θ\ Ω) is a standard split W*-inclusion. Then we find immediately
the following result:

2.5. Corollary. Let (9n be a nondecreasίng sequence of regions. Then there is a
sequence of regions &n 3 On such that

and \pAβ b ->id pointwise strongly.

The results discussed so far yield the desired convergence of local charges.

2.6. Theorem. Let @n be a nondecreasίng sequence of double cones. Under the above
assumptions there is a sequence of double cones &n D &n such that, for each generator

in the sense that the basic measure classes are the same and for each L°° function /,

-yVJ strongly.

More generally (even if the global gauge group is not a Lie group), given any global
charge operator Q (i.e. Q belongs to the center of the von Neumann algebra
generated by the global internal symmetry transformations), the corresponding
local charge operators, Q&n'&n = ψAΘ & (Q) [2] converge strongly to Q.

A further consequence of the preceding discussion is the convergence of
"globalized partial states." Let ω be any normal state on &(3f). The globalization
of the partial state ω \^(&n) is ω o ψA^ dn = ωn. By Corollary 2.2 (ωn) converges in
norm to ω as n-*oo.

A purely algebraic argument as above cannot say how fast (9n has to grow with
respect to Qn (cf. Sects. 3 and 4).

For instance in a dilation covariant theory there are automorphisms δλ of
^ = ̂ * /(j &(β)\ , λ > 0 such that ω0 ° δλ = ω0, δλ(&(Θr)) = ̂ (®λr\ where (9r is the

V < ? /
double cone of radius r centered at the origin. Then for each λ>0, \\φ<r>rt0R — o)0\\
= || φoλr,φλR — ω0 1|, and by Proposition 2.4 we have that || φ&r^R — ω0 1| ->0 as r^> oo
if and only if R/r-+co.

We conclude noting that similar convergence properties hold if we keep &
constant and let (9n shrink to a point, using instead of the irreducibility assumption
(2.6) the following property

<C l if f}(9n = {point},
n n

which follows from the general structure of quantum field theory [18].
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We turn now to a brief discussion of general continuity properties of standard
split W*-inclusions related to the continuity of local currents at finite Φ, Θ.

If 9IW is an increasing (respectively decreasing) sequence of von Neumann
algebras such that \/9lM = 9I (respectively /\Mn = 91) we shall write 9lw/'9l
(respectively 9IW \ 91).

Lemma 2.6. Let 9IΠ be a monotone sequence of von Neumann algebras with 9IΠ /* 91
or 9IM \ 91 and Ω, η cyclic and separating vectors for 91 and 9ίπ for all n. Let Jw J and
ΛWA denote the relative modular conjugation and the relative modular operators of
9ΪM, 91, respectively, with respect to the pair Ω, η. Then Jn-*J in the strong operator
topology, and Λn-^A in the strong resolvent sense.

Proof. In the case 9IΠ / 91 the statement follows by an application of Lemma A.I
(Appendix) to the closure of the antilinear operator AΩ^>A*η, ^4e9In. The case
9In \ 91 may be obtained from the first case by looking at the commutants. q.e.d.

2.7. Proposition. Let 9In be a sequence of von Neumann algebras such that 9lπ /* 91
or 9ϊπ \ 91 and let Ωbea cyclic and separating vector for all 9ΪΠ and for 91. Let φbea
faithful normal state 0/\/2In and ηn, η the vector representatives of φ \ 9In and φ \ 91
in Pβ(9ίM) and P (̂9Ϊ), respectively. Then \\ηn-η\\^0.

Proof. For simplicity we shall prove the proposition only for the following
particular cases which suffice for our applications:

(i) 9IΠ \ 91 and ι/! is cyclic for 91 .

(ii) 9IΠ /* 91 and η is cyclic for 91 .

The general case can be obtained similarly.
(i) Since ηί and ηn induce the same state on 9IM, the formula (91 ̂  = 9ϊ, η^ = η)

VnAηv=Aηn, ,4e9Iw5 neNu{oo},

determines a unitary Vn e 9IJ,. Since Vn maps (̂91,,) onto Pjn(9lw), Vn is nothing but
the standard implementation (cf. e.g. [5, Appendix]) of the identity on 9IM with
respect to the cones (̂91,,) and Pjn(9Iπ) = P^(9In), and therefore

y — T(n) j(n)
yn~JΩ JΩ,ηι J

where J^ and J^^ are the modular conjugation and the relative modular
conjugation of 9ΪM, neNu{oo}. By Proposition 2.7 we have J($-+J(Q} and
Jfitlni^J^li in the strong operator topology, and hence

