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Abstract. The relation between Kac-Moody groups and algebras and the
determinant line bundle of the massless Dirac operator in two dimensions is
clarified. Analogous objects are studied in four space-time dimensions and a
generalization of Witten's fermionization mechanism is presented in terms of
the topology of the Dirac determinant bundle.

1. Introduction

Loop groups and their central extensions in relation to Kac-Moody algebras have
recently attracted great interest. The theory of loop groups is important among
others in understanding completely integrable non-linear systems of KdV type [1],
constructing solutions for self-dual Yang-Mills equations [2], string models in
particle physics [3], and anomaly problems in quantum field theory [4].

The purpose of the present paper is twofold. First, we shall study the non-trivial
(7(1) bundle P on the space ΩG of loops in a Lie group. This bundle has a Lie group
structure such that the corresponding Lie algebra is a Kac-Moody algebra based
on the Lie algebra of G. The structure of the group P has been earlier studied in
detail in [1, 5,6]. The physically important realization in [1] is that the sections of
an associated line bundle E form in a natural way a Hubert space which has a
canonical realization as the Fock space for fermions in 1 +1 dimensions. There is a
second construction of P directly in terms of local charts in ΩG, transition
functions and local two-cocycles [6]. However, we feel that the subject is
important enough to deserve a third construction; our construction is very simple
and it makes clear the relation of sections of E to sections of the determinant line
bundle of the (1 +l)-dimensional Dirac operator.

The second main point in this paper is to clarify the topological and
geometrical structure of the Dirac determinant line bundle in 3 +1 dimensions.
Particular attention is paid to the case G = SU(2); this case is important for
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understanding the Fermi-Bose relation in field theory. Some time ago Witten [7]
showed that solitons in the Wess-Zumino model (with an anomaly term in the
Lagrangian) have fermionic properties. The basic idea is as follows [8]. Let
/0:S

3->S(7(2) represent a static soliton with a winding number

If one rotates slowly the soliton as time — oo ̂  t ̂  + oo, /(x, t) = U(t)f0(x)U(t)~1

9

by the matrix U(t) around a fixed coordinate axes, then the contribution to the
Lagrangian from the anomaly term is δ^(f) = inn and it gives rise to a factor
( — l)M = exp — δ<£(f) for the quantum mechanical action S = exp — £?. Thus /
behaves like a fermion if n is odd.

We shall extend Witten's σ-model result to Yang-Mills theory using the
topology of the field space. In the case G = St/(2) each connected component of the
space j/4/^4 of gauge orbits has the first fundamental group equal to ΊL2 and
moreover n2(^4./^4) = Z2. From this fact follows that the determinant bundle on
^4/^4 [which is an associated bundle to a t/(l) principal bundle] is reducible to a
Z2 bundle. The determinant bundle Det4 has a natural connection which reflects
this reduction phenomenon. Namely, if one takes a non-contractible loop γ in
Λ/4/^4 , then the parallel transport along y in Det4 is given by a multiplication by
the number (—1)", where n is again the soliton number indexing the different
connected components of ^4/^4. The space Γ of sections in Det4 can be thus
divided into a sum of subspaces Γ+ and Γ_ corresponding to the behaviour of
sections under parallel transport around closed loops (multiplication by ±1). On
the other hand, a non-contractible loop corresponds to a rotation of the fields
around a fixed coordinate axes. Thus Γ_ represents fermions and Γ+ bosons.

In the effective action formulation of a coupled Dirac and Yang-Mills field (the
Dirac field is integrated away) the Schrόdinger wave functions of the system are
complex-valued functions ψ on jtf4 which satisfy the gauge anomaly condition
[17], i.e. they are sections of the bundle Det4, [9]. From the topological
decomposition Γ = Γ+ ©Γ_ follows the important confirmation for the usefulness
of the effective action method: half of the wave functions indeed describe fermions
and the second half bosons.

