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Abstract. For a class of Schrόdinger operators H: = — (h2/2m) Δ + V on L2(R"),
with potentials having minima embedded in the continuum of the spectrum
and non-trapping tails, we show the existence of shape resonances exponen-
tially close to the real axis as h^O. The resonant energies are given by a
convergent perturbation expansion in powers of a parameter exhibiting the
expected exponentially small behaviour for tunneling.

I. Introduction

The concept of shape resonance has been introduced in the early days of quantum
mechanics to resolve the puzzle of alpha-decay [Ga, GuGo]. As in the case of
tunneling, the configuration space of the particle with energy ε in a potential V
contains a region J(έ):= {xeR", V(x)>ε} which is classically non-accessible and
which for some values of ε, separates R" into an exterior and interior region. The
interior region stands for the nucleus, where the particle would be confined if it
were not for the quantum mechanical tunneling through the barrier J(ε) into the
exterior. In the case of shape resonance the exterior extends typically to infinity (see
Fig. 1 a and b below).

In the case of tunneling and in particular in the case of shape resonance one is
interested in situations where barrier penetration is small. This is expected to hold
in the semiclassical regime: k2: = h/(2m)1/2 small compared to d(C,(dJ)ext) which
denotes the Agmon distance between the exterior part (3J(ε))ext of dJ(ε) and the set
C of points in the interior where V takes its minimal value v0; d is derived from the
metric (ds)2: = max(0, V(x) — v0) dx2.

In this introduction we shall describe the ideas of our analysis of shape
resonances without going into precise technical definitions of the model (Sect. II).
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• interior region

Fig. 1. a A possible graph of V in one dimension, b The classically unaccessible region J(ε)
(shadded), the sphere K and the set C where V takes its minimal value v0 inside K

Since the physical concept of resonances in quantum mechanics is difficult, we
shall circumvent this problem by the following standard mathematical definition
[AC]: let H:= —k4Δ + V be the Schrόdinger operator for the system under
consideration. Then εeC is called a resonant energy if the analytic function
Fφ(z): = (φ9(H — z)'ίφ) has a pole at z = ε on the second sheet for some φeA,
where A denotes a properly chosen dense set of states, [it is tacitly assumed that
Fφ(z) has the analytic structure where the concept of "second sheet" makes sense].

In order to analyse the analytic structure of Fφ(z) we use physical intuition as a
guide and compare H with an operator HD expected to be close to H in the
semiclassical regime. HD has by definition the same symbol as H but an additional
Dirichlet boundary condition on some n — 1 dimensional convex surface KcJ(ε)
separating the interior from the exterior region (Fig. 1 b). To simplify the analysis
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we consider the situation where K is a sphere. HD is the direct sum of the two
operators Hint and jFfext; typically Hίni has compact resolvent, hence discrete
spectrum accumulating at most at infinity, and Hext only essential spectrum. Since
the spectrum of HD is the union of the spectra of ff int and ff ext, it has point spectrum
immersed in the continuum. So HD describes a physical system very much the same
as the one before. The only difference is the infinitely high and narrow wall
(Dirichlet boundary condition) on top of the barrier J(ε) which makes tunneling
across J(β) impossible.

The spectrum of Hint for fc\ 0 has been recently analysed in great detail (see in
particular [CDS 1, S 2, HSj 1]). In general the lowest eigenvalues of Hint - spectrum
valued functions in the terminology of [CDS1] - get absorbed into υ0 for ΛΛ 0.
Furthermore, under certain assumptions on V near the set C of points where the
minimum v0 is reached, one can derive asymptotic expansions in rational powers
of k for these eigenvalues. They depend very much on the geometrical properties of
V near this set. In the simplest case where v0 is a non-degenerate minimum, the
harmonic approximation is valid, whereas degeneracies can lead to various
polynomial behaviours in rational powers of k or even to groups of eigenvalues
arbitrarily close to each other. We will not analyse in detail all these possibilities,
but the abstract conditions on eigenvalues or group of eigenvalues will appear in
the form of a suitable hypothesis (see Sect. IV).

So the energies considered here will be very close to v0 in the classical limit, and
for a suitable choice of the surface K containing C one expects that through the
perturbation of HD obtained by removing the Dirichlet boundary condition they
will turn into resonances. In fact we shall prove in Sect. IV that the lowest
eigenvalues of Hint have resonant energies exponentially close to them. Fur-
thermore in the case of polynomial separation between them we shall derive in
Sect. V a convergent tunneling expansion very much the same way as in the case of
simple tunneling [CDS 2].

The problem with removing the Dirichlet boundary condition on K is twofold:
first it is very singular in as much as it changes the domain of the operator;
secondly the point spectrum is immersed in the continuous spectrum; hence
ordinary perturbation theory cannot be applied (this is a situation typical for
resonances). Even worse than in other cases is the fact that the standard method of
scaling does not apply in this case because scaling does not leave invariant the
domain of HD. The first problem can be avoided, using resolvents instead of
operators. The second one can be overcome by the technique of exterior scaling
introduced by Simon [SI]. This concept will be described in more details in the
next chapter and Appendix II. Let us just notice that exterior scaling - although
useful in this conext - is a very brutal deformation of operators since it maps
smooth functions into discontinuous functions; it does not even leave invariant the
form domain of H. However other approaches to the problem - for instance
deformations by a smooth scale function exp#(x) lead to more complicated kinetic
energy terms (see [Hu] for a linearized version of this program and [Cy, Sig] for a
similar approach in momentum space).

One of the technically most difficult parts of the shape resonance problem is the
proof of the fact that resonant energies are only due to the perturbation by the
Dirichlet boundary condition of £int e σ(Hint). For that one has to prove absence of
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resonant energies for #ext in a suitable neighbourhood of Eini. There are two
possible approaches for that. The first one uses a numerical range argument and
gives absence of resonant energies in a neighbourhood of the real axis. It is
described for the case n= 1 in [CDS 3]. We will follow the second route and use a
result about the absence of resonant energies in a suitable neighbourhood of a real
point [BCD, Kll]. It follows, in [BCD], Lavine's space localization method [L]
and, in [Kl 1], energy localization, Mourre's inequalities [Ml], together with esti-
mates on the rate of decay with respect to k of states which are localized in the clas-
sically forbidden region J(ε) (see also Lemma II.3).

Our methods rely strongly on results about the classical limit of discrete
energies' eigenvalues and localization properties of eigenfunctions for Schrόdinger
operators. They have been derived in two earlier publications for the case of one
space dimension [CDS 1,2] and later extended to the rc-dimensional case by Simon
[S2,3] and Helffer and Sjόstrand [HSjl,2].