(ii) In this case ηn and η induce the same state on 9IΠ, thus one defines a unitary

τς6 a; by

One finds

Λ7 _ Ί(n) Ύ(ri)
yn~JΩ JΩ,η

and proceeds as in the first case, q.e.d.
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2.8. Theorem. Let (9lπ, 93Λ, Ω) and (91, 95, Ω) be standard split W*-inclusions acting
on #e such that 9IΠ /" 91 and »„ \ » ("or 9IM \ 91 αwd 93Π /• S;. Γλen ίAe canonical
product vectors converge in norm and the universal localizing maps converge
pointwise strongly.

Proof. Due to the split property 9lπ v &'„ / 9ί v 23' (respectively 9ίπ v 93; \ 91 v 93').
Thus the first assertion follows immediately from Proposition 2.7 applied to the
canonical product state. The convergence of the universal localizing maps follows
then as in Theorem 2.1. q.e.d.

The last theorem tells us that the natural interpolating type / factor
j\rn = \pn(^(^f}\ ψn denoting the universal localizing map associated to (9ίn, 33 „, Ω),
converges in a precise sense to Jf = ψ(^S(jf)). A similar continuity property holds
for semistandard pseudonormal W*-inclusions (as defined in [5]).

In Quantum Field Theory, Theorem 2.8 applies immediately to yield the
continuity of the local generator J®t& provided the correspondence 0->^(0) has
certain continuity properties. Let us write 0Π \ 0 (respectively &„ ? &) when &n is a
nonincreasing (respectively nondecreasing) sequence of double cones with the
double cone Θ as intersection (respectively as closure of the union). We call the net

continuous if
if 0B\0, (2.7)

if 0 Λ /'0. (2.8)

Note that (2.7) would follow from twisted duality [12, 1].
Now let 0-^(0) be continuous and let Θn S 0, &n \ Θ or 0W \Θ9&n/

t &. Then

pointwise strongly, and the local generators J®n'®n converge as above to J&

u'
φ.

3. The Rate of Clustering and the Buchholz-Wichmann Partition Function

Buchholz and Wichmann [7] have shown that the split property of local algebras
can be derived from a so-called nuclearity condition. This condition expresses in a
certain sense the expectation of old quantum mechanics that locally there are only
finitely many states with finite energy. It is stronger than the similar Haag-Swieca
compactness criterion [19] and is thought to imply the existence of temperature
states for all positive temperatures. It is based on the set of operators

where H is the Hamiltonian2. Tβί& can be represented as a pointwise converging
sum of rank 1 operators

(3.1)

where φ is a bounded linear functional on 3F(G) and ΦeJf. The Buchholz-
Wichmann partition function ZBW(/?, &) is now defined by

ZBWOΪ,0) = 1+^08,0), (3.2)

' Ω is the ground state vector of H, unique up to a phase, and ω0 is the state induced by Ω
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where </T(/?,0) is the nuclearity index of the set Tβ Q(^(Θ)V\ &(G)ι denoting the
unit ball of

rank 1 for all i and T^=^tt}. (3.3)
i i j

We assume that ZBW satisfies the bound

ZBv(β9Θ)£e«™*«)9 (3.4)

where in analogy to thermodynamics υ(G) > 0 may be interpreted as the (spatial)
volume of the system and p(β) as the pressure, β denoting the inverse temperature.

Buchholz and Wichmann have shown that for the free massive scalar field one
gets

v(βr)^cr3, r^-
m

and
e~mβ. (3.5)

One may therefore assume in (3.4)

β-(n + 1}e-mβ (3.6)

for some rc>0. According to Buchholz and Wichmann the bound (3.6) on the
pressure implies the "distal split property," i.e. for each Θ there is an Θ D & such that
(J*(0),2?(®\Ω) is a standard split py*-inclusion [7].

The proof of this fact relies on an estimate of the norm distance between the
product state φΛβ b and the vacuum. Thus we can use the methods of [7] for our
problem.