2. The Dirac Determinant Bundle in Two Dimensions

Let G be a connected, simply connected semi-simple Lie group [for example,
SU(N) for N ̂  2]. Any principal G bundle over the compactified space-time M = S2

is topologically trivial and any G connection on S2 can be given by a globally
defined g-valued (g is the Lie algebra of G) one-form on S2. Let j/ be the linear
space of all these one-forms. Let m e S2 be a fixed point (the north pole) and 0 the
group of smooth maps /: S2->G with f(m)= 1.

We can think of s/ also as the space of vector potentials A on the unit
disc with appropriate boundary values on Sl=dD [such that A is a pull-
back of a smooth potential on S2 under the mapping D^(r,φ)
i—»( — cosπr,sinπrcosφ,sinπrsinφ)eS2, O^r^l; the circle r=l corresponds
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to the point meS2]. The gauge group 0 consists then of maps /:D->G with
f(x) = 1 for all x e S1. For each A e stf there exists a unique VA:D-*G such that the
radial component oίΆ=VA

1AVA+VA

idVA vanishes and VA(p) = 1, where p e dD is
some fixed point. Namely, since the bundle is trivial, we can consider a parallel
transport along a given path as an element of G. Let UA(x) be the parallel transport
along a straight line from the origin of D to the point x. Then VA(x) = UA(x)UA

 1(p)
has the required properties. Any gauge transformation which preserves the
condition Ar = 0 must be a function of the angle φ only; the only smooth functions
in D of this type are all constants. The condition VA(p) = 1 fixes the constant
uniquely. It is clear that if A' is in the same gauge class in jtf/& as A, then VA and VA,
are equal on the boundary S1 thus we have a well-defined map jtf/^^ΩG with
QG : = {/: S1 ->G | f(p) = 1}. This map is a homotopy equivalence *//& ^ ΩG, [10].
Let DG : = {/: D->G I f(p) = 1}. Then DG is a principal bundle over the base space
ΩG, the projection DG-+ΩG being the restriction map /•— >/lsι. Each fiber is
isomorphic to the space of maps /: D-+G which are equal to 1 on the boundary S1

such / can be thought of as a map /: S2->G. Thus the fiber can be identified as the
group &. The correspondence A i— > VA is a ^-bundle map from si into DG. The
right action of 0 on DG is just given by pointwise right multiplication.

The bundle si-^stfl^ has a natural connection [10]. This connection is in fact
a pull-back of a connection on the homotopically equivalent bundle DG^ΩG. We
shall now describe in some detail the latter connection. For each /eDG the
tangent space TfDG can be thought of as the space of maps X : D->cj with X(p) = 0.
Define

, Y)= j <a*(Ad(/po, a,(Ad(/) γ)χ2* . (i)
D

Here < , > is an invariant bilinear form in 9, and the standard Euclidean metric is
used in D. The vertical subspace Vf C TfDG for the projection DG-+ΩG consists of
elements Jf :D-»g which are zero on the boundary. We define the horizontal
subspace Hf as the orthogonal complement of Vf with respect to the form (•,•)•
From (1) it follows that

Hf = {Xe TfDG I A(Ad(f)X) = 0} .

If X e 7} is arbitrary, there exists a unique harmonic function Z:D-»g such that
Z\sι = Ad(f)X\sι . The horizontal projection of X is now given by hX = Ad(/ ~ 1)Z.
The distribution f\-^Hfis equivarinat with respect to the right action of ̂  on DG,
therefore it defines a connection.

We shall construct the principal 17(1) bundle P on ΩG which was mentioned in
the introduction. Consider the set DG x £7(1) with the equivalence relation

(f,λ)~(fg,λexp2πiω(f9g))9

where g e ̂  and ω is the real valued function defined by

(2a)

C(g)= fi*7<g-1δβg,i[g-10,g,g-1a7g]>. (2b)
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Here g:S2-»G has been extended in an arbitrary way to g:D3->G,
D3 = {xeR3 | ||x||^l}. (Remember that g'.D-*G with g|5ι = l gives a map
g : S2->G.) The number θ2 is (length)2 of the longest root of the Lie algebra g; in
particular, if we take (A,By = trAB in the defining representation of SU(N), then
Θ2 = 2, [16].