Concerning the shape resonance problem, let us mention some related works
by Asbaugh and Harrell [AsHa] who use differential equation techniques, Jona-
Lasinio et al. [JMarSc] for an approach through stochastic methods, Siedentop
[Si] for a quantitative analysis of resonance widths through local Birman
Schwinger bounds, Lavine [L] and Orth [O] where resonances are studied with
the concept of spectral density, Baumgartel [Ba], where a method closer to ours is
initiated, and Klein [K12] who studies predissociation with the techniques of this
paper. See also a recent work by Helffer and Sjόstrand [HSJ3, Sj].

This article is organized as follows: in Sect. II, we describe the model and the
concept of exterior scaling to the extent it will be used. In Sect. Ill, the analysis of
perturbation by the Dirichlet boundary condition is presented. Section IV
concerns stability of eigenvalues of Hint. In the last chapter we explain the
tunneling expansion based on the Brillouin-Wigner perturbation theory for
nondegenerate eigenvalues of Hint. Since we are considering one parameter
families of operators only, the nondegeneracy is generically true [vNW]. Further
technicalities on Krein's formula and a rigourous investigation of exterior scaling
are presented in two appendices.

II. The Model

We consider a potential V which obeys the following hypotheses H1-5. We begin
with a smoothness property of V:

HI: FeC^R").

To express the geometrical properties of V we need to use the notion of classically
forbidden region at energy ε defined as follows:

J(e): = {x e R", V(x) >ε}. (2.1)

Next, V must have a local minimum v0 which satisfies:

H2: there exists a sphere K which splits R" in two disjoint regions
Ωint and ί2ext such that with the notations

} (2.2)



Shape Resonance 219

and

C: = {x eR", V has a local minimum at x and V(x) = v0}, (2.3)

then KcJ(v0) and Ccί2int.

H3: limsup00F(x)<t;0.

Hypothesis (H1) could be relaxed by requiring, for example, FeLfoc(ί2ίnt)φ C1(Ωext)
only, modulo technicalities unrelated to shape resonances. Hypothesis (H2) is
obviously rather restrictive in a way which is not physically relevant. We impose it
for technical reasons in order to simplify the analytic continuation program (see
below). To cover geometrical situations where K cannot be chosen as a sphere one
could [e.g. if J(v0) is starlike] use angle dependent exterior scaling or non-
homogeneous groups of transformations. This would lead to considerably more
technicalities which we want to avoid here. Notice that (Hl-3) imply:

KcJ(ε) for ε close enough to u0, (2.4)

J(v0) is compact, (2.5)

xeC => VV(x) = Q. (2.6)

So we choose K:= {xeRM, |x| = r0}, r0>0, to be a sphere having property (H2)
and separating an interior region ί2int: = {x eR", |x| < r0} from an exterior region
Ώext:={xeR", |x|>r0} and ε such that KcJ(ε), where J(ε) is the classically
forbidden region [see (2.4)].

An important property in our analysis of shape resonances is that the part of V
in Ωext does not create bound states or resonances close to ε. So we introduce the

Definition ί. The potential V is non-trapping in Ωext at energy ε (we shall
abbreviate this by saying that ε is non-trapping, in short ε is NT), if the following
condition1 is satisfied:

NT: 3S>0, Vx6Ωext\J(4((r-r0)/r)[2(F(x)-ε) + r[7FW]<-S.

Consider now the nth eigenvalue ED(k) of Hint; such a family is called the nth

spectrum valued function and will be denoted simply by ED. It is useful to define the
property (NT) for £D; in fact it is clear that if (NT) holds for some ε it also holds
nearby. By extension we will say:

ED is non-trapping if 3fc0 > 0 and S > 0 such that for any fc, 0 < k < /c0, E
D(k) is

NT with the fixed value S.
In some circumstances [for example if t;0 = limsup00 F(x)]5 which we exclude

here by (H 3), it becomes necessary to allow S to depend on k in the above definition
of non-trapping for the spectrum valued function ED. In order to simplify the
presentation of the main ideas of this approach to shape resonances we will not
discuss such situations which are analysed in the one dimensional case in
[CDS 3c]. Let us simply mention that this type of difficulty is related to the fact
(well-known e.g. in the analysis of JV-body Schrόdinger operators) that in the range

1 Obviously in the present context the last part of NT is equivalent to the more familiar virial
condition: 2(V(x) — ε) + r VrV(x)< — SΊ for some appropriately chosen S^>Q
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of energy (lim inf ̂  7(x), limsupaoV(x)) there are threshold points where pertur-
bation theory becomes rather delicate. We want to stress that under (H3), i.e. if
ι;0 = inf{7(x), xeΩ in t} is strictly larger than \imsup00V(x) and if s = υ0 satisfies
(NT), then the nth spectrum valued function ED of Hint is non-trapping since
\imk ^ o ED(k) = v0. This is why we introduce another geometrical assumption on V:

H 4 : vQ = inf { 7(x), x e Ωini} is non-trapping .

Let Δ and ΔD denote the Laplacians defined on their natural domains ffl 2(Rn)
and (^r^je2)(ΩiJφ(^r^^2)(Ωext). The kinetic operators are denoted by

H0:= -k4A and Hξ:= -k4AD = : -k4(Aίnt@Aext),

We shall denote by H the selfadjoint operator which describes our system and is
defined by H : = H0 + V, whereas HD: = H%+V = :HintφHext will be the operator
describing the system where the particle is confined in Ωint by the Dirichlet
boundary condition on K. Notice that for notational simplicity we do not write
explicitly the k dependence in all Schrόdinger operators considered.

To perform the analytic deformation of the Schrodinger operator H by the
exterior scaling U(θ\ to be defined below, we need:

H5: 7(0): =17(0) 717(0) -1, θeR, has an analytic extension as a
bounded operator into the strip SΛ:= {0eC, |Im#|<α} for
some α>0.

For computational reasons it is often simpler to use polar coordinates on R". The
coordinates transformation x->(r = |x|, ω = x/|x|) induces the unitary mapping
from L2(R") onto L2(R+ x Sn~ l ) which maps x->/(x) into (r, ώ)-^r(n~ 1)/2/(rω). In
the sequel we shall make free use of computing in either of the two representations.
In particular we shall use the following notation for the Laplace operator on

where Ar denotes the radial Laplacian and B^O the Laplace-Beltrami operator on
Sn~ 1, Vr will denote the radial derivative operator and prime indicate the result of
the radial derivative on a function. The operators H and HD will be analytically
deformed by exterior scaling defined as follows [SI]:

Let θeR and χ be the characteristic function of Ωext; consider the following
mapping in R", expressed in polar coordinates:

), r(θ) : = r0 + <P*\r - r0) .