Let Θ C Φd be double cones with β + teC Θd for \t\<d9 where e denotes the unit
vector in time direction. Let Ate^(G\ B\t$'(Q$, i=l,...,n, rceN, such that
||Σ^i^/ll ^ 1, and consider the function

ί Σ {(Ω, A^B'fί) - (Ω, A£2)(Ω9 B'^)}, Imz > 0,

/(*)= ' (3'7)

^{(Ω9B'ie~izHAfί)-(Ω9AiΩ)(Ω9B'iΩ)}9 Imz<0 or |Rez|<d.
/ »

Due to the spectrum condition, / is analytic in the cut plane

Moreover, / is bounded by Σ Mi II I I Bί II and satisfies according to (3.2) the estimate

), (3.9)

where the r.h.s. is independent of AhB't.
Buchholz and Wichmann have already shown that this implies that |/(0)| is

bounded by a constant c(j^,d) with c(.yΓ,d)->Ό for d->oo; thus

Il^,^-ω0|| = sup|/(0)|^φT,d) (3.10)

tends to zero for d-^cc.
We want to give a more explicit estimate. For this purpose we use the following

lemma whose proof is deferred to the Appendix (Corollary B.2).
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3.1. Lemma. Let f be analytic and bounded in the cut plane (Cd, and assume that f
fulfills for ImzφO the inequality

|/(z)|^N(|Imz|), (3.11)

where N is a positive, unbounded, twice differentiate, monotonίcally decreasing and
strictly logarithmically convex function on R+. Then

| ̂  N(β0)e - /ΌOogΛO'tfo) 9 (3.12)

where β0 satisfies the condition

«tT4*-'S^}-
3.2. Theorem. // the nuclearity condition (3.4), (3.6) is fulfilled, there are constants
cΐ,c2>0 such that for d>cί/m,

ne-~d}-l. (3.14)

Proof. For all αeR the function / in (3.7) satisfies the bound

|l+VY(z)|^ZBW(|Imz|,tf), (3.15)

N(β) = ZBW(β,&) = Q\p{v(&)β~ne-mβ} fulfills the conditions of Lemma 3.1, thus

1 + 1/(0)| = sup |1 +ei«f(z)\^N(β0)e-βo(lo*Ny(™ . (3.16)
αelR

To determine β0 we evaluate (3.13). We obtain

o o / \
d^ -β0(log2 + n) + -βl + - -log 1 + -β0 ). (3.17)

π π π m n

Thus j80 ̂  — (]/πmd — c'\ where c r>0 depends only on n. Inserting this upper
m

bound for β0 into (3.16) we obtain the estimate

|/(0)| ̂ exp{c2v(&)mne-^™*} - 1 (3.18)

for d>cl/m, where c1 ?c2>0 depend only on n. The statement on the norm
difference \\φ&)&d — ω0|| follows now as in (3.10). q.e.d.

The function v(@r) is expected to be bounded by the volume in general [7], i.e.
for large r

v(&r)^ const r3. (3.19)

In theories fulfilling (3.19), by the discussion in the previous section, Theorem 3.2
yields the convergence of the localizing maps ^>orf&r+d and of the associated local
charges or currents provided that (r is bounded below and)

d/(logr)2-+oo; (3.20)

£

when r-»oo it suffices that md^ — (logmr)2 for a constant on2, where
π

v((9r)<^ const r", r^l/m.
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As discussed in the next section, explicit bounds on \\φ<pr,or+d — ω0|| in the case
of a free massive field [which could be extended to generalized free fields with a
sequence of masses compatible with assumptions (3.4)-(3.6)] yield a condition
weaker than (3.20) [cf. (4.14)]. It is an open problem whether by a different method
condition (3.20) can be improved in a general theory.

4. The Rate of Convergence in the Free Massive Case;
Models with Distal Splitting

For the free massive scalar field the estimates of Buchholz and Wichmann of the
nuclearity index [7] together with the results of the preceding section lead to an
estimate of the rate of convergence of local charge operators. These estimates can
be improved by a different method.

According to Sect. 2, it is sufficient to estimate the norm distance
\\<Pe>r,0r+d — ω0||. In the present case such an estimate can be obtained in the
following way. Using the method of [17] one finds two vectors Ω® Ω and ξ in the
duplicated theory inducing the states ω0 and φφr^r+d respectively. The norm
difference of the states can then be estimated in terms of the norm difference of
these vectors.