For any two extensions g l 9g2 one has C(gί)~C(g2)eZ. Thus exp2πzω(/, g) is
well-defined. We define P = (DGx £/(!))/ ~.

The bundle P has a group structure. The product of two equivalence classes in
DGxl/( l ) i s

[(/, A)] - [(/', AO] = [(//', Aλ' exp2πiy(/,/'))] , (3)

l>. (4)

One has to prove that the class on the right-hand side of (3) is independent of the
particular representatives on the left-hand side. Using Stokes' theorem, we get first

C(f ~1gf) = C(g) + y(f ~ W) + lίΓ S g) (5)

Here we have extended f:D->G to a cone T such that D is the base of Γ; g is
extended similarly with the constraint g = l on the conical surface S. Surface
integrals over S vanish since

Let (/, X)~(/, λ\ Λat is /=/g and X=λexp2πiω(f, g) for some g with g|sι = 1.
Now (^',X/l'exp2πry(7,/')) should represent the same class as
(ff'9λλ'exp2πiγ(f,f)). This is equivalent to

) Ξ ̂ (/, g) + y(fg,f') modZ . (6)

Using (5) we see that Eq. (6) follows from

?(/, /') + y(ff, f ~ V) + y(f ~ 'g,/') + y(f ~ S g) = y(/? g) + ?(/&/') ,
which in turn can be verified by a straightforward computation. One has to show
also that the product depends only on the class represented by the second factor
(/',/!/); this is the easier part of the proof and is left to the reader. Note that

from which follows the associativity of the product (3). [Equation (7) means that
exp2π/y is a U(l) valued two-cocycle in DG.~]

The group cocycle γ defines a Lie algebra cocycle for Map(D,g),

Since c(X, 7) depends only on the boundary values of X and 7, it defines in fact a
two-cocycle for the Lie algebra MapίS1,^); the central extension of MapίS^g)
defined by the cocycle c is the Kac-Moody algebra based on g. The group P is not
the Kac-Moody group in the usual sense, since we are considering here only based
loops (/(p) = l); letting /(/?) be arbitrary, one gets the Kac-Moody group P
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associated to G; P^P/G. Because of the non-trivial topology of the bundle P, the
group cocycle on ΩG corresponding to c cannot be globally defined; one has to
divide the space ΩG into an infinite number of coordinate patches and define the
cocycle separately on each patch; see [6] for details.

We define a connection in the bundle P. Consider first DG x (7(1) as a
principal ^ x (7(1) bundle over ΩG with the action

(/, Λ ) ̂ (/g> Λ μ exp2τπω(/, g))

of (g,μ)e^x C/(l) on DGx(7(l). We define a connection in DGx(7(l) by
declaring the horizontal subspace H(ftλ) at (f,λ) to consist of pairs (X,a)eTfDG
x R with

The horizontal subspace H[(ftλ}] for P at [(/, λ}] is then the image of H(fίλ} under
the canonical projection DGx (7(l)->(DGx (7(1))/ .̂ The space H[(f>λ)] depends
only on the class [(/, /I)] and not on the representative (/, λ). Namely, if (X, a) is a
tangent vector at (/, λ) then the image of (X, a) under the canonical projection is

/ _ 02

the same as the image of the vector g * Xg, a + -— J (dX + [/ Idt9 JΓ], dgg
\ oTC

at the equivalent point (/g,/lexp2πιω(/,g)); the latter vector is horizontal iff the
former is. Since the action of ̂  in DG x (7(1) commutes with the ί/(l) action, the
distribution H[(ftλ)] in P is equivariant with respect to the 17(1) action. So H is
indeed a connection in the principal bundle P. The connection one-form in the
total space of the bundle DG x U(\) is particularly simple: at (f,λ) the value of
this form for the tangent vector (X, a) is

-a+^$D(f-ldf,dxy.

