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in Two-Dimensional Hierarchical Heisenberg Model
of Migdal-Kadanoff Type
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Abstract. Finiteness of correlation length in the 2D Heisenberg model is
established within the Migdal-Kadanoff approximate renormalization recur-
sion formulas.

1. Introduction

Though it is well known that the two-dimensional (2D) 0(N)-mvariant statistical
mechanical models (N ̂  2) with short range interactions do not exhibit any long-
range orders [4, 18], we still do not have a rigorous proof for our longstanding
conjecture that the 2D 0(AΓ)-invariant statistical mechanical models would always
have non-zero masses for all inverse temperatures β ̂  0, provided N is larger than
or equal to 3. This problem is rather similar to another longstanding problem of
quark confinements in 4D non-Abelian lattice gauge theories [19, 1, 5]. These
problems are probably solved only by hard analysis like real space renormaliz-
ation group methods [6, 14, 20]. Unfortunately, the real space renormalization
group methods are sometimes very complicated. Thus some approximate
renormalization group methods were invented [13-15] and there have been some
analytic studies [2, 3, 6, 8, 9] though it is not easy (almost impossible) to know to
what extent the approximate renormalization group methods are precise com-
pared with the real systems. The present author recently proved that 4D non-
Abelian lattice gauge theories always exhibit quark confinements (in the sense of
Wilson) within the Migdal-Kadanoff approximate renormalization group
methods that are believed to be rather accurate as the first approximation [13,15,
10, 11], see also [16, 17].

In the case of the Heisenberg model in which sx, the spin variable at the lattice
point xeZ2, takes its values on S2 = {(s1,s2,s3)eR3; | |s||=l}, the methods
developed in [11] (see also [12]) do not work, and we need new tricks. These new
tricks together with the methods in [11] enable us to establish:

Theorem. The 2D Heisenberg model is always in the massive phase within the

Migdal-Kadanoff approximate renormalization group methods.
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Since we do not know the accuracy of the present approximate methods, this
theorem may have to be taken with a grain of salt, see the final section of this paper.
However, the analysis developed here shares some of the important features of the
real space renormalization group methods, and this conclusion is very
encouraging.

2. Models

The Migdal-Kadanoff renormalization group methods, first proposed by Migdal
[15] and later reexamined by Kadanoff [13] by his bond moving method, hold
exactly on hierarchical lattices embedded in ZD (D = 2 in the present case). See
Fig. 1 which is borrowed from ref. 3 and drawn for D = 2, r = 2 [see Eq. (la)]. Or
equivalently these hierarchical lattices are made by steps shown in Fig. 2-M and
Fig. 2-K, respectively. See also refs. [8, 9] for the construction of hierarchical
lattices.
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Fig. 1. The construction of a hierarchical lattice in which MigdaΓs recursion formula holds
exactly. This corresponds to r — 2 and D = 2. For horizontal bonds <x,x + e!>, e1=(l,0), there
correspond the standard actions Gxp[β(sx-sx+eι — 1)], and for vertical bonds <x,x + e2>,
e2 = (0, 1), we set β in exp[β(sx sx+e2 — 1)] oo (then sx = sx+β2) or 0 (then sx and sx+e2 are
independent) depending on where they are. In this figure, β= oo on the thick vertical bonds and
β = 0 on other vertical bonds. The length of the thick vertical bonds is 2pί -1 if xx = 2P1 + 2P2 +...
(Pι<P2 <•••)» and f°Γ xί=®> aH J^ are set °o on the vertical bonds. The hierarchical lattice
(corresponding to r = 2 and D = 2) of Kadanoff type is obtained by replacing 2PI -1 by 2PI +1 -1.