It induces on L2(RW) the unitary transformation U(θ) called exterior dilation or
exterior scaling, generated by

on

In terms of polar coordinates the action of U(θ) is given by:

V/eL2(R+ x S"
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Furthermore one finds easily

-ΔD(Θ):= -U(θ)ADU(ΘΓ1 = -e-2θ*A

-A(θ):=-U(θ)AU(ΘΓ1=-e-2θχAr

Notice the important fact about the domains of the Laplacians (see Appendices I
and II):

D(AD(Θ)) : = U(θ) D(AD(0)) = D(AD(ϋ)) = (

D(Δ(Θ)) : = U(θ) ^2(RM) Φ D(A(Q)), (θ Φ 0)

= jf2(ί2int)0Jf?2(ί2ext) plus boundary conditions on K.

More precisely

D(A(Θ)) = {ue JJ?2(Q.mi)®3ίf2(Ωext), u(rQ + 0, - ) = e*2 u(rQ - 0, ) ,

i/Xr0 + 0,0 = e3θ/V(r0-0, )}. (2.7)

Hence in the first case the domain is ^-independent whereas in the second case not.
It is therefore a remarkable fact that A(θ) has an analytic extension in the sense that
its resolvent can be analytically extended into the strip Sπ/4. The analogous
statement for the operator AD(Θ) is easily seen with the associated quadratic form

*o(0) M : = (Vru,e-

+ (l/4)(n-l)(n-3)(u,(\/r(θ)2)u) (2.8)

on the domain ^o(Ωint)®J^Q(Ωexi) (see Appendix I); as 7(0) is bounded analytic,
(see H5) the image of HD under U(θ\ for real 0, extends into a selfadjoint
holomorphic family for complex θ. We shall use the notation
HD(Θ) = : Hint@Hext(θ). In Appendix II we describe a perturbative method to show
analyticity of H(θ) starting from the analyticity of HD(Θ).

To elucidate the terminology "non-trapping" we make the following

Remarks 2. 1. For computational reasons it is sometimes useful to have the
following characterisation of non-trapping:

if KC J(έ) and ε>lim sup^ V(x) the potential 7 is non- trapping at energy ε if
and only if there exist S>0 and a compact set ΩclR" such that

NTΊ:

NT'2: min {7(x), x 6 dΩπΩext} ^ V fβnβext ,

NT' 3: ((r-r0)/r)[2(7-β) + rPr7]< - S, (x e βert\Ω)

The proof is elementary and will not be given here (see [Kll]).
2. The (NT) condition on ε guarantees that there are no resonances in an

appropriate neighbourhood of ε due to the exterior of 7 [BCD, Kll]; a precise
statement is given in Lemma 3 below.

3. It can be shown that the following implication holds:

ε!<ε2 and ε1 ?ε2NT => Vεe[ε1,ε2], ε i s N T .
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4. On <5J(ε)nΩext one has V(x) = ε. Thus by (NT) we find: VxeδJ(ε)n£2ext,
VrV(x) <0. In physical terms this means that the force on the exterior boundary of
the classically forbidden region J(ε) is repulsive.

5. The (NT) condition excludes a situation where the boundary of J(ε) in ΩGXi is
non-transversal to the vector field ωV. Due to ε > lim sup^ V(x) for a non-trapping
energy ε the classically forbidden region is bounded. A typical form is shown in
Fig. Ib.

6. If ε is NT then the boundary of J(ε) in Ώext is diffeomorphic to K. The
diffeomorphism is given by the integral lines of the vector field ωV.

7. Non-trapping conditions appear frequently in obstacle scattering problems
for the wave equation, in particular in the discussion of resonance poles for the
S-matrix and high energy asymptotic of the scattering phase (see e.g. Majda-
Ralston [MajRa]). Recently Robert and Tamura introduced a non-trapping
condition in their semiclassical analysis of potential scattering which is crucial for
their investigations of the limiting absorption principle as h \ 0. This is not
surprising from the point of view developed here since one expects that resonances
originating from classically trapped particles (e.g. shape resonances) become very
sharp near the classical limit and will strongly influence the behaviour of Green's
functions near such energies. A few years ago Lavine [L] already noticed the role
of non-trapping conditions involving the virial:

2(F-£) + xFF<0 (2.10)

in a commutator proof of the limiting absorption principle and in its analysis of the
time delay operator. Condition (2.10) implies negative time delay; this means that a
particle with energy E is accelerated by the potential V so that narrow resonances
are not expected to occur near this energy. Condition (2.10) looks very much like
(NT); it implies classical non- trapping in the sense of Robert and Tamura [RT].
Finally let us mention a nice classical interpretation of (NT) following Helffer and
Sjόstrand's analysis of resonances [Sj, HSJ3]. The left-hand side of (NT) is the
Poisson bracket between the Hamiltonian H and the generator A of exterior
scaling up to a certain term which vanishes in the classical limit (see [Kll] for a
discussion of this term). Hence (NT) imposes something like negativity of a
Poisson bracket, thus the particle leaves any compact set in a finite time. Finally we
should like to point out that negativity of the quantum analogue of Poisson
brackets, namely commutators, is the basis of Mourre's investigations of
propagation properties for solutions of the Schrόdinger equation [M2].

Let us now state an essential consequence of the non-trapping condition (H4)
which will play a crucial role in Sects. Ill and IV. The proof can be found in [BCD]
or [Kll].

Lemma 3. Let (Hl-5) be valid. Then there exist ΘQES^ Im#0>0, fc0>0 and a
complex neighbourhood of t;0:v = {ze<C, |Rez — t;0|<cte, Imz> — cte} such that

V0</c<fe0, Vzev, ||(#ert(00)-*ΓΊl^cte. (2.11)

All the constants are positive and independent of k and z.
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III. Estimate on the Dirichlet Perturbation

In this section we shall give first convenient expressions for the difference of the
resolvents of H(θ) and HD(Θ) which stands for the perturbation in our approach.
After this, we shall obtain some basic quantitative estimates on this perturbation.
It will depend crucially on the fact that the sphere K - separating the interior from
the exterior region - is contained in the classically forbidden region J(v0). An
important ingredient in the analysis of the perturbation by the Dirichlet boundary
condition will be the trace operators on the sphere K.