Let us compute the (real-valued) vector potential α on ΩG corresponding to the
connection H on P. First, we have to fix a gauge (a local section of P) f\-> [(/, 1)],
where fe ΩG and / is an extension of/ to D. For example, near the unit element in
G, we can write /= expX and /= expX X being the unique harmonic extension of
X to D. WhenceT f ΩG,

The curvature computed from α is

which is just the central term c(X, Y) of the Kac-Moody algebra.
The natural action of (7(1) on complex numbers defines a complex line bundle

E over ΩG. The elements of E are equivalence classes of pairs (/, λ) e DG x C with
respect to the equivalence relation (/, /l)~(/g,/lexp2πί'ω(/, g)), ge^. The space
Γ(E) of sections of E consists therefore of functions ψ :DG-»C such that
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On the other hand, the sections of the determinant bundle Det for the left-handed
Dirac operator $ + ijίP+ (P+ is the projection on the left-handed components of
the Dirac field in 1 + 1 space-time dimensions) are complex-valued functions φ on
jtf such that

ψ(g~ lAg + g~ ldg) = ψ(A) exp2πίώ(A, g) (12)

for Aesi, ge^; here

(13)

The functional ώ(Λ9 g) is known as the chiral anomaly in physics literature. The
bundle Det is the pull-back of E under the mapping A\-^VA

i. Namely, let ψ be any
section of E, i.e. a function tp:DG-»C satisfying (11). Define φ:j/->(C,

A

l,g). (14)

On the other hand,

ώ(A,g) = ω(VA-\g) + F(g-1Ag + g-1dg)-F(A), (15)

where
F(A)=-^AydVAVA

1y. (16)

The Eq. (15) is an expression for the fact that the cocycles o^(VA^,g] and ώ(A,g)
represent the same cohomology class; here ω(VA *, g) is considered as a function of
A and g. If one defines φ(A) = ψ(A) exp2πiF(A), then φ satisfies Eq. (12).

Representations of Kac-Moody algebras can be used to produce sections of the
bundle E (and therefore also of the bundle Det). The highest weight representations
of the Kac-Moody algebra g associated to G can be exponentiated to represent-
ations of the group P, [11]. Given a representation T of P in a Hubert space ffl
such that elements e~iφ in the centre are represented by the complex number e~iφ,
one can associate to each pair of vectors vθ9 veJj? a complex function

( , ) is the inner product in ffl. It is clear from the definition of P that ψ satisfies
(1 1). Thus ip is a section of E. In fact, it is shown in [1] that all holomorphic sections
of the dual bundle E* can be obtained in this way using the basic representation of
P in the fermionic Fock space. By this construction one gets a correspondence
between sections of the determinant bundle and the fermion state vectors.

3. The Determinant Bundle in Four Dimensions and the Fermi-Bose Relation

In this section G = SU(N), N^2. Let <$/4 be the space of connection forms on S4,
with values in the Lie algebra g, and let ^4 be the group of pointed gauge
transformations, f(m) = 1 for all /e ̂ 4 for some fixed p e S4. We denote by D4 the
unit disc in R4, dD4 = S3, and D4G = {/: Z)4-> G | /(p) = 1 }, where p e dD4 is fixed.
Since π3G=22, the space Ώ3G = {/:S3->G|/(p) = l} is disconnected, and the
connected components i2(

3

n)G are labelled by the soliton number neΊL. Each
connected component (indexed by the instanton number) of the bundle
j/4-^j/4/^4 is homotopically equivalent to D4G->£2(

3

0)G. The group ^4 can be
identified as the subgroup {/:D4->G|/(x) = l Vxe3Z)4}cD4G. In the following
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we shall restrict to the zero soliton sector, and for brevity we denote Ω3 = Ω(

3

0)G; at
the end of this section we shall make some remarks about the n-soliton sector.