(α)

c)

Fig. 2-M. a A unit bond is prepared, b A string of length r is made from unit bonds, c A block bond
is made from strings made in b with their terminal points identified. Iterate these steps regarding
the block bond as a unit bond in thd next distance scale (e.g. r)
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Fig. 2-K. a A unit bond is prepared, b r unit bonds are combined with their terminal points (ut and
ut - j) identified, c A block bond is made from "bubbles" made in b. Iterate these steps regarding the
block bond as a unit bond in the next distance scale (e.g. r)

These systems obviously satisfy the following recursion relations:
(1) Migdal type:

_ f = l

(2) Kadanoff type:

g(n+ υ((sι, *2» = -̂  J Γ Π tt*\(Ui-l9 u$\ fγ\ du, ,
JV |_i=ι J ί=ι

(Ib)
_ i = ι ί=ι

where u0 = sίy ur = s2, u^S2 and du denotes the normalized measure on the unit
sphere S2. r is a positive integer larger than or equal to 2, and Jf is the
normalization constant chosen so that g(Λ+1)(l) = l. Of course, we start with

Our discussions are easily extended to the N-vector model case in which S2 is
replaced by SN~l. Moreover, we set r = 2 in Eqs. (la) and (Ib), which somewhat
simplifies our arguments. The general r case is easily discussed and our main
conclusion does not change. These checks are left to the reader as easy exercises.
(See also [9, 11, 16] on these points.)

Let e = '(1,0,0) e S2. Using the fact that S2 is a homogeneous space of SO(3), one
can rewrite (la) and (Ib) with r = 2 as follows:

Migdal type:

g(n +1 )̂  _ |- j g(")(w ~ 1 v)g(n\u)du]2, (2a)

Kadanoff type:

(u ~1 v )g(n)(w)] 2du, (2b)

where g(n\v) is redefined by g(n\(e, ve)). Here υ, ME SO(3) and du means the
normalized Haar measure on SO (3).
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Proposition 1.

(1) 1 = g<»>(l) ̂  g<»)(ι;) - gW(ι; - *) ̂  0. (3)

(2) g(n\v) is of positive type:

(3) Let {λi}f= ί be 3 x 3 traceless real skew-symmetric matrices normalized so

that \\λt\\ = ί. Define τ(z) = exp Σ ztλi τhen for any u,ί>eSO(3), g(n\vτ(z)v) is

analytic in D2n^={{z}eC3; |ImzI |^2Y}, where £ is a strictly positive constant
which may depend on β. Moreover, the bound

\g(n\vτ(z)v}\ ^ g(n\vτ(Rez)v) exp Γ^ |(Imz,)2! (5)

holds uniformly in D2n^, where C is a positive constant (chosen to be independent
o f β ) .

Proof. (1) l^g(n)(y) is trivial by Holder's inequality. Moreover, since (e,ve)eR,
(e,ve) = (ve,e) = (e,v*e) = (e,v~ίe). Thus g(0\v) = g(0\v~1). For general π, g^i?"1)
= (^ΓίLίg(n~ί\u~1v-ί)g(n-ί\u)du']\ then set u^v~lu to find g(")(ϋ~1) = g(B)(ι;).
This is obviously also the case for the Kadanoff type recursion formulas.

(2) ^zizj(e,vi

tvje)= Σ Σ(^ (yί)ι^z/yΛ^) = 0 °̂ (e>ve) ^ of positive type. Then

so is exp[/?((e, ve) — 1)] if /?^0. Functions of positive type form a positive
multiplicative cone and are closed under convolution (Bochner's theorem).

(3) If g( f l~1) obeys the bound (5), so does g(n) in D2nj because

^

(6)

So it suffices to prove the assertion for g(0\vτ(z)v) = Qxp[β((e,vτ(z)ve) — 1)]. Let
3 3

A= ΣίRezJλj and B= Σίlmz,.^ (both are real skew symmetric) so that
1 1

τ(z) = eA + iB = eA+ Σ (0" ί δ^^-iy^Be^B ... Betn + iAYldtt.
n = 1 if ^ 0

Here eMeSO(3), and thus \\e?tA\\ = 1. Therefore,

||Reτ(z)-τ(Rez)||^cosh||β||-l^i(l+0(||β||2))||β||2 (7)

3

if || 5 1| is small enough. Note that ||β||2 ̂  const Σ(Inιz/)2. Since the imaginary part
i

of τ(z) does not appear in |g(0)(vτ(z)δ)|, this completes the proof. This argument is
directly applied for the recursion formulas of Kadanoff type. Q.E.D.
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For concreteness, one may take

/ 0 1 0\ / 0 0 1 \ / O 0 0\

A t = -1 0 0 , A 2 = 0 0 0 , A 3 = 0 0 1 . (8)

\ 0 0 O / \-l 0 O / \0 -1 O/

Moreover, remark that spec(v) = {ew,e"'*,!} for any t>eSO(3).