Definition 1. If /eJf ^ΩiJφJf ̂ exλ then Tίnt (respectively Γext) denotes the
trace of /int (respectively /ext) - restriction of / to Ωint (respectively Ώext) - on K. If
ϊίnt/= Teιt/, we simply write Tf.

It is well known (see e.g. [LiMag]) that Tint (respectively Text) is a compact
mapping from Jtf\ΩiΏύ [respectively J^\Ωexj] to L2(K) and that T* maps
continuously L2(K) into ^"^R").

Perturbation by the Dirichlet boundary condition factorises naturally into
operators involving these traces as follows: consider the operators

B(θ,a):=Bint(a)®Bext(θ,a),

which are well defined on L2(R") = L2(ί2int)0L2(ί2ext) with image in L2(K) for
and Imα>0. If 0-0 we write A(θ\ B(a) etc. Defining R(θ,a): = (H(θ)-a)~1 and
RD(Θ9 a) : = (HD(θ)-a)~\ we show in Appendix II that

,a) = k*TR(a)T*B(θ,a)9

W(θ, a] : = R(θ, a) - RD(Θ, a) = k4A*(θ, a) B(θ, a) = k*B*(θ, a) TR(a) T*B(Θ, a) .

(3.2)

It is shown furthermore in Corollary A 4 that (3.1, 2) extend to complex values of θ
and α, provided 0<Im#</?<α and a does not belong to a certain sector of the
complex plane I^fc = {ze(C, |Arg(z — γβ tk)\^δβ >fc<π/2} with real vertex γβtk (the
existence of this sector is proven in Appendix II). This will allow us to extend (3.2)
analytically in a for fixed θ, Imθ > 0 to some open sets having v0 on their boundary.
Here the non-trapping hypothesis (H4) is essential as well as Lemma II. 3.

Lemma 2. Let (H 1-5) hold and let a(k) be a complex valued function of k such that

Imα(/c)>0 and Rea(k)-v0 = o(l) as fc\0. (3.3)

Then there exist Θ0, Im00>0 and kl>0 such that for all fc, 0<fc</c 1 :
i) a(k) is in the resolvent set of H(Θ0\

ii) equalities (3.2) hold with Θ = Θ0 and a = a(k).

Proof. Let 00, fc0, v be the ones given by Lemma II. 3 and let fex < fe0 such that for
each fixed fc<fc1, α(/c)ev+ : = vn{ze(C, Imz>0}. We choose some β such that
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Imθ0</?<α; clearly ((C\I'jM)nv+ is a non-empty open set. Since R(θQ,ά) is
analytic in a belonging to the resolvent set of H(ΘQ\ then RD(Θ0, a) + W(k0, a)
necessarily coincides with R(Θ0, a) in v+. Notice that (C\I^fc) and v are connected
open sets (see also Fig. 2 in Sect. IV). Since a(k) belongs to v+, the proof is easily
completed.

Now we are ready to state the main theorem of this section.

Theorem 3. Assume (H 1-5) and let Θ0 e Sa be as in Lemma 2. One has for any
complex function a(k) satisfying (3.3) and

(lma(k)Γί = 0(k-p) for some peN: (3.4)

as / c \ 0 . (3.5)

For the proof of Theorem 3 we need the following variant of the standard
Sobolev inequalities:

Lemma 4. Let χ be a C^QR") function with value one on K. Then the following
inequality holds:

\\Tlntf\\2ί2\\χfiat\\\\?rχfίat\\,

and similarly in the exterior region.

Proof. We give the proof for the internal trace and omit the subscript int along the
proof. The argument for Γext is almost identical. By the fundamental theorem of
calculus and the Schwarz inequality,

\\Tf\\2 =\\Tχf\\2 = J dω\χf(r0,ω)\2 = 2Rε J dωdr(Vrχf)χf

Notice that the proof for n = 1 is slightly different.
We now proceed to the proof of Theorem 3 which is split into several steps:

Proof of Theorem 3. Using (3.2) it is sufficient to prove the two estimates:

) , (3.6)

) , (3.7)

once the validity of (3.2) has been checked in Lemma 2.
1) First we prove a quadratic estimate on the resolvent (Hint — a)~l. Since J(v0)

is open and KcJ(v0) is compact there is a δ>0 and a radially symmetric
χ E CJ)(RW), supported near K, χ = 1 on K, such that V(x) — (v0) ̂  2<5, for x e suppχ;
this implies in particular that 0^ suppχ. Since ι?0 — Reα(fc) tends to zero as fc^O,
one has V(x) — a^δ for xe suppχ and k small enough. We need the following
straightforward identity:

Reχ2(tf ίnt - a) = χ(Hint - Reα)χ - k\χ')2 , (3.8)

which is valid in the form sense on J*ί?o(Ωint). Hence for ύeD(Hini), one gets

^H^||2 + fc4|||7χίa||2^Re(χίί,χW) + fc4||/M||2 ( + ctefc4||χι}||2 if n = 2),

(3.9)

where u: = (Hint — a)ύ. Notice that (3.9) is also valid if χ is replaced by χ' or χ".
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2) Let weL2(ί2int), \\u\\ = 1, we shall prove that

(3.10)

Due to (3.4), χ(Hint-α)~1M = 0(fc"l>). Inserting this estimate into (3.9) yields

χ(Hint-aΓ1u = 0(k-> + 2) if p>2,

= O(1) if p^2.

Iterating this procedure leads to (3.10). Then inserting (3.10) in (3.9) we obtain

rrχ(Hint-aΓίu = 0(k-2), (3.1 la)

and therefore

, (3.11 b)

because χVrύ= Vrχύ + χ'ύ and χ'ώ = 0(l) by (3.10). Notice that the estimates (3.11)
are also valid when Vr is replaced by V. We shall also use the estimate

). (3.12)

It is elementary to check that

using the boundedness of V on suppχ, (3.10) and (3.1 1) we obtain on one hand that
the three last terms on the right-hand side are globally 0(/c~4) and on the other
hand that χAύ=-k~4χ(V~a)ύ + k~4χu = 0(k~4). Hence (3.12) is proven.

