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Abstract. We show that scattering diagrams for closed strings in light-cone
string theory provide a single cover of the moduli space of Riemann surfaces.

Since the early days of string theory physicists have known that modular
invariance, or more accurately, invariance under the mapping class group, plays a
fundamental role in the theory. Modular invariance is especially relevant to such
consistency issues as unitarity and finiteness. In the Polyakov approach [1 ] to string
theory modular invariance is seen directly: the integrand in correlation functions
or the partition function is modular invariant in the critical dimension, and the
integration region is taken to be one copy of the fundamental domain of the
mapping class group, or equivalently moduli space. This approach to string theory
is very elegant, but such basic properties as unitary are not manifest.

There has traditionally been another way of approaching string theory, and
that is the interacting string picture as formulated in the light-cone gauge [2]. In this
approach Lorentz invariance is not manifest, but unitarity is apparent since we
work only with physical states. However, it has not been proven that the light-cone
picture is equivalent to the Polyakov picture. One of the steps in this proof is
settling the question whether the light-cone formalism reproduces the integration
over a single copy of the moduli space for a Riemann surface of arbitrary genus.
Some physicists have implicitly assumed that the answer to this question is yes. In
fact, it is hard to imagine that the Polyakov theory is correct if it isn't equivalent to
the light-cone formulation1 since the light-cone formulation manifests essential
properties like unitarity. If the light-cone formulation didn't reproduce the
integration over moduli space we would have to add or subtract by hand the
integration over the rest of moduli space; such tinkering could easily ruin the nice
properties of the theory.

* Supported in part by a National Science Foundation Graduate Fellowship
** Supported in part by a National Science Foundation grant
1 We thank S. Mandelstam for a discussion on this point
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At first sight, the statement that light-cone diagrams give a one-to-one cover of
moduli space is not at all obvious. One reason for this is that moduli space is

( 2 g i )
topologically complicated I its Euler character is [3] C(l — 2g) ~ Ί2g-i ig

in the light-cone picture we are representing it as one topologically trivial region
with identifications on its boundary (a cell in mathematical language). We have a
single cell since, roughly speaking, for a given topology there is only one light-cone
diagram, and we can thus pass from any point in moduli space to any other by a
continuous deformation of this diagram that avoids the boundary configurations,
i.e. those in which interaction points merge or go to infinity. It is not easy to see
precisely what the identifications on the boundary of the cell look like; they are
implicit in the construction of the light-cone diagrams but are necessarily not
simple since the topological complexity of the moduli space must manifest itself in
these identifications.

Therefore the statement that light-cone diagrams cover moduli space is non-
trivial. From the point of view of string theory it is of course plausible, and in fact
the open string field theory discovered by Witten [4] gives an example of how
something invented purely within the context of string theory was later found to
give a (previously known [5]) cell decomposition of moduli space [6]. As we will see
in this paper, the light-cone formalism for the closed string does indeed provide
a single cover of moduli space. Further, this cell decomposition appears to be
nicely related the complex structure of the moduli space.

We begin by examining a simple light-cone diagram; generic diagrams are
shown in Fig. la and b. A diagram consists of flat tubes corresponding to free
propagation of strings; at the interaction points there are curvature singularities.
These correspond to the type of interaction shown in Fig. 2. The intermediate
strings are allowed to twist by some angle between 0 and 2π before rejoining;
integration over this angle gives the projection onto states satisfying Lo — Lo = 0,
where for n an integer Ln, Ln denote the generators of the Virasoro algebra. In
calculating scattering amplitudes in the light-cone gauge the circumference 2πα of
a string is taken to be proportional to the component P+ of the total momentum of
the string. The parameters that characterize such a diagram with n external states
and g loops are then the momenta αf, aI (here i = 1,..., n and / = 1,..., g), the twist
angles θβ(β = 1,..., 3g -f n — 3), and the interaction times τa (a = 1,..., 2g + n — 3). In
the computation of a scattering amplitude the external momenta are fixed and the
internal variables are integrated over, giving a total of 6g + In — 6 parameters that
label a diagram with g loops and n external states of fixed momenta. Specification
of a flat metric with isolated curvature singularities on the diagram specifies a
conformal structure2 on a Riemann surface of genus g with n punctures; the
variables (α, 0, τ) are the modular parameters labelling the conformal structure.
The question is whether we obtain each conformal structure from such a diagram,
and whether there is only one such light-cone diagram that represents each
conformal structure.