Proposition 2. (1) // spec(v) = {eiθ,e~ω, 1}, ί/ien

(9)
L J

= θ mod2π.

^ const β*/2 (10)

(2)

1

fc!

uniformly in t;,ί;eSO(3) and n^nQ = nQ(β).

Proof. (1) By suitable u e SO(3), one can represent v e SO(3) as uτ(θ)u~1, where τ(θ)
= Qxp(θλί). By complexifying θ and denoting it by z = θ + ιzί foeR), we define

G(z) ̂  g<">(uτ(z)ιι ' ̂  exp (

in the region DECD2n^ where ε is small enough. So G(0)=l and

|G(z)| ̂  G(Rez) exp Γ - | (β - 0(ε2))(Imz)2Ί ,

where we have used

\g(n\uτ(z)u ~ i)\ ί g^(uτ(θ)u ~ ̂  exp Γ| (1 + 0((Imz)2)(Imz)2l , (11)

which is obtained by setting B = (lmz)λί and \\B\\ =|Imz| in Ineq. (7) and next
applying induction using (6). Note that 0((Imz)2) can be replaced by O((Imz/2n)2).
|G(z)| decreases as |Imz| increases, and then the maximal principle of analytic
functions implies G(Θ)^G(0) = 1, which is Ineq. (9).

(2) By Cauchy's formula, the left-hand side of Ineq. (10) is represented as

(12)
\z\=R

SetR = β-ί/2 and use Ineq. (5). Here n ̂  n0(β), where T Y >β~ 1/2. Q.E.D.

Remarks i. (1) In the case of lattice gauge theories, {g(n\v)} are class functions of G
[ = SU(JV), SO(ΛΓ), etc.] within the Migdal-Kadanoff approximations, which is a
consequence of the Gauge invariance. In the present case, however, this cannot be
satisfied and thus the proof is slightly different from that in [11].

(2) For the AT- vector model, it is enough to consider the group SO (AT). Thus the
extension of our proof to that case is straightforward.
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3. Proof of the Main Theorem

Now we show that these recursion formulas drive g(0)(V) = exp [/?((e, ve) — 1)] into
the high temperature region. In other words we show that there exist no fixed
points in the recursion formulas except for the trivial g(oo) = 1. To do this, we define

fl&β) by

|g<">(t;τ(ία)ί5)| = g^(vv) exp [y j8<%(α)l . (13)

Then

W,= lim /?<» = - ^lng<">MΘ)0)|0 , (14)
fl->o Oσ

and we define

β(w)=max$5^0. (15)
v,v

Because of the bounds (9) and (10), fl£ΰ(ά) is real analytic in a such that \a\ <ζ β~ 1/2,
uniformly in t;,ί;eSO(3) and n^n0(β).

Proposition 3. The following inequality holds uniformly in n^n0:

vf\\ + \\v-vf\\). (16)

Proof. We already know that \β(fy\ is bounded. [To confirm this, apply
Proposition 2 to Eq. (14).] So if ||f — v'\\ + ||t; — v'\\ ^ε>0, then the proposition is
trivial by choosing a large constant in the right-hand side of Ineq. (16). So we
assume v' = vv0, ϋ' = v0v with || v0 — 1 1| < ε and || v0 — 1 1| < ε. Here ε is small enough.