3) Obviously by Lemma II. 3,

χ(H^(θ0)-aΓl = 0(\}, (3.13)

and using — k4 cos 2 Im Θ0A r ;£ Re — A exί(θ0) ( + cte k4iίn = 2) valid in the form sense
on J^o(Ωeκt) we obtain

( + ctefe4||ί2||2 if n = 2)

(3.14)

with ueD(Hext) and u: = (HeM(θ0)-ά)ύ.
Proceeding as in the end of step 2 we get for all u in L2(Ωext) with ||w|| = 1 :

) , (3.1 5)

) . (3.16)

4) We can now estimate ||B(β0>α)tt||2 = ||βint(α)uint||
2 + \\B^t(θ0, α)uext||

2. Using
Lemma 4 we deduce with (3.11, 12),

||βint(α)uint||
2g2||χFP(Hint-α)-1uint|| \\VrχVr(Hint-aTluiM\\ =O(k~«) \\uίnt\\2 ,

and a similar estimate for Bexi(θ0,a)uext with (3.15, 16). Thus (3.6) is proven.
5) We now proceed to derive (3.7). Let ηeL2(Sn~l\ \\η\\ = l\ then

u : = T*η eJp-l(JR?) and ύ : = R(a) T*η ε^tR"), because R(a) can be viewed as a
bounded map from ^~^n) into ̂ (R") (see e.g. [RS, p. 279; F, p. 13, 17]). By
mimicking step 1 and 2 we derive χR(a) = 0(\) and VrχR(a) = 0(k~2)\ then using



226 J. M. Combes, P. Duclos, M. Klein, and R. Seller

Lemma 4 we have ||TR(a)\\ = O(k~*) and therefore

\\χύ\\=0(k-i)y (3.17)

because ||χώ|| ̂  HχlL ||Λ(α)T*|| \\η\\ = ||TΛ(α)||. By Lemma 4 again we have

||TK(α)T^||2^2||χM|| \\Vrχύ\\ ^k~2(k*\\Vrχύ\\2 + \\χύ\\2}. (3.18)

Proceeding as in step 1, formula (3.8) and (3.9), we obtain [using suitable
L2-approximation of u in Jίf ~1(R")]:

\\TR(a)T*η\\2^k~2max(l,δ~1)lRQ(TR(a)T^η9η) + k4\\χ'ύ\\2']

( + /c 2cte| |χw| | 2 if n = 2).

Since by (3.17) \\χύ\\ and ||/w|| are 0(k~1)9 this implies

thus (3.7) is proven.

IV. Stability of Eigenvalues of HD

In this section we shall prove that every spectrum valued function ED of Hini has a
resonant energy E of H nearby for k sufficiently small provided assumption (H6)
introduced below is satisfied. This stability of eigenvalues will be the basis for
applying the Brillouin-Wigner perturbation theory in the following chapter. We
prove it for groups of spectrum valued functions J : = (Ef , . . . , E%} having the
following property:

H6: there exist ί»0 and fc0>0 such that V/c^fc 0 ,

ctQkb^A(k) and \J(k)\2/Δ(k) = o(ί)9

where we use the notations

A : = dist(J, σ(Hint)\J) and | J| : = Max,, y |£f - Ef\ = : diam J .

These conditions are met in most interesting cases, as for instance if the harmonic
approximation is valid and C is finite (see [CDS1, S2, HSjl]).

Remark 1. Since J consists of spectrum valued functions which all converge to v0

as fc^O one always has that lim|J(/c)|= limzl(/c) = 0.
fc^O fc\0

As a first step we prove the smallness of the resolvent of RD(Θ0, a) [for a(k)
correctly chosen] on an appropriate loop in the complex plane. This will then be
used to define the projector P of H(Θ0). Finally an argument involving analytic
interpolation will prove that P has the same dimension as the corresponding
projector PD of HD.

Remark 2. In the following lemma we shall consider a loop in the resolvent set of
HD(Θ0) around a given finite group J of spectrum valued functions obeying (H6)
(see Fig. 2 below). To do it we shall use Lemma Π.3. As the size of v is
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Eigenvalues of H iπt

Fig. 2. The loop Γ around J in the neighbourhood v, and the sector Σβ>fc

fc-independent and all the elements of J go to v0 when k \ 0, this makes sure that
J C v for sufficiently small k. In Fig. 2 the non-shaded area is singularity free for

Lemma 3. Assume (Hl-5) and (H6) for a set J = {E1?, ...,E%} of spectrum valued
functions. Let Θ0 e Sa be as in Lemma 113, then there exist a complex valued function
a(k) satisfying (3.3) and a loop Γ around J such that: (RD(θ0,ά) — (z — α)"1)"1 =o(l)
uniformly in z e Γ as k \ 0.

Proof. Let E be the barycenter of J, a: = E + iΔ and Γ the contour defined by the
following figure (see Lemma II.3 and Remark 2) which implies in particular

dist(Γ, σ(#int)) ̂  A/2. (4.1)

Since a obeys (3.3) (by construction) the resolvent RD(Θ0, a) exists for k sufficiently
small by Lemma Π.3. Due to the identity

(RD(ΘQ, a) - (z - a) ~ *) ~ 1 = - (z - a) - (z - a)2 RD(Θ0, z), (4.2)

it is enough to have an estimate on z — a and RD(Θ0, a). By definition of a(k) and Γ
one gets

Now we estimate \\RD(θ0,a)\\ ^maxCK/ί^-zΓ1!!, ||(#ext(00)-zΓΊl). On one

hand ||(/ίint-z)~1Hl/dist(z,σ(Jfirint))^2/zl, on the other hand by Lemma II.3
||(#ext(0o)~ z)"1!! ̂ cte. Hence for k small enough,

which proves the lemma.
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Theorem 4. Assume (H1-5) and (H6) for a set J = {Ef,..., E%} of spectrum valued
functions. Let 00 be as in Lemma 113. Then there exists a loop Γ around J such that
P:= — (liπ)'1 $dzR(θ0,z) is well defined for k sufficiently small and has the same

r
dimension as PD: = - (2/π) ~1 J dzRD(θ0, z).

r

Proof. 1) Choose a(k) and Γ as in the proof of Lemma 3 and let
Γ: = {z: = (z — α) ~1, z e Γ} then by the functional calculus one also has:
PD= — (2iπ)~ί \dz(RD(0Q,a) — z)"1. By the same argument it is enough to show
that f

P = -(2iπΓl Jdz(R(θ 0 ,d)-z)- 1 (4.3)
f

is well defined and has the same dimension as PD for k sufficiently small. For this we
define the resolvent of R(θ0,a) on the contour Γ by the Neumann series:

(R(θ0,a)-z)-ί: = (RD(θ0ίa)-z)-ί £ (W(θθ9a)(RD(θθ9a)-z)-1γ. (4.4)
n^O

Since by Lemma 3 (RD(Θ0, a) — z) ~ * is 0(1) uniformly in z e Γ it is enough to have a
/c-independent bound on W(Θ0, a). This was the purpose of Theorem III.3. By
construction of a(k) all the assumptions of this theorem are met; hence the above
definition of P makes sense.

