
Communications in
Commun. Math. Phys. 109, 191-205 (1987) MatheΠΓiatlCal

Physics
© Springer-Verlag 1987

On Limit Theorems for the Bivariate (Magnetization,
Energy) Variable at the Critical Point

Joel De Coninck
Universite de ΓEtat, Faculte des Sciences, B-7000 Mons, Belgium

Abstract. The limiting (magnetization, energy) bivariate variable is studied for
Ising ferromagnets at the critical point. The factorization property of the limiting
bivariate moment generating function is shown to be intimately connected to
critical point exponent inequalities and to the behaviour of the scaling limit near
and at the critical point. The validity of this can be deduced from the study of the
second and the fourth magnetization cumulants at zero external field. The
limiting bivariate variable is exactly calculated at the critical point for the Curie-
Weiss model (MF) and for the edge of a two-dimensional Ising ferromagnet
wrapped on a cylinder. It is shown that the mean field case leads to a non-
Gaussian limiting distribution in contradistinction with the particular Ising
model we consider for which we obtain a product of two Gaussian probability
distributions.

1. Introduction

Many recent investigations have been devoted to limit theorems for sums of
dependent random variables occurring in classical spin models such as the
magnetization and the energy variables [1-12]. The main difficulty encountered in
this field has to be found in the non-independent character of the elementary spin
variables which describe the models.

Let us indeed consider for definiteness a classical Ising ferromagnet on Zd defined
by the usual Hamiltonian

H({σΛ})=-l~Σ Jijσ^j-h^σ^ (1)
^i,jeΛ re Λ

where A c Zd, Jtj ^ 0 with £ Jtj < -f oo, {σΛ} refers to a given configuration for Λ

*?** . .
and h denotes the external field. The renormalized block magnetization variable M Λ

and renormalized block energy variable E Λ are given by

M „=!*.-> (2 a)
t ε Λ

"2, (2.b)



192 J. De Coninck

and

EΛ= -~ Σ J ϋ σ i σ i ' (3 a )

EΛ=(EΛ-<EΛ})/\ΛΓ'2, (3.b)

where ω 2 and ω 2 have to be chosen such that the corresponding limit laws exist as
Λ\ΊLd. The mean value <•> has to be taken with respect to the probability
distribution induced by (1), i.e.:

Within this context, we would like to focus our attention on the limiting behaviour
of the bivariate moment generating function:

(p(1MΛ+t2EΛ)). (4')
Λ}ld

Previous works have been devoted to the study of φit^O) [1-11] or to φ(0,t2)
[4,11,12]. It is only recently that Newman achieved important progress along this
line [13]: he has indeed proven that away from the possible two phase region in the
(/?, hy plane, the choice ωι=ω2 = 1/2 leads to (at least for bounded spins)

φ{tl9t2) = exp(at2 + bt\ + ct112), (5)

where α, b and c are real constants. This paper considerably generalizes previous
results on the subject [10,11]. Let us also point out that at zero external field (h = 0),
by symmetry (5) simply becomes

φ(tut2) = exp(At2 + Bt2\ (6)

provided of course that β < βc which corresponds to the finiteness of the
susceptibility. This result is quite remarkable since it implies that the reduced
magnetization and energy variables become independent when A ΐ Zd.

The situation at the critical point remains however an open question. The two
main problems can be formulated as follows: (a) what are the possible limiting
distributions associated to (4')? (b) do the reduced variables M A and EΛ become
independent when / l | Z d ?

The physical interest underlying this question may be found in the connection
between the function φ{tlit2) and the covariance of M Λ a n d EΛ. It is indeed obvious
that the nature of the limiting bivariate distribution depends on the correlation
between the energy and the magnetization variables. According to the scaling theory
of critical fluctuations, it is expected that, near the critical point and for large spin
separation r, the spin-spin, energy density-energy density and energy density-spin
correlation functions behave respectively as [21]

f.ΛtΛr) = &*-*> fσσ(T,K9r/L)9 (7.a)

fee{t9 K r) = L ^ - ^ ί , K r/L)9 (7.b)

feσ{UKr) = Lx+y~2dfeσ(tΛr/L\ (7.c)
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with

~=h-L\ (8.a)

t = \β-βc\/βc and ΐ=tL\ (8.b)

where x and y are the usual scaling exponents of the correlation functions (7. a and b).
Integrating over r implies that for large volumes A,