4.1. Theorem. In the vacuum Hubert space of the free massive scalar field there is a
vector Φ inducing the product state φ&r,&r+d such that

(md)2e~md. (4.1)

Proof. We choose Φ as that vector representative of φ&r,&r+d having the smallest
distance from Ω,

&r9&r+d), (4.2)

where d denotes the Bures distance [20, 12]3. Clearly (Φ,Ω)^0, thus

||Φ-β||2 = 2|l-(Φ,β)|. (4.3)

To estimate the Bures distance we construct a vector representative of φ&rfor+d

in the vacuum Hubert space of the duplicated theory &-^^(&)®^(G)^ΎhQ
duplicated theory is the theory of two hermitian fields φί = φ®l and φ2 = 1 ® φ,
where φ denotes the free field in the original theory. There is a global gauge
symmetry φί + iφ2-^ei<x(φι + iφ2) with a corresponding conserved current

(4.4)

For a suitable test function /,

f Λv ίv\ v r- SO

(4.5)

3 The Bures distance of states is equivalent to the distance given by taking vector representatives
in the natural cone [13, 18]
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Hence ζf = eijo(f)Ω®Ω induces the product state φ&r>&r+d,

(ξf,(A®\)ξf] = φ&r,&r+d(A), Ae2F((9r] v <F(GT+J, (4.6)

and Ω®Ω induces the vacuum state. We have

\\ξf-(Ω®Ω)\\ = ||(*y°^-l)(β<g)β)|| ̂  ||7o(/)(0(g)fl)||, (4.7)

where the last inequality comes from the functional calculus since |e f ί—l|^|ί|. A
standard computation yields

||jo(/)(fl®fl)||2 = ϊ dρ(κ2)ί-^=\n\/^+^^)\2\P\2, (4.8)
4m2 2j/p2 + κ;2

/ 4 m 2\l/2

where dρ(κ2) = const I 1 ^~) ^ -
V κ /

It remains to find a suitable function /. Adopting an idea of Requardt [6] we
use a variable time smearing and define

where χ is the characteristic function of the 3-ball of radius r + - and g e ®(R) with

Jg = l and suppgC(—1,1). / has the desired properties (cf. [17]). Using the
estimates

CΞ

 4l^
(*2)ί77Ϊ=i lpl2(IPl2 + κT3«» (4.10)

and

|χ(p)|^π(V+|)3, (4.11)

we find

sup |ω3g(ω)|2 . (4.12)
^md \α/

Proceeding as in the proof of exponential clustering by Haag and Swieca [19] we
now take the infimum over all admissible g on the right-hand side. In the Appendix
(Lemma C.I) we show for α>0

.

inf sup|ω3g(ω)|^constα 2e 2. (4.13)
ge@(- 1, 1) ω^α

J f l f = l

Inserting (4.13) into (4.12) and (4.12) into (4.7) gives the desired upper bound on the
Bures distance, q.e.d.

4.2. Corollary. For the free massive scalar neutral field one has the estimate

- mde~md/2 .
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Proof. If the vectors Φ and Ω induce the states φφrtor+d and ω0, respectively, one
has the bound

The statement follows now from Theorem 4.1. q.e.d.

Therefore we have the desired convergence of local currents whenever (r is
bounded below and)

d/logr-κx); (4.14)

when r-> oo is suffices that md ̂  2c log wr for a constant c larger than the space time
dimension.

The estimate obtained in Theorem 4.1 is good enough to construct examples of
theories with a nonzero splitting distance, i.e. there is a "splitting distance" d(r) > 0
such that the inclusion ^(&r)C^(&r+d) is split for d>d(r) and is not split for
d<d(r).

The idea is to consider generalized free scalar fields φμ with K^llen-Lehmann
measure ^

dμ(κ2)= Σ Cnδ(κ2-m2

n)dκ2 (4.15)
« = ι

such that ΣCne
amn< oo for some α>0. In [5] it has been shown that the algebras

^(Θ) generated by φμ are isomorphic to infinite tensor products of the algebras
^mn(&) of the free field with mass mn with respect to the product state
ω0 = ω(

0

mι) x ... x ω(™n) x . . ., where ω^m) denotes the vacuum state for the free field of
mass m. These theories have (for a suitable sequence of masses mn) a maximal
temperature 7^ax [9]. Here we show that (under essentially the same conditions)
they also have a nonzero splitting distance d~ 7 .̂

4.3. Theorem. Given any d0>0 there is a generalized free field with splitting
distance d(r) such that

d0^d(r)^2d0

forallr>0.