2) To prove stability of dimension we construct an analytic interpolation
between RD(θ0,a) and R(θ0,a); consider R(θ0,a,β): = RD(θ0,a) + βW(θ0,a). The
projection P(β) defined in analogy to (4.3) is analytic in β and interpolates between
P and PD. Hence dimP = dimPD.

Remark 5. A by-product of Theorem 4 is that Γ is inside the resolvent set oϊH(θ0)
and that the spectrum of H(θ$) inside Γ is discrete with total algebraic multiplicity
equal to the total multiplicity of the eigenvalues of ff i n t belonging to J.

In the next section we shall use the following

Corollary 6. With the assumptions and notations of Theorem 4 and Γ chosen as in
Lemma 3, let QD: = 1 — PD and G be the closed set delimited by Γ. Then there exists
k0 such that for any 0<fc<fc 0 and z in G, QD(R(θ0,a) — (z — a)~1)QD is bounded
invertible on RanQD; furthermore its inverse is 0(1) as fc\0 uniformly in zeG.

Pr00/. Since by construction of Γ dist(G,σ(QDHD(θ0)QD))^A/2, the corollary is
clearly true if R is replaced by RD (one need only to mimick the proof of Lemma 3).
This allows us as in the proof of Theorem 4 to define the inverse of
QD(R(Θ09 a) — z) QD for z e G as a bounded operator on Ran QD with the analogue of
(4.4). The rest of the statement follows easily.

V. Tunneling Expansion

In this section we shall prove that the stability statement can be improved
considerably. We demonstrate that the nih eigenvalue ED of Hint - if separated from
the rest of the spectrum by a power in k - gives rise to a resonant energy
exponentially close to ED given by a convergent power series in a tunneling
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parameter. The analysis is done here for nondegenerate eigenvalues only,
generalizing a method we used in the multiple well case, [CDS 2]. Instead of the
Weinstein-Aronszajn determinant we use the Brillouin-Wigner formula for the
computation of resonant energies.

Lemma 1. Let ED be the nth eigenvalue of Hini. Assume ED non-degenerate and
furthermore (Hl-5) and (H6) with J={ED}. Let PD, P be the projectors defined
according to Theorem IV A. Then for a and Θ0 chosen as in Lemma IV. 3 and k small
enough the eigenvalue E associated to P satisfies:

F-FD = trace PD W(Θ0, a)PD

-tracePDW(θ0,a)QD(QDR(θ0,a)QD-FΓ1QDW(θ0,a)PD, (5.1)

where we used the notation F : = (E - a) ~ \ QD : = 1 - PD.

Proof. The proof is split in two parts, a formal computation and verification of
legality of the formal steps.

1. The formal argument is based on the equation R(θ0,a)P = FP which is
studied in the subspaces RanPD and Rang0 (to simplify notation Θ0 and a are
suppressed):

pDRpDp + pDRQDp = FpDp Q^RpDp + QDRQDP = FQDP .

Eliminating QDP from the second equation and inserting it into the first, then
taking the trace yields (5.1).

2. The legal part of the argument concerns the existence of P9P
D and

(QDRQD — F)~1. The first two operators exist and are defined by a Cauchy integral
according to Theorem IV.4. Since by Theorem IV.4 E has to be inside the loop Γ
the third one exists by Corollary IV.6; hence the lemma is proved.

Now we are ready to state the main result of this chapter.

Theorem 2. Let the assumptions of Lemma i be satisfied and E be the corresponding
resonant energy. Then, for k small enough, E is given by a convergent power series in
a tunneling parameter t:

E = ED+ Σ (σnt
n)/n\. (5.2)

n^l

Furthermore the following estimates hold:

t = o(exp(-2(l-ε)k-2d(K,C))) and V n ^ l σn = o(l) (5.3)

for all ε>0, where d denotes the pseudo-distance associated to the metric (ds)2

Proof. Let

t(θ) : = k4 trace \B(Θ, a)PDA*(θ, ά)\ ,

σ(0, z) : = k\t(θ)Γ 1 trace PDA*(Θ, a) {1 - M(θ, z)} B(θ, a)PD ,

M(0, z) : = k*B(θ, a) QD(QDR(Θ, a)QD-z)'ί QDA*(Θ, ά), (z e Γ ) ,

where
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with A : = dist(ED, σ(Hint)\ED) according to Lemma IV.3. Since by Corol-
lary I V.6, the operator (QDR(θ,a)QD — z)"1 is well defined and analytic in z for
z = (z — α)"1, z inside Γ, hence σ(0,z) also is.

Now we prove that Lagrange's inversion formula [Di, p. 250] can be applied to
the implicit Eq. (5.1) for F (very much in the same way as in [CDS2]) that we
rewrite:

F-FD = t(θ)σ(θ,F). (5.4)

For this, it is enough that t(θ) obeys an estimate (5.3) and that σ(θ, z) be O(l) on f .
We postpone the analysis of t(θ) and notice that by standard inequalities,

where by Corollary I V.6 and Theorem III.3 M(θ, z) is 0(1) on f . Then the solution
of (5.4) is given by the convergent series:

F = FD+ Σ (σn(θ)tn(θ))/n\, (5.5)
M ^ l

where

σn(θ) : = (d/dzΓ1 σ"(θ, z) t2=(£D_a)- , . (5.6)

Now it turns out that t(θ\ σ(θ, z), and σn(θ) are in fact independent of θ. This follows
from the following remarks. First, B(θ9a)PD and A(θ,a)PD are ^-independent; in
fact setting PDφD = φD, \\ φD\\ = 1, one has B(θ, ά)φD = Bini(a)φD, which is manifestly
^-independent because φD€ J^Q(Ωint). Then according to the first equality of (3.2)
and Lemma III.2 one sees that:

A(θ, a)φD = k*TR(a) T*B(a)φD . (5.7)

Notice that σ(θ, z) is also ^-independent since it is analytic in θ and independent of
it for real variation of θ. Thus we omit in the sequel to write θ when it is not
necessary. Then we can estimate the parameter

t: = k4trace\B(a)PDA*(a)\^k4\\B(a)φD\\ \\A(a)φD\\ .

As shown in the proof of Theorem III. 3,

\\B(a)φD\\2^2\ED-aΓ2 \\χΐrφ
D\\ \\VrχVrφ

D\\ .