(MΛ;MΛ}~\A\2xld = \A\ω\ (9.a)

< £ Λ ; £ Λ > - | / 1 2 y / d = |/l |ω 2, (9.b)

<MA;EΛy~\ΛW, (9.c)

where, as usual,

(10)

The exponents ω1 and ω 2 have been defined in (2) and (3), It may easily be proven
that the exponent (if it exists) of the covariance of the magnetization and the energy
variables is always less or equal to ωί + ω 2 . Whether or not this kind of inequalities
reduces to an equality is precisely the cornerstone of the hyperscaling hypothesis
and still remains an open question. In our probabilistic formulation of the problem,
this property reveals itself in the nature of the limiting distribution: if EΛ and M Λ

become independent when A ]Zd, this means that there exists a strict inequality
between the corresponding critical point exponents.

As will be shown later, this problem is also intimately connected with the
behaviour of the scaling limit at the critical point and near the critical point (where
the temperature of the block is a function of the size of the system \Λ | and converges
to the critical temperature as \Λ | -* oo) [12,23]. To our knowledge at least, it is not
known whether or not the scaling limit has to be unique: i.e. that the scaling limit at
the critical point has to be identical to the scaling limit near the critical point. It will
be shown in this paper that this unίcity is connected with the independence of £ Λ and
M Λ a s / \ | Z d .

The aim of this paper is therefore to give simple criteria to find out when M Λ and
EΛ become independent as A \ΊLd. This will be developed in Sect. 2. We also give two
examples where the limiting bivariate moment generating function can exactly be
computed at the critical point: the mean field where the limiting distribution is non-
Gaussian (Sect. 3) and the edge of a two-dimensional Ising ferromagnet where the
limiting distribution is Gaussian and exhibits independence for the limiting
variables (Sect. 4). Finally we present in Sect. 5 some concluding remarks and
perspectives.

2. General Considerations

Let us for convenience introduce the function

x
^ Σ JiJσiσi + yΣ
^ i,jeΛ ieΛ
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Defining

>, (12)

we easily obtain, at zero external field,

-t2tχ)-iogZΛ(β-t2,0)}

O)} ' { ί i )

This may also be written in a more compact form as

MΛ)> / ?, 0, (14)

where < >^0 denotes an expectation value with respect to (4) at temperature β~1 and
external field 0. In terms of the reduced variables M Λ and EΛ introduced in (2) and
(3), define

Λ))β^i (15)

then

with

t2 = t2/\Λ\^\ (17)

We are thus led to the

Theorem. 1. With the previously defined notations and for a fixed temperature β~1,if
the normalization exponents ωx and ω2 are such that

EΛ->Y, ( 1 8 b )

as \Λ I -• oo in the sense of the weak convergence of probability distributions, then, for
any ί l 5ί2eIR,

t.X 4-12 Y)} = J5{exp(i! ^)} £{exp(ί2 Y)} (19)

if and only if

lim <exp(ί 1J»Λ)> / ϊ_F 0 = £{exp(ί1A
r)} (20)

l/ll-oo

or, in other words,
if and only if

the scaling limits near β (according to β — ΐ2) and at β are identical.
We now turn our attention to criteria for (20). The main difficulty lies of course in

the fact that the exact determination of <exp (ί t MΛ) )β_γ2 0 requires the knowledge of
the partition function at non-zero external field. To avoid such a difficulty we shall
derive useful inequalities at zero external field.

Using the Lee-Yang theorem [14j (which is satisfied for Ising ferromagnets), one
may easily prove [15] that there exists a non-decreasing bounded function KΛ(x)
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such that
+ °° 1 — cosίvvv)

logZΛ(x,y)- logZΛ(x,0)= + J ^-dKΛ(w). (21)
— oo W

Let the integrated Ursell function of order n be denoted by £/,f(x, y):

Ct f f r jO^logZ^x^) . (22)

One has (n ̂  1)

[/π

Λ(x, y) = \dn

y{- cos (yw))-L ̂ Λ ( W ) , (23)
R W

and in particular

U2

Λ(x,0) = μκ Λ (w), (24)

^(x,0)=-j"w 2rfί:Λ(w). (25)