2 Recall that a conformal structure on a topological surface is a metric defined modulo Weyl
rescalings
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Fig. la and b. An example of a light-cone scattering process. Each internal tube is allowed to rotate
by an angle θβ between 0 and 2π before undergoing another interaction; this is indicated by the
dotted lines. The interaction times τa are defined up to an overall shift; we can use the the shift to
set the first interaction time to τ = 0. Tubes corresponding to external strings are infinite in length.
The radii of the tubes are the parameters α, , α,. In a and b are shown diagrams corresponding to
different orderings of the times τa

DO ~ OO
Fig. 2. The basic closed string interaction

The generic light-cone diagram is characterized by having only simple
interactions: either a string interacts and forms two strings or two strings interact
to form a single string. Such diagrams will henceforth be called simple. By contrast,
examples will show that the combinatorics of a non-simple diagram can be rather
complicated; once again, these correspond to boundaries of the top dimensional
cell.

The point of this note is that the light-cone diagram is equivalent to the
existence of an abelian differential (or meromorphic one-form) ω with specified
residues (whose sum is zero) and pure imaginary periods. To see that a diagram
indeed determines a differential it is easiest to consider the examples. For each
example and in general we find that the natural abelian differential dw on the
world-sheet is the restriction of an abelian differential defined on a planar diagram
from which the light-cone diagram can be obtained by identification of boundary
segments. Since gluing is a local construction it is enough to discuss single
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interactions. The purpose of the following examples is to demonstrate the validity
of the gluing and the existence of the abelian differential, and also to illustrate some
of the non-trivial diagrams that can arise.

Example ί. (The simple interaction) Start with a horizontal strip in the w plane
with two slits (see Fig. 3a). For all examples the edges labeled by the same letter
{A, A\ etc.) are to be identified by a vertical translation. The slit disc neighbor-
hoods of a and b are identified to form a neighborhood of the interaction point.
Define local coordinates za = (w — a)1/2, 0<arg(zα)5^π, zb = (w — b)1/2,
π < arg(zb) ̂  2π. A coordinate z is defined on the glued surface by its restrictions za

and zb to half disc neighborhoods of the identified point a = b. In particular

Z2 = (w — a), 2zadza = dw, zl = (w — b\ 2zbdzb = dw, and thus 2zdz is transformed into
the differential dw by the change of coordinates.

Example 2. (2 incoming, 3 outgoing strings) see Fig. 3 b. First slit neighborhoods of
b and d are glued and then slit neighborhoods of a, c, and e are glued. Let za9 zb,...

be a coordinate for a slit disc at a, b,.... Define zb = (w — fc)1/2, - - <arg(z b )^ - ,

zd = (w —d) 1 / 2, — <arg(z d )^ — , and thus zb and zd define a coordinate zί on the

glued discs. Similarly define za = (w — α) 1 / 3 , 0<arg(zα)5Ξ —-, ze = (w — e)1 / 3,

— <arg(z e )^ — , zc = (w — c)113, — <arg(z c)^2π and thus za, ze, and zc define a

coordinate z2 on the glued discs. Again 2zίdz1 and ?>z\dz2 are transformed into the
differential dw by the change of coordinates.