By Agmon's decay estimates both terms are o(exp — (1 — ε)fc~ 1 d(K, C)), if we take χ
supported in a sufficiently small neighbourhood of K [Ag, CDS1, S2, HSjl]. To
estimate \\A(a)φD\\ we use (5.7) and ||TK(α)Γ*|| =0(k~2) as shown in
Theorem III.3. Then the above bound on \\B(d)φD\\ implies (5.3).

Finally we prove the estimates on the coefficients σn and σn. We use the Cauchy
formula to estimate the σn:

f

We already know that as ΛΛ 0, σ(z) is uniformly bounded on f with respect to k.
We consider now the identity

(FD-zΓl=-(z-a)-(z-a)2(ED-z)-1.
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With the choice of α, Γ made above we have (FD-z)~1 = 0(A) and σn = 0(An~1).
Now, to obtain a bound on σn we write the following identities:

F-FD= ̂  (tntn)/n \=(ED- E)I((E - a] (ED - a)),

thus

ED-E = £(E-a)(ED-a)(rs,Jnl).

Hence

Appendix I. The Family {ΛD(Θ)}

The purpose of this appendix is to show the following:

Theorem A 1. The family of operators [ΔD(Θ\ |Im θ\ < π/4} as defined in Sect. //, is a
selfadjoint holomorphic family of type A. In particular

i) D(ΔD(Θ)) = (^nJJ?2) (βfcJΘpTo1 ̂ 2) (OexΛ
ii) — ΔD(Θ) is m-sectorίal with vertex 0 and semi-angle |2Imθ|.

Proof. It is standard that D(Λ D) is given by i) when 0 = 0. Since A int(θ) = zl int for any
θ, we concentrate only on Aext(θ) and analyse

T(θ):=-e2θAexi(θ)=-Ar + g(r,θ)A with D(T(fl)): = D: = D(JMt(fl)),

where g(r,θ): = e2θ/r(θ)2 =:gί + ig2ι gx and g2 being respectively the real and
imaginary part of g, are in (L°° n C°°) ([r0, oo)) as well as their derivatives. Since U(θ)
is unitary, since U(Θ)D = D for 0eR, and since there is the obvious symmetry due
to H(Θ} = H(Θ)* it is sufficient to consider only θeίR+.

First notice that ReT(#)= —A^g^Ais uniformly elliptic (up to a constant if
n = 2) thus selfadjoint on D (see [K, p. 353]). Secondly, using the following identity
in the form sense on D,

42 + g?Λ2 = (Re T(θ))2 + 2^2g}/2 4gί/2Λ1/2 + 2((g}/2)')2Λ ,

one deduces easily, for n=j=2 (if n = 2 replace A by Λ + 1/4),

which implies, after a quadratic type estimate,

l l on D.

Now we have ||ImT(θ)tt|| ̂  ||gι/g2|| „ (l|ReT(θ)tt|| + C||ιι||) on D, which shows that
T(θ) is m-sectorial because ||g2/gι || «, is smaller than one as long as Im# < π/4. The
semi-angle of sectoriality is given by (note that g2 ̂  0)

Since D is contained in the form domain of T(θ\ Aext(θ) = e~2θT(θ) by a standard
property of Friedrich's extensions of sectorial operators (see [K, p. 325-326]).
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Appendix II. Exterior Scaling and Krein's Formula

We provide here a proof of the analyticity in θ oΐR(θ, a) : = (H(θ) — a) ~ 1, where H(θ)
= — k4A(θ)+V(θ) is defined as in Sect. II for 0eR through the exterior scaling
U(θ) associated to the sphere K = {xelRn, |χ| = r0}. We assume here

A : 7(0) : = U(θ) 7(7(0) ~ S 0 e R has an analytic extension into the
strip Sa:= {0e(C, |Im0|'<α} for some 0<α^π/4 as a family of
operators relatively bounded to AD with zero relative bound.

From Theorem Al and hypothesis (A) we deduce easily that HD(Θ):— —k4AD(θ)
+ 7(0) is a type A analytic family in Sα of m-sectorial operators. So it is natural to
use a perturbative argument based on the following form of Krein's formula [Kr].
Since we shall use in the sequel the results of this lemma with complex 0, it is
formulated in order to respect formally the analyticity in 0, though 0 is for the
moment real.

Lemma A2. Let V satisfy (A) and θ e R, Ima Φ 0, then W(θ, a) : = R(θ, a) - RD(Θ, a)
obeys

W(θ, a) = k4A*(θ, a) B(θ, a) = fc8β*(0, a) TR(a) T* 5(0, a), (All)

where A(θ,a) and B(θ,a) are given by (3.1).

Proof. It is essentially an application of Green's formula. Let u and v be elements
of L2(R") and ύ : = R(θ, ά)u,v: = RD(Θ, a)v. Then

(ii, (R(Θ9 a) - RD(Θ, a))v) = - /c4[(w, AD(θ)v) - (A(θ)ύ, 0)] ,

since the 7— a term cancels. If we insert the explicit form of the Laplacian in polar
coordinates it is easily seen that the terms with Laplace Beltrami operators cancel
too. So we are left with the difference of Δr and A?. Partial integration leads to

(u9(R(θ9a)-RD(θ9a))v) = k4 J dωδ(r0-Q9ω)
Sn-l

+ Q9ω)-v'(r0-Q,ω)), (A2.2)

which is just the first equality of (A2.1). Notice that in the derivation of the above
equation we used the boundary condition,

which follows from the fact that ύ=U(θ)R(a) U(ΘΓlue
Now by_a simple iteration of (A 2.1), using TintR

D(θ, a) = 0, we get A(θ9a)
= k4TίntA*(θ,ά)B(θ,a). Since 7;ntt7((?)=Γint as mappings from 3f\Ω{J to L2(K)
and R(a) can be viewed as a bounded map from Jt? ~ x(Rn) onto Jl? ^R"), we obtain

A(Θ9 a) = k4 TR(a) T* B(θ, a) , (A2.3)

because TintA*(θ, a) = Tίnt(TR(a) U(θ) " 1)* = TintU(θ) R(a) T* = TR(a) Γ* which
proves the second equality of (A 2.1).

We are now ready to prove
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Theorem A3. Let V satisfy (A). Then the family of operators {H(θ),θeSa} is
analytic. Furthermore H(θ) is characterised by w e D(H(Θ)) o

ii) w(r0 + 0,.) = ̂ /2tφ 0-0, ),
iii) tt/(r0 + 0,.) = ̂ /2ιι'(ro-0, ),

where prime denotes the derivative with respect to r, and

H(θ)u=-k4Δ(θ)u+V(θ)u.