Proof. According to Theorem 4.1 there is for each m > 0 a vector Φ(m) in the Hubert
space ^f(m) of the free field with mass m which induces the product state φ(^&r+d

and satisfies the bound

1 1 - (Ω(m\ Φ(w))| ̂  fc(r, d)m8e ~ md (4. 1 6)

for some constant K(r,d). Let mn= — -log(rc+ 1). Then for d>2d02d0

Σ \\-(Ω(m\Φ(m}}\^k(r,d)(^\ Σ (log(n + l))8(n + l)"^<oo, (4.17)
n = l \^0/ n=ί

thus (x)Φ(Wn) is an element of the incomplete tensor product ((x)^f(mn), (x)Ω(mn)).
Since it induces a product state the inclusion ^(Θr}C^(Θr+<^ is split, hence
d(r) £Ξ 2d0 for all r (cf. [5]). Below we shall establish the lower bound

d)m1/2e-md (4.18)
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for mr>l and some constant C(r,d)>0. Thus for d<d0,

Σ llω^-φ&LJ2^ Σ C(rίd)2-\og(n + ί)(n+\)~^=κ, (4.19)
n=l

mnr>

hence from [5] the inclusion ^(&r)C ^(@r+d) is not split for any r, i.e. d(r)^d0.
It remains to prove the bound (4.18). Let /, g be real test functions with

supp/C0r and suppgC@'r+d. The Weyl operator eiφ(f+9} is a unitary in
J hence

e~(f^-\\ (4.20)

with (/, g) = (0(/)Q,φ(g)fl) and || /1|2 = (/,/). Note that (/, g) is real by locality.
Replacing / and g in (4.20) by λf and λg, respectively, with || /1| = || g || = 1 and λ > 0
and maximizing with respect to e~λ2 we get

Λ + \

I I ωom)-φ0™!<^+J^ &(!+&) ^ + ' ^ 4 & (4.21)
with b = |(/, g)|, where the second inequality holds since Orgfe^ 1.

A bound which though not optimal is sufficient for our purpose can be
obtained by choosing /, g as appropriate translates of the same function. Let χ be
the characteristic function of #ε = {xeR3 | |x|^ε}, 0<ε<r and h(x) = χ(x)δ(x°).
Then choose a, b e R3 such that |a| + ε < r, |b| - ε > r + d and |a - b| ̂  d + 3ε. Then
inserting f=ha\\h\\~\ g = /zb | |/z|Γ1 into (4.21) gives

il* I, \
\\ωW — φW II

One has

cε3)2 inf

ίy'l. ""="""' (4.23)
with

and
J3~ Λ Λ

(4.24)

Using the lower bound (Lemma D.I)

m2

J + (0, c, m2) ̂  (2π) ~ 3/2(m|c|)" 3/2 — e ~ m|c|, (4.25)

we find (4.18) by setting ε= — which is admissible if rm> 1. q.e.d.
m
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Appendix

A. Monotone Continuity of the Polar Decomposition

A.l. Lemma. Let A be a closed densely defined linear (or antίlinear) operator on a
Hilbert space Jtf* with domain D(A). Let Dn C D(A) be an increasing sequence of dense

oo

vector spaces such that D= (J Dn is a core for A. Denote by An the closure of A \Dn
n=ί

and put

A = VH, An=VnHn (A.1)

for the polar decomposition. Then

Vn-*V strongly (A.2)

and

Hn^H in the strong resolvent sense. (A.3)

Proof. We follow [21] (see also [22]). Let 2tfA be the Hilbert space D(A) with the
graph norm

| |x | | 2 HI*ll 2 +M*ll 2 , xeD(A). (A.4)

Let Γ denote the identification map from J^A onto D(A) as a subset of $?. Clearly
II/ΊI ^1. For x,yeD(H2) we have

(Γ- 1χ, Γ~ly)A = (x, y) + (Ax, Ay) = ((1 + A*A)x, y)

= ((1 + H2)x,y} = ((\ + #2)1/2x,(l + #2)1/2j;), (A.5)

and since D(H2) is a core for H, i.e. Γ~1D(H2) is dense in jf?A, W=Γ~ *(! + H2)~1/2

is a unitary operator from Jίf onto j f A ; analogously WH = Γ~i(i +#2)~1/2 is an
isometry from Jίf onto the closure of Γ~ίDn in jjfA. Since D is a core for A, the
projections WnW* converge strongly to 1 in jtfA. By the formulas (A.5) we also have
JT* = (1 +/J2)-1, ΓW;w;*Γ* = (l +H2Γ\ hence Hn converges to Hin the strong
resolvent sense.