A connection and the curvature can be defined in the bundle j/4-> j/4/^4 or in
D4G->£23G as in the two dimensional case, [10]. However, we shall go over
directly to the determinant bundle Det4 on £/4/&4. The regularized determinant of
the Dirac operator $ + /4P+ in four dimensions is a complex- valued function ψ on
j*4 such that [9]

=ώ0μ,g)+c5(g), (17)
where the integral is over the disc D4 (we have removed one point, say m, from S4

and projected the rest to D4), g e ̂ 4 and C5 is an integral of a topological density
when N ̂  3,

1)5. (18)

Here g : S4^>SU(N) has been extended in an arbitrary way to a map g : D5 ->SU(N).
If N = 2 the density in (18) is identically zero, since a five-form on a 3D manifold
vanishes. In the following we shall consider the case N ̂  3, and we shall return to
N = 2 at the end of this section.

The anomaly ώ satisfies the Wess-Zumino consistency condition, or put
differently, it is a 1-cocycle of the group ^4, [17].

The functions ψ satisfying (17) can be considered as sections of a bundle Det4

on j/4/^4. By definition, elements of Det4 are equivalence classes in ja/4 x C with
respect to the equivalence relation

)) (19)

There exists an analogous object to the bundle P. By definition, the bundle P3

on Ω3G consists of equivalence classes [(/, λj] in D4G x 17(1) with respect to the
relation

(f,λ)~(fg,λ<πp2πiω(f,g)), ω(f,g) = ώ(Γ1df,g) (20)

for g e ̂ 4. However, the bundle P3 does not have any natural group structure like
in the case of P. In order to understand the reason for this, let us first define a two-
cocycle γ(A; gl9g2) for the group D4G,

-f ω0(gι ^gi+gi 1dg1,g2)-ω0(A,

tr [ - i(dg2g2 ^(gΓ ̂ gι)(gΓ1

h)] + ̂ Γ^ f tr[i(dg2g2

 :)(gi ^gj2 4 3

ί 'gΓ ̂ gi)2 + Ws2g2 Ύ(gϊ ldgj\. (21)
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The square of the coboundary operator δ is zero and therefore y is indeed a two-
cocycle; the difference compared with the two dimensional case is, that γ depends
on the vector potential A. For this reason the proper group extension of D4G is not
just by C/(l) but by the abelian group Map(j/3, C/(l)) (pointwise multiplication, j/3

is the space of g- valued vector potentials in S3),

, (22)

where λf(A): = λ(f~1Af + f ~ 1 d f ) . Here the gauge transformation for Ae^/3 is
defined by the restriction of/ to S3 = dD4. In the 2D case we defined the group P by
first defining the extension of DG by (7(1) and then dividing by the equivalence
relation " ~ ". Analogously, we can define here the equivalence

(/,ΛM/g4exp2πM/,g)) (23)

for ge^4. The set of equivalence classes (D4G x Map(j/3, t/(l)))/~ =Q3 is a
principal bundle on Ω3G with the structure group Map(j/3, t/(l)) and it has a
group structure inherited from D4G x Map(j/3, l/(l)) (see below). One can also
consider Q3 as an associated bundle to P3 via the natural action of 17(1) in the space

We have to show that the product (22) is well-defined in the space of
equivalence classes. We shall again leave to the reader the easier part of the proof:
namely, replacing (/',/!/) by an equivalent pair on the left-hand side does not
change the class on the right-hand side. Let instead replace (/, λ) by (/, I) with
J=/g and 1= λ exp2πiω(/, g). The relation (/, λ)(f, λ) ~ (/, !)(/', λ1) is equivalent
to the equation