Proof. Obviously it is sufficient to verify the statement of the theorem for fc> 0 and
θεSβ, where k and 0</?<α are arbitrary but fixed. Due to (A) and Theorem A l
HD(Θ) is analytic and "uniformly" m-sectorial on Sβ, i.e. the numerical range is
contained in a ^-independent sector Σβtk. The sector has the following form:

^,fc = {zeCJArg(z-^J^fc<π/2}, y/ueR. (A2.4)

Thus for a outside this sector RD(Θ, a) is analytic on Sβ as a bounded operator on
L2(R") as well as a mapping from L2(R") to JP 2(Ωint)0Jf 2(ί2ext) Hence due to
(A 2.1), B(θ, a) and so R(θ, a) have an analytic extension to Sβ. Let us denote again
this extension by R(θ, a) = RD(Θ, a) + W(Θ9 a). It coincides with R(θ, a) for real θ; to
complete the proof of analyticity of {H(θ)9 θ e Sβ} it remains to show that R(θ, a) still
is a resolvent for complex θ. It is well known [K, p. 428] that this holds if two
conditions are satisfied. The first one is the resolvent equation which is satisfied
here by analyticity since it holds for real θ. The second one is the condition
ker#(0, a)u = {0}. To prove it and for our next purposes we need the following key
result:

V0 e Sβ, Vw e L2(R"), ( - k4Δ(θ) + V(θ) - a) W(θ, a)u = 0 as a distribution on R"\K

or equivalently (A2.5)

), ((HD(θ)-a)ϋ, W(θ,a)u) = 0;

it can be verified as follows: let v: = (HD(θ)-ά)v [notice that C?(RW\K) is
contained in D(HD(Θ)) for any 0eSJ, then

((HD(θ)-a)v, W(θ,a)u) = ks(B(θ,ά)v, TR(a)T*B(θ,a)u) = Q,

because

Now if u satisfies R(θ,a)u = Q, then VίeC^(R"\X) one has (v,RD(θ,a)u)
+ (v, W(θ, a)u) = Q; thus by (A 2. 5) (ύ, u) = 0, hence u = 0. Up to now we have shown
that {R(θ, a), θ e Sβ} is an analytic family of resolvents providing an analytic
continuation of R(θ, a\ 0eR.

We turn now to the characterisation of H(θ) which is defined by H(θ) — a
= R(θ,aΓ1. If u belongs to D(H(θ)) = RanR(θ,a) and u = (H(θ)-α)ύ, then for any

), one has using (A2.5),

( - k*A(θ) + V(θ) - φA, ώ) = ((HD(Θ) - α)ϋ, R(θ, α)u)

= ((HD(Θ) - α)ϋ, RD(Θ, α)u) = (ϋ, u) ,
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which proves that ύ e ̂ c(Ω{J®^c(Ωext), and H(θ)ύ = ( - k4A(θ) + V(θ))ύ. In fact
ύε Jf2(ί2ίnt)φ^f2(ί2ext), since RD(θ,a) and W(θ,a) (see Lemma A7) map contin-
uously L2(RW) into 3ff 2(Ωint)@^f 2(Ωext). Then if we consider the two operators:
(-Tini®e-θ/2Texi)R(θ,a) and (- Tlnl7r®e-3θl2TcΛ7r)R(θ9a)9 they are well defined
and bounded analytic on SΛ. As they vanish for real θ (see 2.7) they also vanish on
Sα. Hence we have proven that ύ obeys i)-iii).

To verify that a vector ύ which fulfills i)-iii) is actually in D(H(Θ)\ one has to
exhibit a vector u in L2(R") such that ύ = R(θ,a)u. One can check by direct
computation that u: = ( — k4A(θ)+V(θ) — ά)ύ is the good candidate.

As a by-product of Theorem A3 one has the following

Corollary A 4. For any 0 ̂  /? < α and k> 0, there exists a sector Σβtk in the complex
plane of the form (A 2.4) such that if a is taken outside this sector (A 2.1) is valid for
any θ e Sβ.

Remark A5. In fact since in this paper we assume that V(θ) is bounded, the
numerical range of HD(Θ) is contained in {ze(C, Imz^ctelm0} if Im0^0; hence
one may use this domain instead of Σβtk. We shall not use this possibility.

Remark A 6. Notice that for real θ one has from the definition oίH(θ) the relation

Vα eR, R(θ + α, a) = I7(α) R(θ, a) l/(α)" 1 . (A2.6)

This property extends to complex values of θ since both sides of this equality have
an analytic extension in θ in the strip Sβ provided a is taken outside Σβtk. The role of
(A 2.6) is essential in deriving the most important consequence of the analyticity of
H(θ) namely independence of the isolated eigenvalues oίH(θ) with respect to θ and
existence of an analytic continuation of expectation values (φ, (H — z)~1φ) when φ
is an analytic vector with respect to the group 17(0), 0eR (see [AC]); these
properties in turn are basic for the interpretation of complex isolated eigenvalues
of H(θ) as resonances.

Lemma A 7. For any a, 0, k such that a lies outside the sector Σβtk described in (A 2.4),
W(θ,a) maps continuously L2(R") into Jf2(Ωint)φ^f2(ί2ext).

Proof. Since V is relatively bounded to A D, it is sufficient to consider the case V = 0.
Obviously Bint(α) is bounded from L2(ί2int) to ̂  1/2(K) (see [LiMag, p. 47]). Since
Bfni(a)u = f is equivalent to the elliptic boundary value problem in
Ώ in t: ( — h2A—a)f = u and Tintf = u, elliptic regularity implies that Bfni(a) maps
continuously tf*(K) into ^fs+1/2(ί2int) for any s^O (see [LiMag, p. 176]). The
similar statements are true for #ext(0,α) and its adjoint since #ext(0) is uniformly
elliptic (see Theorem Al). Again by elliptic regularity one can deduce that A*(a) is
bounded from tfs(K) into ^fs+3/2(]Rn) (s^O), hence TR(a)T* = TA*(a) maps
continuously 3?S(K) into Jj?s+1(K) (s^O). So we have the chain of bounded
mappings:

L2(R") - 5(0, fl)-> jf 1/2(K) - TR(a) T*-»J4?3/2(K) - B*(θ, a)-^^2(Ω

which in view of (A 2.1) and Corollary A 4 proves the lemma.
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