Since for any real y:
? 4 2

V V V^ . - L ^ i - c o β t y ) ^ , ( 2 6 )

one easily gets from (21-24) that

+ | t / 4 ^ , O ) U <exp(ί1Myl)> ί,ogexp||-l/2

Λ(j8>0)|. (27)

One therefore has for φΛ(t1,t2)
 a s introduced in (16):

ί | ίUί(β - f2,0) - C/2

Λ(y9,0)] + ^ l / 4

Λ ( ^ - ί 2,0) j (28.a)

^ Φ Λ ( ί 1 ; t 2 ) ^

| | [C/ 2

Λ(i9-f2,0)- l/2

Λ(i9,0)] - ί i [ 7 ^ , 0 ) 1 (28.a)

with

ϊ^tJΪΛΓ'2. (29)

The proof of the factorization property (19) at the critical point (βc,0) is therefore
equivalent to showing that the following behaviour occurs (ί2e!R):

lim UΪ(βc-t2/\Λ r/ 2,0)/|/i | 2 ω i = 0, (30.a)
μ|-oo

lim U£(βc,0)/\Λ\2ω>=0, (30.b)
IΛl^oo

l™ { [ ^ A - h/\Λ rι\ 0) - U£(βn 0)]/M |ωi} = 0. (30.c)

The factorization property (19) is thus reduced to the study of the second and



196 J. De Coninck

fourth magnetization cumulants at zero external field. This result is somewhat
similar to the now well-known criterion for Gaussianness derived by Newman [16].

Let us also point out that relations (28) clearly indicate how the corresponding
laws of large numbers may be recovered within this context: by simply choosing
large values for ω1 and ω 2 . Here, however we are interested by a non-degenerate
limiting distribution.

We shall now consider two examples where the limiting bivariate distribution is
exactly computable at the critical point.

3. Example 1: The Curie-Weiss Model (MF)

This model is defined by the Hamiltonian

and has been extensively studied by Ellis and Newman [5]. In particular, they have
proven that for the classical up and down free spin model:

Lemma 2. At the critical point defined by β = βc=l/J and /z = 0, one has:

lim j
|Λ|-oo

(32)

where Cx is a positive constant and C2 the normalization factor.
On the other hand, since the energy variable is here given by:

E Λ . -
2\Λ ieΛ

,33,

one gets the following

Proposition 3. For the Curie-Weiss model with a classical up and down free spin
model one has at the critical point

lim P< a = ]f(y)dy, (34)

where

f(y) = \

if y^e

if y<e

(C1,C2>0).

with

= Γ(3/4)/C\/2Γ(l/4).

(35)

(36)

Proof. Using the results stated in Lemma 2, one easily gets (34-36) by using for
instance the convergence of moments (Carleman's condition [17] is here indeed
satisfied). •
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Using identity (33), it is obvious that the factorization property of Theorem 1 is
not allowed here. This can be verified by computing the bivariate moment
generating function. As a direct consequence of the preceding result, one gets:

Proposition 4. For the Curie-Weiss model with a classical up and down free spin
model, one has at the critical point

~ ~ +00

lim <exp(ί 1 M Λ -hί 2 £ Λ )> = exp(ί2e)C2 J Qxp(tιx — t2Jx2/2)exp( — C1x*)dx.

(37)

This is in complete agreement with the fact that the scaling limit near the critical
point (according to β — ΐ2) and at the critical point do not coincide. One indeed has
that for

β = βΛ = βc-t2/\Λ\1/2, (38)

B

A

where Cι and C2 are real constants and where C 3 is the normalization factor.
One has so far a good illustration of Theorem 1. However, due to identity (33),

this example may seem somewhat trivial. This is the reason why we shall now
consider the edge of a two-dimensional Ising cylinder.

4. Example 2: The Edge of a Two-Dimensional Ising Cyclinder

Let us consider the two dimensional Ising cylinder with 2N columns and 2M rows,
the Hamiltonian of which may be written as

2N 2M 2M-ί 2N

/ί({σ})=-JΣ lWjk+i-J Σ Σ V J + « (4°)
fc = 1 7 = 1 j = 1 fc = 1

at zero external field with the symmetry of the cylinder (the elementary spin varaibles
have been given a double index for convenience). Abraham has already studied the
magnetization variable associated to the first row of this model [6]. He proved that,
at the critical point defined by sinh2Xc = 1,

lim lim ( exp( ίfσ lk/(JVlogJV)1/2 ) ) =exp(α 2 /2), (41)

where C > 0 and where the mean value < > is to be taken with respect to (40). Using
essentially the same technique, we have computed the following bivariate moment
generating function:

/ 2N 2N \ \

z x p ( t i Σ σ i k + t 2 Σ σ i k σ i k + i ) ) . (42)

We sketch the method for completeness.
As in [6], define:

2N

1
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(43.b)

2N

Λ (43.c)

where the σ) denotes the usual Pauli spin operators. By adding a zero row (with
coupling J 3 ) connected with coupling tx to the first row and then letting J 3 -» oo, one
gets the desired result:

xί/2Λh^2)= Hm lim [2 sinh (2^)] "

{<0\V2(K)l(V1(K)V2(K)rM-1\0y(0\V2(K3)\0)} (44)

with K = βJ. The |0> state corresponds to a state with all spins down: the so-called
"vacuum" [18].

Since V = V\12 V2V\12 has a maximal eigenvector for any finite M, one gets:

<π

logΨ2N(tut2)= £ log {cosh2 ίi -cosh (2t2J)
ω>0

+ sinh2 ί 1 cosh(2ί 2 J) cotg(ω/2) tg(^(ω)/2) exp(2K*)

- cosh2 tι - sinh (2t2J) exp ( - yj[exp (2K*)

x (sinh 2X — cosh 2K cos ω)

+ cosh 2K sinω tg{δ\ω)/2)] — sinh2 tt sinh (2ί2 J)

x cotg(ω/2) exp( — γω)[exp(2K*) cosh2K sinω

+ tg(δ'(ω)/2)(sinh2K + cosh2Xcosω)]}. (45)

The values of ω are given by

ω = π(2n - l)/2N with n = 1,2,...,N9 (46)

and δ'(ω) is given as usual by

tg (δ'(ω)/2) = sinh 2K sinω/(sinh yω + sinh 2X*

x cosh 2X - cosh 2X* sinh 2X cos ω). (47)

γω is Onsager's function, i.e. the positive solution of

cosh γω = cosh 2K coth 2K — cos ω. (48)

The marginal cumulant generating functions can directly be derived from (43).
One obtains

<π

log ψiΛt\^) = Σ log {cosh2 tγ + sinh2 tί cotg(ω/2).

x tg(<5'(ω/2))exp(2K*)} (49)
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for the block magnetization variable and

<π

logΨ2N(0,t2) = Σ log {cosh (2ί2J)-sinh(2ί2J)exp(~7ω)
ω>0

x [exp(2K*)(sinh 2K - cosh 2Xcos ω)

+ cosh 2K sin ω tg (δ'(ω)/2)~] } (50)

for the block energy variable. The fluctuations of the first row magnetization
variable at zero external field are thus (in agreement with [6]):

/ 2N 2N

lim ( Σ σifc? Σc

M-^oo \ 1 1

= 2 2 {1 + exp(2K*)tg(δ'(ω)/2)cotg(ω/2)}, (51)
ω>0

and those of the first row energy variable are given by

/ 2N 2N

lim \ —JΣ
M-+00 \ 1

<π

ω>0

We are now able to give the following

Lemma 5. At the critical point given by sinh2Xc = 1, one gets

2JV

(53)

I I 2N 2N \

lim —{ -JΣσik°ih + ΰ ~JΣσik^ik+i ) < + c^ (54)
M,N^ooN \ 1 1 /

Proof Property (53) has already been proved in [6,12] and relation (54) follows
easily from (52) •

These results suggest of course the following renormalization procedure for the
(magnetization, energy) bivariate variable at the critical point:

Φih,

for the zero mean

t2)= hm <exp(ί 1M 2 N/
N->oo

valued variables

2N

1

_ 2N

1

(NlogN)

1 2N

+ \ i

(56)

( 5 7)

We are thus led to the following

Theorem 6. At the critical point and with the previously defined notations; one has for
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any real tί9t2:

lim <exp(ί1M2iV/(NlogiV)1/2 + t2£2iV/iV1/2)> = exp(C 1 ί f)exp(C 2 φ, (58)
M,N-oo

where C1 and C2 are positive real constants.