Γ3 1 Γ3 Ί
Then we may represent ι;0 = exρ Σ^Λ h ^o = exP ΣΦΛ Of course,

LI J LI J
τ(θ) = exp[ΘA1], We can assume |θf|^constε, |φf|^constε, and |β|^constε. Thus
by the Baker-Campbell-Hausdorff formula,

Γ 3 Ί
ι>0τί;o = exp ΣAίλί h

L I J

where A1 = θ + (θ1 + φ1) + 0(s2)9 A2 = (θ2 + φ2) + 0(ε2), and A3 =
are analytic functions of 0, {6^1 and {(Pt}l in a neighborhood of the origin. Since

where g(n\vr, vj = -^g(n\v^(9)ff)\09 etc., and since g(n\v) ^ const > 0, it is enough to
Ou

show that g(n\vv0v0v), g(n\vυ0, v0v)', and g(n\vvθ9 v0v)" are uniformly continuous in
{0j,<pji such that I0J, jφ^constε, uniformly in v and ft To do so, we remark

that g(")(t;exp[Σ^J^)-(2πO~3|g(M)(^exp[χzμj0)Π(^-ΛO"1^, where
\zi\ = β 1/2 Since Af's are analytic functions such that ^^0 as θ,θk,φk^>0, the
conclusion follows immediately by choosing small ε (ε<^/?~1/2). Q.E.D.
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Now we are going to prove our first main theorem. Since the proof is
completely same, we discuss the recursion formulas of Migdal type only.

"•V'W'WJ'J*] "9)

So taking the absolute values of both sides and choosing a small, we have:

g(»+U(vv')( l + —β(»+u + o(a4)}
\ 2 ' /

72 Ί Ί2

(20)

where by definition, J/ ' = [_$g(n\u)2du]2. Then

0 ̂  lim α ~ 2 [RHS of Ineq. (20) - LHS of Ineq. (20)] ,
α-» 0

which yields

ί g(" V W10

We choose ι;, ί;' such that max ff£*£ = β("v> υ. Such a pair (ι;, t;') may not be unique.
So

l J

where J(π)(w; ^^') = i^ί-i.^ + ̂ J^^ which means that {β(n)} are monotone
decreasing in n. Note that βί,"̂ ),/ is a periodic function of θ such that
2π

ί β^τ(β)v dθ = Q. So unless g(n) = l, )8(">>0 and min^<0. Moreover, there exists

w e SO (3) for any t?'eSO(3) such that β£ϊι,υ <0.
Therefore, if limjS(n) = ̂ c>0, then Ineq. (3), the bound (9), and Proposition 3

imply that there must be a strictly positive constant K such that

jS(M+1)-j3(M)^-κ. (22)

So /?(Π)-> — oo, which is a contradiction.

Theorem 4.

(1) limβ(M) = 0. (23)

(2) limg(n)(t;) = l, uniformly in ueSO(3).

Proof. (1) This has been proved.
(2) Let v = uτ(θ)u~ x by suitable u e SO (3). Because of Proposition 1 (1), g(n\v) is

even and analytic in θ. Then

lng<">(ι?) = f ώDng^iiφ)!!-1)]^! ds] dt\\κ%(n\uτ(t)u- ^J ^ -ζ-[β]L9 (24)
0 0 0 ^

where we have used lng(n)(l) = 0, [)ng(n\uτ(s)u~1)']r

a=0 = 0 and the definition of β(n\
Thus 1 ̂  g(n\v) ^ exp [ - (j8(Π)/2) [θ]| J. Q.E.D.



244 K. R. Ito

4. Correlation Length

Since g(n\v) is a continuous function on G = SO(3) of positive type, we have

έ"\v) = C<S> + Σ ΣCίft/CαXi;), (25)
<τ*0 ί,j

where Uσ is the representation of G = SO(3) belonging to the character σ and

σ Φ O

Here the second equation comes from the normalization condition of g(w).
Choosing n0 = n0(β) large, we can assume

where 1 ̂ > επo > 0. Set

(27)

(28)

Then

l^C^ = Sg^\v)dv^\-εno, (29a)

|5g< o)(ι;)| = |g(«o)(ι;) _ j g(»o)

which imply

no+1

if sno is small enough, where * denotes the convolutive product defined in the
obvious way and K is a positive constant which can be chosen less than 5 by
choosing n0 large. Then κεno + 1 ^(κεno)

2, and thus we have:

L--ln(κ:εWo)>0,

where n^n0 and n0 = n0(β) has been chosen so that κεno<l.