It follows that for ye/)((ΓΓ*)-1) = i)(/ί2), and xε jf

(Γ-iy9(WH^W)x) = ((ΓΓ*Γly9L(ί+HίΓ1/2-(ί (A.6)

As Γ~[D(H2) is dense in j(fA9 this proves that the isometrics Wn converge weakly
(hence strongly) to the isometry W. Furthermore, ||.4nΓ||^l and AnΓ^AΓ
strongly, hence

AnΓWn^AΓW strongly. (A.7)

But AnΓWn=VnHn(\ +#2)~1/2, AΓW= VH(i +H2)~1/2, thus

-»0 strongly, (A.8)

where we used (A.7), the strong resolvent convergence Hn-*H and the uniform
boundedness of Vn. We conclude that Vn^>V strongly on (kerfί)-L=:(kerF)-L hence
everywhere, since ker Vn C ker V. q.e.d.
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B. An Inequality of the Phragmen-Lindelδf Type

In this appendix we prove Lemma 3.1.
First we derive a class of estimates which are related to Jensen's inequality by

suitable conformal mappings.

B.l. Proposition. Let f be an analytic bounded function in the cut plane <Cd = {z e <C,
|Rez|<d or ImzφO}, and assume that f fulfills for ImzφO, the inequality

\f(z)\£N(\Imz\), (B.I)

where N is a positive continuous function on ]R+. Then one has the following
estimate

where h is an arbitrary positive continuous function on IR+ with

2
-
n o

(B.3)

Proof. Let /φO (otherwise the statement above is trivially satisfied). Let g be
analytic in the unit disc {ze(C| |z|<l} with g(0) = 0 and g(z)eCd. Then fog is
analytic in the unit disc, and according to Jensen's inequality one has for 0 < r < 1,

(B.4)l/(0)| = l/o g(0)| ̂  exp do log l/o g(re

iθ)\ \.

To perform the limit r-»l in (B.4) we consider the sequence of nonnegative
functions

φn(θ)=-\og f°g

with c = log sup |/(z)|. Fatou's lemma yields

lim inf J dθφn(θ)^ J dθ lim inf φa(θ),
Λhence

2π

lim sup J dθlog
n 0

f,°g

2π

^ J dθ lim sup log

According to the assumptions one has the estimate

lim sup log f°g ^ lim sup log NI
Λ V

Img
n+1

(B.5)

(B.6)

(B.7)

(B.8)

[we set ΛΓ(0)= oo]. If Img(r^ίβ) converges almost everywhere for r tending to 1 to
, the limit on the right-hand side of (B.8) is equal to

(B.9)

almost everywhere. Thus we find under these conditions the estimate

--
2π o
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Now we want to use the function h of the theorem for the construction of an
analytic function g with the desired properties. Let /zeL1(R+) be a positive and

2
continuous function with — \\h\\ 1 ̂ d. We set

π

Λ1(θ) = αΛ(-logtanβ/2), 0<0<f, (B.ll)

where α>0 will be fixed later on, and extend hv to a periodic function of θ with
period 2π by

(ί) M0)=-M-0),
(ii) h1(π-θ) = h1(θ), (B.12)

(iii) M0) = 0.

We then define g by the formula (\z\ < 1)

θ) (B 13)

g is the unique analytic function in the unit disc with g(0) = 0 and \imlm g(reiθ)

= h^θ) for θ Φ 0, π. Moreover, g(z) e Cd for a suitable choice of a. In fact, for Imz Φ 0
one has

(B.14)

from the antisymmetry of hl9 thus from the positivity of hί in the interval (0,π)

Img(z)^0 for

If on the other hand Imz = 0, one finds from (B.12),

2π

ί e~-z

2 π/2 ί Izl Izl
= - J dθh^smθl- - ̂ - - - + - - ̂ \ - -. (B.16)

π δ 1V ; [l+z2- 2 v ;

The expression in the curly brackets is always smaller than (sin#)~2 for zeR,

|z|<l.Thus by the substitution 0 = 2arctane~s, ds= ^-—r one obtains
sin t/

|Reg(z)| < — f dsh(s)^ad (B.17)
π o

and for a= 1, g has all properties required before.
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Finally we make the substitution θ = 2arctane~s also in (B.10) and arrive at the
theorem, q.e.d.

To apply Proposition B.I one has to find appropriate functions h. If for
example N(β) = e~mβ,m>0, the infϊmum of the right-hand side of (B.2) is obtained
by choosing a ^-sequence of positive functions /cπ, Jfc n = l, and setting hn = %dkn.

Then 2 - ds

thus |/(0)| ̂ e~md, which is the bound obtained in [26] by a direct application of
Jensen's inequality.