α -
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(b)
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Fig. 3a-d. Planar regions from which light-cone diagrams can be obtained by identification of
marked edges. In each case we identify the slit edges A with A\ B with B\ etc. In a is the simple
interaction; in b a situation with two incoming and three outgoing strings, in c an example of non-
trivial combinatorics, and in d a time coincident diagram that corresponds to the square torus
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Fig. 4a-d. The limit as two interaction times become equal, but with a non-zero twist angle. In a is
shown the world sheet with small time separation and non-zero twist; b shows the corresponding
string configuration at time τ1. In c we see the interaction corresponding to the limit τ2

 = τ1, and in
d we see the configuration resulting from equal interaction times and twist angle θ = π

In this example the point on the world-sheet corresponding to identified points
a, c, and e is the site ofa four string interaction (one incoming, three outgoing). One
way to see how this interaction arises is to consider the limiting case when two
interaction times become equal but the interaction points remain separated, as in
Fig. 4. If the twist angle of the intermediate string is held fixed and the two times are
allowed to become equal, the string configuration at the interaction time appears
as shown in Fig. 4c. If the twist angle is taken to be θ = π, we get the configuration
in Fig. 4d. Here the point p corresponds to the points α, c, e. In this interaction one
strings splits into three strings. Clearly there are also configurations corresponding
to higher order interactions as well. At first sight we might conclude that these
pictures correspond to new interaction terms in the light-cone string theory, but
this is not so because the scattering diagrams obtained from such configurations
correspond to domains of measure zero in the moduli space. Another way of
saying this is that the apparently new interactions in Fig. 4c and d are just the
limiting cases of multiple simple interactions (Fig. 2), where the interaction times
become equal.

Example 3. (Non trivial combinatorics) the reader will now recognize that the
schematic (Fig. 3 c) indeed gives a light-cone diagram.

Example 4. (Time coincident) consider Fig. 3d. Similar to the preceding examples

define zfl = (w-α)1 / 2, -<arg(zj£Ξ — , zc = (w-c)1/2, — < arg(zc) ̂  — ,

= (w-b)112, - Γ < a r g ( z & ) ^ - - , zd = (w-d)1/2, — <arg(zd)^ — , where these

four charts combine to give a coordinate z at the point represented by identifying α,
b, c, and d. A similar identification is made for the other vertex. As before
Iz^dz^ = dw and again dw is the restriction to the world sheet of a meromorphic
differential on the diagram. An amusing point is that we actually know this
Riemann surface. By computing the Euler characteristic F — E + V, we check that it

has genus one. If the height of the strip is 2πί then the translation w->w+ — is

compatible with the identifications and fixes the points τ= — oo, τ = + o o . The
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translation determines an order four symmetry ρ of the torus with two fixed points.
An order four symmetry is unique to the torus C/{1, ί} and has precisely two fixed

points, represented by 0 and —γ~. S. Mandelstam was already aware of such time
coincident diagrams [2].

From these examples we see by construction that the light-cone diagrams
always define a Riemann surface with abelian differential. Conversely, given an
abelian differential ω on an arbitrary Riemann surface, we can use that differential
to define a flat structure with isolated singularities. To do this we define the
coordinate w in a neighborhood excluding a pole or zero of ω by the relation

z

w= Jω; here z is a local coordinate on the Riemann surface and z0 is some

basepoint in the neighborhood. Then dw = ω and an almost globally flat metric on
the surface is dwdw = \ω\2. However, this definition of w breaks down at the zeroes
and poles of the Abelian differential ω. Consider for example simple zeroes or
simple poles. At a simple zero Z o, we have dw~(z — Z0)dz or (w~ WQ)~(z — Z0)

2.
Therefore as we travel around the point Z o in the z coordinate, in the process
sweeping out an angle of 2π, we sweep out an angle 4π in the w coordinate about
Wo. It is easy to see that this corresponds precisely to a simple interaction point in
the light-cone picture labelled by the coordinate w. (Higher order zeroes just
correspond to the higher order interactions mentioned above.) Similarly at a pole,

we have dw~ — or w ~ln(z — Z0); this takes a small disk whose center is the

point Z o to a tube propagating off to infinity in the w coordinate. This clearly

Re(w)
c f

Im(w)
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Fig. 5a and b. a The world sheet with local coordinate w. Re(vv) increases in the direction of
increasing light-cone time. Note that because of the twists the cycle bj doesn't close unless we add
vertical segments, b A Riemann surface in the same conformal class as the light-cone diagram in a,
with corresponding curves shown
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corresponds to an incoming or outgoing string in the light-cone picture, depending
on the sign of the residue at the pole.