Theorem 5. For n ̂  n0(β),

0^1-g(π)(t;)^C1exp[-C22"-"0], (31)

where C^ and C2 are strictly positive constants.

Remarks 2. (1) From (29a), it is seen that εno ̂  1/6 is enough for our purpose. In fact,
4eno[(l-εwo)

2 + ε^0]~1^12/13 is less than 1 in this case.
(2) The proof of Theorem 5 is a kind of high-temperature expansion applied to

the present hierarchical system.
So far we have not used the fact that (g(n\v)} are functions of positive

type which ensure the expansions (25) together with (26). Let
Λ = [0,2*]x[0,2*-l]nZ2, and let s = sx and s' = sx, where x = (x1,x2),
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x'= (χι + 2", x2) and xί = k2n for some k e Z, k ̂  0. These two points are connected
after π iterations of the recursion formulas on the hierarchical lattice, see Fig. 1. Let

h(n+ » = Λ -+\ [J g(n\u ~ lυ)έn\u)(u)^du\ [f g<">(κ - Mg(n)("¥"],

where u e SO (3) is introduced so that sx sx> = (e, ue) and Jfn+^ is the normalization
constant chosen so that g(π+1)(l) = l. h(n+i) is also of positive type again by
Bochner's theorem and satisfies

\h(n+ *\v)\ ̂  const exp[- C22
M-"°] ̂  C\ exp[- C22

n~"°]g(π+ 1}(ι;)

by Theorem 5 and J(M)11ί/M = 0,where C\ is a positive constant. Therefore,

Λ<»+'+1>(ϋ) = ̂ -J+1ϋΛ<^

with 7 = 0,1,... are functions of positive type satisfying the bounds

|/ϊ<"+'+ ι>(f,)| ̂  c; exp[- C22"-π°]g(w+<f + ».

Thus we have

0 ̂  (ss'Xi ̂  C\ exp [ - m(jβ)2«], (32a)

m(β) = C22-"M, (32b)

uniformly in JV or in yl. This implies that the system has a finite correlation length
ξ(β)^m(β)~l< oo, which also holds for the hierarchical systems of Kadanoff type.

Remark 3. The positivity of <ss/>yl is a consequence of the positivity of {g(w)} and
{/ι(π)}. But this is easily understood by Griffith's first inequality since the system is
ferromagnetic. See the caption for Fig. 1.

5. Remaining Problems and Discussions

We have shown that the 2D Heisenberg model is always in the massive phase
within the Migdal-Kadanoff approximate formulas. Though this is consistent with
our conjecture, we must admit that the 2D XY-modd does not exhibit the
Kosterlitz-Thouless transitions within the Migdal-Kadanoff approximate for-
mulas, because as is easily understood, the present method of analysis can be easily
applied for G = SO(2). (In fact, the proof is much easier in this case [10].) This
implies unfortunately that MigdaΓs and Kadanoff's ideas are not accurate enough
to pick up very crucial properties of non-Abelian symmetries which Abelian
systems do not have and are supposed to be responsible for asymptotic freedom in
short distances in these systems. See [12, 7] for a recent study in this direction.

A study of the present system by the rigorous real space renormalization group
methods is now under progress, which will be reported in the near future.
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Note added in proof. It may be helpful for the reader to explain how Eqs. (2a, b) are obtained
from Eqs. (la,b). Let # = {/zeSO(3) = G; he = e}. Then H^SO(2) and G/H^S2. Correspond-
ingly the Haar measure du on G is expressed as dsdh, where dh is the Haar measure on H and ds
is the measure on S2. Since (vie,uhe) = (vie,ue) where v^ — Si (i = l,2), ueG and heH, the Haar
measure du is reduced to ds.