The main interest on Proposition B.I is its applicability to unbounded
functions N. This will be treated in the following

B.2. Corollary (Lemma 3.1). Let f and N be as in Proposition B.I and assume that N
is unbounded, twice differentiable, monotonically decreasing and strictly logarithmi-
cally convex. Then a function h with the desired properties for which the right-hand
side of (B.2) is finite exists if and only if log |(log N)'\ is locally integrable. In this case
the best bound for |/(0)| is obtained by choosing

where λ > 0 is determined by the condition

-ldsh(s) = d. (B.19)
π o

A more explicit (but not optimal) bound is

|/(0)| ̂  N(β0)eMlo*NY(M , (B.20)

where /?0 > 0 satisfies the condition

- βί
π o

Proof. A minimum of the functional

2 °° dsF(/l)=ίί^h7(logjV)M (R22)

with the constraint (B.I 9) must satisfy the equation

(iogΛW.(S))+/1 (B.23)
hence coshs

h(s) = ((logΛO') ~l(-λ coshs) = hλ(s) , (B.24)

where the Lagrange multiplier λ>0 has to be determined by the constraint.
Now let λ>0 be arbitrary and assume that there is a positive continuous

function k with $dsk(s)< oo and F(k)< oo. We consider the convex combinations

kμ(s) = μk(s) + (1 - μ)hλ(s) , 0 ̂  μ £ 1 . (B.25)
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We have for /ιA(s) Φ fc(s),

dμ {_ coshs

= [(log N)'(hλ(s) + μ(k - hλ) (s)) - (log N)'(hλ(s)J] (k-hλ) (s) (cosh s) ~1 > 0

(B.26)

due to the strict logarithmic convexity of JV, hence

F(hλ) + λ- dshλ(s) < F(k) + λ- dsk(s) (B.27)
n o 7Γ o

if hλ Φ fc. Thus provided some admissible function k exists for which F is finite, J hλ

and F(/ιA) are finite for all λ>Q. Moreover, λ-+\hλ is continuous and strictly
monotonically decreasing, and J hλ->0 for λ-> oo and J /ZΛ-KX) for /l-»0, hence there

2
is a unique λ = λ(d) with —$hλ = d. Inequality (B.27) then implies that hλ(d} is the

unique solution of the minimum problem.
We now want to investigate under which conditions the functional F is finite

for some admissible fc. According to the preceding discussion this amounts to
check whether hλ is integrable and F(hλ) is finite for some (hence all) λ>0.

Actually F(hλ) is always finite. This may be seen as follows. We substitute
, - / 1 \ , ds

s = cosh - , thus — - — = αα and
\cosα/ coshs

F(hλ) =1*? dφg JV)08(α)) , (B.28)

where β(,} = ((lo,Ny^- . Then ^(β) = co^ - and

. (B.29)

By partial integration of the right-hand side of (B.29) we obtain

F(hλ)= lim -Γ(logJV)(j81MjS1)-(logJV)(jS0)α(jS0)+ ^ dβ(\ogN)'(β)a(β)\.
^1^0 π|_ βt J

(B.30)

Using α(/?0) = 0, (logJV)Ό80)<0 for all 0<0 and the inequality

which holds for O^x^l, we find the desired bound

F(hλ) ^ Gog A00»o) - 0oOogΛO'C90) (B-32)

with j80 = ((logN)/)"1(-λ). Equation (B.20) now follows by inserting (B.32) into
(B.20) and applying Proposition B.I.
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In contrast to F(hλ), J/ιA is not always finite. By the substitution β = β(s)
= (OogΛO'Γ '(-^coshs), we find (β0 = β(0))9

oo βo Λs Γ β0 Ί

J dshλ(s)= - J dββ— = -β0s(β0)+ lim /WiH f dβs(β) , (B.33)
o o dp / J ι -»oL βι J

where s(β) = cosh -1(— (log N)'(β)/λ) and s(β0) = 0. Using the inequalities

, (B.34)

βo

which hold for x^ 1, we conclude that J dβs(β)<co if and only if log|(logΛO'(jδ)l is
o

locally integrable. Since 5 is monotonically decreasing, we have in this case

O, /ί^O. (B.35)
Hence °

βo oo /?o

j dβ log( - (log N)'(/OM) ̂  ί <faΛA(s) ̂  f d]8 log( - 2(log]Vy(jβ)M) , (B.36)
0 0 0

thus hλ is integrable if and only if log|(logiV)'| is locally integrable. Equation (B.21)
follows now from the right inequality in (B.36) by partial integration and by

)ΌU q.e.d.