Proof. As explained in Sect. 2, one may easily show that, at the critical point,

<exp(f 1M 2 y)> /

2Nit t\-\\( 15 2 ) " £ MZ <exp(ί1M2N)>

with <• >' denoting the expectation value with respect to (40) where the contribution
2N 2JV

of the first row j5 c J^]σ l f c σ u + 1 has to be modified by (βc — t2)Yjσlkσlk+1.
1 1

From (45) one obtains

^ _ π cosh2

 t l + sinh2 tx cotg (ωβ)Fj£, K*)
ψ2N(tut2)~lJcoSh

2t1 + smh2t1cotg(ω/2)Fϋ>(K,K*Y

where

- „ (cosh 2K + sinh 2Kcos ω)tg{δ'{ω)/2) + sinh 2Ksin ωexp (2K*)

' "" sinh 2Ksin ωtg(δ'(ω)/2) + (cosh 2X - sinh 2Xcos ω)exp(2K*)

with

K = K-t2J. (62)

We first would like to prove the factorization property of the limiting bivariate
moment generating function. According to (30), one therefore has to study the
second and fourth derivatives of the logarithm of Ψ2N(t1,t2) at t1 = 0.
Let

β,0) = dfι lim log<exp(ί 1M 2 W)>
Λf-+oo

! —f2,0) = δ(

2 lim log<exp(t1M2 J V)>'
M-+OO

(63)

(64)
β,o>

then

U2(β,0) = 2 Σ (1 + cotg(ω/2) Fω(K,K*)), (65)
ω>0

U'2(β-t2,0) = 2 Σ (l+cotg(ω/2)Fω(£,K*)). (66)
ω>0

In the same way, one obtains

<π

(74(β0) = - 4 Σ {1 + 4cotg(ω/2)Fω(K,K*) + 3cotg2 (ω/2) F2(K,X*)} (67)
ω>0

<π
Uf4(β-t2,0)= - 4 Σ {H-4cotg(ω/2)Fω(K,K*) + 3cotg2(ω/2)F2

α(K,K*)}.
«>o (68)
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In appendices 1, 2 and 3 we prove respectively that

lim U4(βn 0)/7V2log2 iV = 0, (69)

lim U'4(βc - tJJN,0)/N2log2 N = 0, (70)
N->oo

^ ^ = 0. (71)

According to (30), this implies the validity of the factorization property at the
critical point:

lim <exp(t ι M2N + t2E2N)} = E{exp(t1X)}E{exp(t2 Y)}, (72)
M,N-+oo

where X and F are defined by

*»-<s£*F-^r* (73)

£ „ = £ " - < ^ i » > , y. ( 7 4 )

We already know that X has a Gaussian distribution [6]. To achieve the proof of
Theorem 6, it remains to show that the probability distribution of Y is indeed
Gaussian. This may easily be done starting from (48) and using standard techniques
of probability theory. •

Comment.1 This result may seem in conflict with the divergence of the boundary
specific heat at zero external field as obtained by McCoy and Wu [19] and Fisher
and Ferdinand [20]. It should however be stressed that the reference system they use
is not identical with ours. They are indeed interested by the function

^cylinder (*, y)/Zt0TUS{x, 0) (75)

with a field " / ' only applied to the edges of the cylinder. This allows1 to define the
corresponding boundary free energy and, by considering the second tempeature
derivative, to obtain the boundary specific heat which behaves as (T — Tc)~ι.

In our probabilistic approach however, we are interested by a moment
generating function, i.e.

Zcylinder(* ~ t' δf i r s t r o w , y)/ZcyUndJx, 0), (76)

where t modifies the temperature of the first row only, the second temperature
derivative with respect to t of which leads to the fluctuation of the first row energy:

2N 2N

which in this case is not identical to the boundary specific heat. It should be pointed

1 The author wishes to thank M. E. Fisher for a clarifying correspondence about this point
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out that no divergence occurs in (77); this guarantees the Gaussianness of the Y
variable.

5. Concluding Remarks

In this paper on limiting bivariate (magnetization, energy) probability distributions,
we have established a simple criterion (30) to study the independence of the limiting
variables associated to the magnetization MΛ and the energy EΛ.

We have seen how a "strong" dependence between M Λ and ^ ( i . e . such that they
become non-independent) is connected to critical point exponent equalities (cf.
Sect. 1) and how a "weak" dependence (i.e. such that they become independent) leads
to a unique scaling limit (cf. (20)) or, equivalently, to a unique fixed point within the
renormalization group formalism.