We can say even more about the abelian differential that provides the flat
structure on the world sheet. We take the orientation to be as shown in Fig. 5 a with
the real part of w increasing in the direction of increasing light-cone time and the
imaginary part of w increasing along the strings. Then if we integrate dw along the
contour Ct around an incoming state as shown in Fig. 5 a, we get for the integral
— 2πiαf5 where 2παf is the circumference, i.e. incoming momentum 2πP* of the
external state. On the conformally equivalent surface shown in Fig. 5 b, however,
we are integrating ω along the corresponding contour C , so we see that ω must
have a simple pole of residue — αf at the corresponding point Pt. Similarly if we
integrate along the contour Cf we get 2πi times ocf for the final state, so ω must have
a simple pole of residue af at the point Pf. Notice that from the geometry of the
light-cone diagram we easily check that the sum of the residues at the poles is zero.
We can also integrate around an internal tube. For example, if we integrate along
the contour cij we get the answer 2πfα/? so the Abelian differential ω must satisfy
§ω = 2πiθLj. In other words ω has period 2πiocj along the cycle av We can

alternately look at the integral along the cycle bι (formed from horizontal and
vertical arcs) as shown in Fig. 5 a and b; because of the twists of the internal string if
we follow lines of constant Im(w) the contour doesn't close. We must add a segment
along a constant Re(vv) contour (as shown) to close the contour3. The real part of
the integral is zero since we get equal and opposite contributions to zlRe(w) from
the top and bottom parts of the contour, so the period § ω is also pure imaginary4.

So far our discussion has shown that corresponding to the light-cone diagram
there is an abelian differential ω with simple poles such that the residues at the
poles are real and sum to zero. Further, the periods of the differential ω are pure
imaginary. Suppose conversely that we are given a Riemann surface R with
specified points Ph i = 1,..., n. Furthermore suppose we are given n real numbers at

n

such that Σ ^i^O. Then there exists a unique meromorphic abelian differential ω
i= 1

with pure imaginary periods5, and whose singularities consist of simple poles at the
points Pt with residues αf. To show this, first consider the g dimensional space of
holomorphic abelian differentials. Given a homology basis as shown in Fig. 6,
there exists a basis ω / 5 / = 1,..., g for the abelian differentials such that §(0j = δu.

The period matrix Ωu is given by Ωu = § ω7. Furthermore, given two points P
bi

3 We define the twist angles to be positive in the right-handed sense for increasing light-cone time;
i

then $ω = — (otiίλ—α2#2)
b\ 2π /

4 If we wanted the light-cone construction for the open string we just set all the twists (including
\ V

the integrals § ω\ to zero and then cut the world sheet in half to obtain the open string light-cone
diagram bl J
5 Such differentials have been previously studied; see e.g. [7]. Further, S. Mandelstam has
constructed the integrated expression w for such differentials in the Schottky picture of a general
Riemann surface [81
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Fig. 6. The choice of a canonical homology basis on a general Riemann surface

and Q on the Riemann surface JR there exists a meromorphic differential μPQ

whose singularities are simple poles of equal and opposite residues at the points
P, Q; for simplicity we take these residues to be +1, — 1 respectively [9]. The
space of meromorphic differentials whose singularities are simple poles of
opposite residues at the points P, Q is g +1 dimensional. This can be seen from
Riemann-Roch or alternately by considering a genus g +1 surface on which we
have pinched off one handle to obtain the genus g surface with nodes at points P,
Q; we can pick the g + 1 basis holomorphic differentials on the higher genus
surface so that g of them remain holomorphic after pinching, and one develops
simple poles6. Therefore the most general abelian differential with singularity set
consisting of simple poles at the points P 1 ? . . ., Pn with the specified (real) residues

ω = μ+ Σ £/<»/, (1)
1=1

where to define μ we choose an arbitrary point Q and set μ= Σ^i^PiQ^ and where

Ej — Gj + iFj are arbitrary complex coefficients. Let the periods of μ be given by7