C. Inequalities in ^-Spaces

C.I. Lemma. Let keZ+ and m^max(2fc,2). Then

where the infίmum is taken over all gE&(— 1, 1) with Jg= 1.

Proof. We have for all n e N, n ̂  fc

w^ (C.I)
l/2π

In Lemma C.2 below we show

(ί)| = i2"ϊi!. (C.2)

Inserting this formula with n = \ — \ , [ ] denoting the integer part of a real number,
we find for m^max(2/c,2)

1 1 / m\~n

-n~nn\ ( — } . (C.3)
2 \2n/9 ω^m

Using Stirling's formula

n\ ^nn + ί/2e~n]/2πeί/4n, (C.4)
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and the estimate

for ε = — — n < 1, we obtain

--1/2
inf sup|ω*g(ω)|^m*+v i*~e

1/4. q.e.d. (C.5)
g ω^m 4

C.2. Lemma. inf || g(w) || l = ̂ 2nn ! , n e N.
0e0(-l , l )

J 0 = l

Proo/. First we show that for all ge^(— 1, 1) and neN,

||g^||1^2«-1π!ίg. (C.6)

By multiple partial integration

ίg(x)dx=(-^ίdx^\x)9 (C.7)

and for 0^fc<n, fceZ,

fdjcx*g(ll)(x) = 0. (C.8)
Thus

|J g| ̂  πrf ^max^ |(px)| J |g<»>| , (C.9)

where Pw is the set of normalized polynomials of degree n. The normalized
polynomial of degree n with the smallest maximum modulus in the interval
[ — 1, 1] is 21 ~"Tn, where Tn(x) = cos(n arcosx) is the n-th Tschebyscheff polynomial
[23]. Thus (C.6) follows from max|Γπ| = l.

We now want to show that the bound (C.6) is optimal. Equation (C.9) becomes
an equality if g(w) has support only at the extrema of Tn, i.e. if it is of the form

n lζ<jτ

g(n)W= Σ W(x-xJ, x* = cos— (CIO)
fc = o n

with λk E <C, k = 0, . . ., n. The coefficients λk are fixed by the condition that g(w) is the
n-ih derivative of a function with compact support with integral 1. From (C.8) and
(C.9) this is equivalent to the system of linear equations

which has the unique solution λ0 = C, λk = (—l)k2C, fc=l,...,n— 1, λn = (— 1)"C,
C = 2n~1nl/(2n).

The function g so found does not belong to 2f(— 1, 1), but can be approximated
by functions in ̂ (—1,1). Let 0<ε<l and φe^( — ε,ε) with j> = l and φ^O. Set

1 ί x \
gε(x)=- - g - - . The convolution fε = gε*φ belongs to ^(—1,1) and has

1— ε \ l ~ ε / / A \ «\ / ί 1 \n n

integral 1. The rc-th derivative is fW = gW*φ= - - ^ λkφ(x-(l-ε)2xk\V I — εj k = o



346

hence

C. DΆntoni, S. Doplicher, K. Fredenhagen, and R. Longo

0<ε<l
\\fe

(n)\\ι= Σ 141 = 2"- :n! q.e.d. (C.12)

D. A Lower Bound on A+(0,a; m)

For the paper to be selfcontained, we add here a proof of the lower bound on the 2-
point function of the free scalar massive field which has been used in Sect. 4.

D.I. Lemma. Let Zl+(0,a; m) = (2π) e''k'a, aφO. Then

w 'a '. (D.I)

Proof. Let S(x) denote the euclidean 2-point function (Schwinger function),

fl^lc
c = (fc0,k), k2 = k% + k2. (D.2)

We have /d+(0,a;m) = S'(0,a), and since S is rotation invariant, S(0, a) = S(|a|, 0),
thus after integration over /c0, we find

(D.3)

(cf. e.g. [24]). Now by integration over the angles and by the substitution

W1, dω= —d|k|, we obtain
ω

00

zl+(0,a; w) = (2π)~2 J dω]/ω2 — m2e~ω|a |Ξm2(m|a|)~1X1(m|a|), (D.4)
m

where Kί denotes the modified Bessel function of the third kind of order 1 [25]. We

now set ω = m l + —I, dω = mxdx, ]ω2 — m2 =mx1 + —-, and using

1 + — ^1, we find

|. q.e.d. (D.5)
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