ω(/, g) + j(A;fgJ') = ω(//' ,/' ~ V) + ̂  /,/') modZ . (24)

We have taken into account that λ'f = λ'f, since /=/ on S3. From (1 7), (20), and (21)
follows that

(25)

Using Stokes' theorem as in the two-dimensional case,

-1,g). (26)

Taking account that the terms involving the potential A are equal on both sides of
(24) (g = 1 on the boundary S3) and combining (25), and (26) we can conclude that
(24) is equivalent with

(27)

modulo integers. This equation can be verified by a simple substitution from (21).
The associativity of the product (22) follows again from the 2-cocycle property

of y; y is trivially a 2-cocycle since it is (in D4) the coboundary of ώ0(A,f).
The Lie algebra two-cocycle c3 in Map(Z)4,g) corresponding to the group

cocycle γ can be obtained from the infinitesimal form [18]

(28)



Dirac Determinant Bundle 181

of the gauge anomaly,

c3(A; X, Y) = (δ*)(A; X, Y) = δxa(A; Y)-δγx(A; X)-at(A; [X, 7])

1 $tτdA(dXdY+dYdX). (29)
12π

Since the form under the integral sign is the exterior derivative of the three-form
tr A [dX, d 7] + , the two-cocycle c3 defines in fact an extension of the current algebra
Map(S3, cj) by the abelian ideal Map(j/3, 3R),

l(X, Λ),(7, μ)] = (IX, 7], δxμ - δγλ + ίc3(A; X, Y)) (30)

with
c3μ; X, 7)= τ^-2 f trA(dXdY+dYdX).

12π s3

Because of the "Schwinger term" c3 in the commutation relations, one cannot
impose the Gauss' law constraint in the space of Schrόdinger wave functions ψ(A):
The integrals

of the charge densities Ql(x) [i is a SU(N) Lie algebra index] are represented in the
Hamiltonian formulation by operators satisfying the commutation relations (30);
setting Ql = Q leads to inconsistencies with (30).

Let us finally consider the case G = SU(2). From the elementary properties of
trace follows that now ω(/, g) = 0. However, we can still define a non-trivial (7(1)
bundle on Ω3G. Namely, we can define a relation "~" in D4G x (7(1) by

(f,λ)~(fg9λEtg))9

where again ge^4 and ε(g) = +1 if g:S4->Sl/(2) is contractible and ε(g)= — 1
otherwise [note that π4Sl/(2) = Z2]. Now D4G x l/(l)/~ isaprincipal [/(l)-bundle
such that the structure group of the bundle reduces to Z2 by construction. Let us
denote by P(

3

υ this bundle and let P(

3

0) be the trivial £7(l)-bundle on Ω3G.
There is a natural flat connection in P(

3

1} such that the parallel transport around
a non-contractible closed loop in Ω3 gives the group element —1 in 222.The
horizontal space of the connection is represented in D4G x (7(1) by vectors which
are tangential to D4G. From this definition we can see that the parallel transport is
given as follows. Let ίι->/f be a path in Ω3G (O^ί^l). Take a lift t-*JtεD4G,
Jt\S3—ft. Then the parallel transport of [(70?^o)] along the path ft gives by
definition the element [(/ι,Λ,0)] at /i. The parallel transport does not depend on
the choice of the lift ft. If ί->Λf e D4G, such that Λ f |S3 =ft and Λ0 =/0 , then h^ =JΊg
for some ge^4. How g^/Γ1^ is a contraction of g = gi to g0 = 1 and therefore
ε(g) = l. Thus (/iiί/loί^ί/i^o)- If we have a closed loop /0=/ι, then 7ι=70£ f°Γ

some ge^4 depending on the loop /f; it is clear that g represents the non-trivial
element of π4SU(2) if and only if ft is non-contractible and it follows that the
parallel transport around ft is given by the group element + 1 for contractible
t\->ft and by —1 for a non-contractible loop.