§ μ = Cj + L4/? §μ = Dj + iBj. Then the periods of ω are
b

Σ(ΦuGj - ΨuFj)\ + ip, + Σ(ΨuGj + ΦuFj)\,Σ

where we have written the period matrix in terms of its real and imaginary parts,
ΩIj = ΦIJ + iΨIJ. The requirement of pure imaginary periods then specifies a
unique solution for the constants F / ? Gz. This is given by

Notice that to write the solution we had to invert the imaginary part of the period
matrix, which is always possible since the imaginary part is positive definite. This
construction therefore gives the unique differential ω with the specified pole
structure and pure imaginary periods. Note that the differential is invariant
(intrinsic) in the following sense: given a surface R (respectively R) with points

6 If a cycle A is to be pinched choose ω / 51 ^ / ̂  g, such that j coj = 0 and ω* such that $ ω* = 2πί
A A

7 Note that these periods are defined only modulo the contour integrals at the poles. To eliminate
this ambiguity, when choosing the at and bι cycles we assume their homotopy classes to be
specified with respect to the surface with the points P, removed
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Pu...,Pn (respectively Pl9 ...,Pn) a n d res idues α 1 ? . . . , α π , t h e n for / a c o n f o r m a l

equivalence, f:R^>R, f(p.) = pj indeed ω%o f=ωR.
The choice of all imaginary periods is crucial for invariance under the mapping

class group. If we had taken, say, a certain set of homology cycles and specified
their periods, we would not expect a mapping class group invariant assignment.
This is because we would have chosen some specific cycles, and the mapping class
group mixes the cycles. However, for all imaginary periods, the construction is
invariant under the mapping class group-there is no choice of any particular
cycles. Thus ω depends only on the conformal structure of the surface.

One might ask whether a similar uniqueness theorem holds for differentials
without poles, allowing us to put a similar structure on the closed Riemann
surfaces, i.e. those without external states. We could imagine looking for the
unique differential YιEIωI with pure imaginary periods. However, this doesn't

work: for all the periods to be imaginary and the differential nontrivial, we find
that det(ImΩ/7) = 0, which corresponds to a degenerate Riemann surface. There-
fore we are back where we started, with one handle pinched off to form two
punctures. So as in the case of the triangulation of moduli space given by the open
string field theory, we still cannot treat closed Riemann surfaces.

We now have the unique abelian differential ω, but we are not quite done
because we also must show that to each such differential there corresponds a light-
cone diagram. To see what could possibly go wrong, recall that if we have a surface
consisting of flat tubes glued together as in Fig. 5 a, we have the structure of a
family of closed vertical curves and the orthogonal family Im(ω) = 0. These vertical
curves correspond to the string or strings at a fixed light-cone time [i. e. fixed Re(vv)],
and will be called the imaginary trajectories of the differential ω. The problem is
that the imaginary trajectories of an abelian differential don't always close; they
can exhibit an ergodic type behavior. A simple example is the differential ω = eiφdz
on the ordinary torus represented as a square with opposite sides identified; if the
angle φ specifies a line with irrational slope the imaginary trajectories of ω never
close. This behavior would destroy the nice picture of the Riemann surface as
constructed from flat tubes with a globally defined light-cone time. To show that
this can't happen, notice that in the case of the torus, given a point on a trajectory,
the trajectory itself will return an infinite number of times to an arbitrary
neighborhood of this point. This is in fact the generic behavior for a differential on
a compact Riemann surface: if a trajectory of an abelian differential does not
terminate at a zero or pole and does not close, then it will necessarily have a limit
cycle. By contrast, in our case, if there were such a trajectory we could follow it
from a point forward to another point in a small neighborhood of the original
point; then the integral Jω along this trajectory segment has vanishing real part.
We could of course take the two points to lie in a neighborhood excluding the
zeroes and poles of ω. Since we know what the trajectory structure looks like
locally (see Fig. 7), we see that we could then close the trajectory by adding a small
piece of an orthogonal trajectory along which Im(ω) = 0. But over this piece
Re(ω) + 0, so consequently the integral along the resultant closed contour would
have non-zero real part. But this is clearly impossible since ω has pure imaginary
periods. Therefore the imaginary trajectories of ω do indeed close.
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Re(w)=CONSTANT