Our study of the Curie-Weiss model along this line shows once more the
peculiarness of this model. In particular we have proven how the strong dependence
between M Λ and EΛ (cf. (33)) in this model leads to a non-unique scaling limit.

The edge of a two-dimensional Ising cylinder gives us a second example where
the previous analysis may be performed exactly. In fact, we have shown that this
model is characterized by a weak dependence (in the previously defined sense)
between M Λ and EΛ(cϊ. (58)). It should however be stressed that edge properties like
this one may well turn out to be completely different from the corresponding bulk
ones. It would therefore be interesting to extend this study to ^-dimensional Ising
ferromagnets.

Finally, let us point out that it would be extremely interesting, in particular for
the d = 3 Ising ferromagnet, to study the relation which may exist between unicity
and triviality of the scaling limit.

Appendix 1

Let us prove that, at the critical point,

lim C/4(j8c)0)/JV2 log2 N = 0. (A.I)

This is equivalent to show that

lim —γ-—=— Y \ 1 + 4cotg(ω/2)tg( -——

iv-̂ ooA' log iVω>o [ \ 2

x exp (2K*) + 3 cotg2 (ω/2)tg2 (δ-ψ- j exp (4X*) j> = 0 (A.2)

where Kc is defined by

s i n h 2 X c = l . (A.3)
Since

/ ™ /δ'(ω)\ 2ήnh2Kcos2(ω/2)
cotg(ω/2)tg' M - ' }2 ) sinh γω + sinh 2X* cosh 2K - cosh 2K* sinh 2Xcos ω

(A.4)
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one easily gets at K = Kc,

cotg(ω/2)tg
δ'{ω)

Kc sin (ω/2)
(A.5)

It remains to use the following inequality (0 < ω < π) [12]

I sin ~x (ω/2) - ( ω / 2 ) " 1 \ < C (A.6)

to show that

<π ίδ'(ω)\
1) Σ cotg (ω/2) tg —r— does not grow faster than N logJV, since indeed

ω>0 \ 2 /
<π

Σ (1/ω) grows like NlogN.
ω>0

2) Σ cotg (ω/2) tg I —-— I does not grow faster than N2 for large enough N
ω>o[_ V 2 / J

< π

since indeed £ (1/ω2) grows like iV2.

This achieves the proof of (A.I)

Appendix 2

Let us prove that

lim l/4(j8c - f2Λ/N, 0)/N2 log2 iV = 0, (A.7)
iV-*oo

where

<π

U'S- ί2,0) = - 4 X {1+4cotg(ω/2)Fω(X,X*)
ω>0

with

K=(β-t2)J, (A.9)

-, (c
ω ( ' ' ~ sinh2X sinωtg (<5'(ω)/2) + (cosh 2ίC - sinh 2 ^ cos ω)exp (2K*)'

(A. 10)

Now, by continuity with respect to K, one may prove that

Vε > 03N0 > 0:iV > 7V0 =*|cotg(ω/2)Fω(^c, K*)

-cotg(ω/2)Fω(Kc,Kf)\^φin(ω/2) (A.ll)

with 0 < ω ^ π and

Kc = Kc-t2J/JN. (A. 12)
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Therefore

cotg(ω/2)Fω{Kc,Kf) ^ Y cotg (ω/2)Fω(Kc, Kf) + 2ε Y - + ε C, (A. 13)

and, thus, the left-hand side of this inequality does not grow faster than N log N. It is
also straightforward to prove that

Vε > 03N 0 > O:JV > N0^\cotg2(ω/2)F2

ω(Kc,Kf)

For large enough N, this leads to

cotg2(ω/2)F2

ω(Kc,K*)

ω>0

Using (A.ll), one gets

(A. 15)
ω>0

which achieves the proof of (A. 7). •

Appendix 3

Let us prove that

lim —-— 2 \Λ \ r —-— = 0, (A. 16)
N-*OO NlogN

where

= Σ cotg(ω/2){Fω{Kc-t2J/^N,Kf)-Fω(Kc,Kf)}. (A. 17)

It remains to use (A.6) to obtain

\U'2(βc-t2/sfN,0)-U2(βcM<εCt

NlogN

for large enough N. Since ε is arbitrarily small, one easily obtains (A. 16).
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