Corresponding to P(

3

fc) we have two different choices for the determinant bundle
Det^, k= 1, 2. The bundle Det^0) is trivial but Deφ* has a non-trivial TL2 structure;
the situation is the same for the associated line bundles E(

3

fc) to P(

3

fc). [The existence of
two types of bundles follows from the fact that π2(ί23S(7(2)) = π5S

3 = Z2; for N ̂  3
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we have π5SU(N)=% and therefore for each fceZ we can construct a non-
equivalent bundle defined by the cocycles ω = ω0 + /cC5.]

The considerations above can be extended to all sectors ί2(

3

w)G of the base space
(n e TL is the soliton number). A typical n-soliton is the map x ι-> x" from S3 = SU(2)
to SU(2). If g e ί2(

3

n), then /(x) = x~ng(x) is an element of ί2(

3

0) and the map g M>/ is a
homeomorphism β^-^Ω^ [we use the natural metric topology in
Map(S3,SU(N)) defined by the Killing metric of SU(N)]. Thus the topological
structure of the bundle P3 can be studied by restricting the base space Ω3 to the
connected component £2(

3

0) (as was done above).
Consider the space Γ(E(^) of sections of £(

3

 }. We want to show that a rotation
by the angle 2π in the compactification S3 of the physical space R3 induces a
multiplication by + 1 on the sections. First, we can write

where Γ+ (respectively Γ_) is the space of sections with support in (J Ω(

3

n)G, where n
takes all even (respectively odd) integral values. A typical element of Ω(

3

Π)G is the n
soliton

/(x) = expiΛ(r)- σ,

where h : [0, oo] ->R is monotonously increasing with h(0) = 0 and h(co) = n - 2π; σ
is the set of Pauli matrices. Let

where O^ί^l is interpreted as the time coordinate. As t goes from 0 to 1, the
soliton is rotated once around the third coordinate axes. As explained by Witten
[7], the path t\-+ft is non-contractible (represents the element — 1 in π4G) iff n is
odd; the parallel transport in E(

3

1) around ft is a multiplication by ( — 1)". The same
result holds for any map g:S3τ+G which is homotopic to /, and so the parallel
transport around any line of flow in Ω(

3

n) induced by the rotations expiπfσ3 gives a
factor ( — 1)" to the sections which have support in Ώ(

3

W). Thus the rotations by the
angle 2π are represented by -I- 1 in Γ+ and by — 1 in Γ_ .

The determinant line bundle Det4

υ is the pull-back of £(

3

1) with respect to the
homotopy equivalence j/4/^4->Ώ3G, and it follows that what has been said above
holds also in the space Γ(Det4

υ) of sections of Det4

υ.
We come now to our main conclusion concerning the case G = S17(2), which is a

generalization of Witten's fermionization mechanism: The apparently bosonic
Schrδdinger wave functions ψ (= sections of the determinant bundle Det4

υ) can
describe both bosons and fermίons, depending only on the topological nature of the
support suppψ of \p. If suppφ belongs to the odd ίnstanton number sector in j/4/^4,
then ψ is a fermion; if suppψ is contained in the even instanton number sector, then γ
is a boson. Of course, sections of the topologically trivial bundle Det4

0) can be only
bosons.

The geometry and the topology of the determinant line bundle has recently
been discussed from different points of view in several papers. For example, Nelson
and Alvarez-Gaume [12] have determined the Z2 structure of the bundle [when
G = SU(2J] using index theory arguments, and they have clarified also the typical
implications (pair production). The space ^2n/^2n has a presymplectic structure,
which has been studied in [6] and in more detail by Bao and Nair [13]. The
presymplectic structure is directly related to the Schwinger terms in current
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algebra commutation relations. For more information on Schwinger terms in
addition to [4], see refs. [14].

The idea to use a non-trivial connection in the configuration space for
"fermionization" was used earlier in [15] in classical mechanics.
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