Fig. 7. The local trajectory structure away from a zero or pole of ω, together with a section of a
non-closed trajectory

A key feature of the light-cone gauge is the existence of a globally defined time
z

(light-cone time), τ(z) = ReJω, ω(zo)Φθ; in fact τ(z) is reminiscent of the

height functions of Morse theory. To this end define a critical value of c of the time τ
to be a real number such that ω vanishes somewhere on τ~1(c) and the critical
set is τ~ι({crίtical values}). As with a Morse function the behavior of τ near a
critical point is easily classified. If p is a critical point then

τ(z) = Rel Jω+ J ω 1 = Re(z") + const, where ω is nzn γdz in a local coordinate z

with z(p) = 0. And of course the complement of the critical set is a union of ω-
cylinders (surfaces with differential, obtained by gluing dw on a horizontal
rectangle).

To see this consider an interval [α, ί>] free of critical values. Then ω is zero free
on C = τ~1([α, £>]) and ds2 = \ω\2 defines a metric. In the light-cone picture local

coordinates w = x + iy, ω = dw, τ = x + const and grad τ = — . The nonzero vector

field grad τ defines a local flow which caries a level set τ~x(α), α<α<frtoτ~^ft). C
is the product of the interval [α, &] and a disjoint union of circles. The full
conclusion follows since dτ = Re(ω).

In summary, we have seen that for each conformal structure on a Riemann
surface and each specification of points and of residues (i.e. external P+ momenta)
at these points we have a unique light-cone diagram. The light-cone diagrams
cover moduli space, and the parameters (α, τ, θ) act as a global set of coordinates.
We have a new cell decomposition of moduli space.

The top dimensional cell appears with some boundary identifications as the set
if of simple diagrams (ω has simple zeroes), if is in fact connected or equivalently
any simple diagram can be deformed continuously through simple diagrams to the
normal form of Fig. 8. To see this we introduce the notions of splits and joins; keep
in mind that the time axis is oriented and the following is for the simple diagrams of
Sf. There are four sectors near a simple interaction point p: if τ 0 is the interaction
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W W -

Fig. 8. The normal form for a genus 3, 4 incoming and 5 outgoing diagram

time then each time interval (τ0 — ε, τ0), (τ0, τ 0 + ε) determines two regions near p. A
string separates into two at a split. A split p is rejoined at the interaction q (not
necessarily unique) provided that there exist paths y l 5 y 2

 s u c n t n a t : >Ί(0)= 72(0) = p,
y1(l) = 72(l) = ^, time is strictly increasing along y l5 y2 and the paths leave p in
distinct sectors. A split p is internal if it is rejoined at some interaction q; otherwise
it is outgoing. Joins, internal joins, and incoming joins are defined by reversing the
time axis. Finally there are two forward and two backward real trajectories, the
interaction signal, emanating from an interaction point.

The basic situation is for a split p and a joint q with τ(p)<τ(q) (and no
intermediate interactions) and p does not rejoin at q. A small perturbation of the
diagram will insure that the p and q signals are distinct for each time slice. The two
forward p signals pick out two components of a τγ time slice, τ(p)<τι<τ(q), and
similarly for the two backward q signals. Since p does not rejoin at q there must be
at least three components (the maximum for two interactions) and the diagram is
given by Fig. 9a. Simply push the join q to the left of p to obtain the diagram
Fig. 9b.

Now consider the general diagram in ^\ genus g, m incoming strings, n out-
going strings. By a small perturbation we arrange that all interaction times are
distinct and all interaction signals are distinct for each time slice. The discussion
for the basic situation insures that each outgoing split may be pushed, through
diagrams in ίf, to the far right; and each incoming join pushed to the far left. Thus
it is enough to consider diagrams with one incoming and one outgoing string. For
such a diagram consider the (internal) split p with the largest time value. This
situation is special: p is rejoined at a unique join q. In fact if γ is a path leaving p, for
which time is strictly increasing, then its topology (homotopy class relative to the
terminal time slice) is completely determined by its sector leaving p. The reason:
there are no splits to the right of p and so no decisions for y. The consequence: if p is
rejoined at q then the topology of the joining paths (one for each sector) is
completely determined; q is unique. The conclusion: every other join to the right of
p can be pushed to the left of p. Now proceed by induction to move to the normal
form.

The parametrization of this cell is not completely trivial in terms of the
coordinates (α, θ, τ). The reason for this is that we will overcount configurations if
we allow (α, θ, τ) to range freely — this comes from the fact that the handles in the
surface are indistinguishable, yet we have labelled them while introducing
coordinates. For example in the simple case of Fig. 10 the naive count gives two
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Fig. 9a and b. In a is a split p which is not rejoined at q, and b shows the result of pushing q past p
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I I
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T 3 T 4

Fig. 10. An example of the overcounting problem. These two diagrams arise from different ranges
of the parameters τ l 5 . . . ,τ 4 , but are clearly geometrically identical

diagrams even though the actual count is one. This overcounting problem is
similar to the one encountered in [3, 5, 6] and should not be difficult to solve; we
must simply divide by discrete symmetry factors. These are reminiscient of the
combinatorical symmetry factors that one encounters in ordinary Feynman
diagrams.

An appealing aspect of this cell decomposition is that the coordinates appear to
be closely related to the complex structure of moduli space. One reason for this is
that the coordinates correspond to periods of an abelian differential or to the
integrals of that differential between its zeroes. The expressions for the periods are
especially easy to write down using Riemann's bilinear relations; for the case of a
differential ω P l P 2 with residues +1, — 1 at points Pu P2 and pure imaginary
periods we have (see e.g. [7])

Σ
J=ί

P2

(2)

This then gives all of the internal momenta ocj and combinations of twist angles θβ

for each internal loop. These are expressed directly in terms of the period matrix
and the integrals of the holomorphic differentials between the specified points, so
the relations are simple in the complex parameters on moduli space. For example,



Light-Cone String Theory 189

in the case of the torus the complex modular parameters are the usual τ (the torus is
the quotient of C by the lattice {1, τ}) together with the coordinates of the points
corresponding to the external states, Zγ,Z2. The relation between these and light-
cone parameters is given by

2πί(Z1 — Z2) = (#! + Θ2)oc1 — θ2 — 2πiα 1 τ .

Of course to solve for the individual twist angles and the interaction times we must
know the integrals between the zeros of ω. In the case of the torus these integrals
are given by theta functions in the variables τ, Z l 9 Z2, so once again we have
variables locally analytic in the complex parameters on moduli space. S.

Mandelstam has already noted that the abelian integral w = Jω can be written
explicitly in terms of theta functions [10]. In particular,

Re(2πiτ)

dw
where —— has simple zeroes at ζx and ζ2 (see [11]). This feature should extend to

higher genus: 2g relations determining the parameters are given by the simple
expression (2), and the remaining 4g-f 2n — 6 relations should be given in terms of
the higher genus analogues of the simple genus-one theta functions. Consequently
there are likely simple analytic expressions relating the light-cone parameters and
the complex coordinates on moduli space.

Although previously physicists may have thought of the light-cone formalism
as inelegant, we see now that the formalism is extremely natural from the point of
view of the complex structure of the Riemann surface. We also see an obvious way
to change the gauge, i.e. the choice of external P+ momenta, in the light-cone
formalism: we just choose different αf coefficients for our differentials μPiQ.
Furthermore, these results lend credence to the idea of trying to use the light-cone
picture of interactions to formulate a string field theory for the closed string[12].
Although the light-cone formalism itself appears to depend on choice of gauge, the
scattering diagrams it produces really have a deep and natural connection to the
underlying Riemann surface. Therefore it is not unreasonable to think that the
closed string field theory might have a construction whose basis is the light-cone
type Feynman diagram. Notice that we also have the added bonus of a
construction that closely captures the complex structure on moduli space; this
could be important for the formulation of string theories like the heterotic string.

One should also note that the proof, that the light-cone diagrams give a one-to-
one cover of moduli space, is one part of the proof of the equivalence between the
light-cone/interacting string picture and the Polyakov approach. We have shown
that both formalisms give the same integration region (namely moduli space);
what remains to be shown is that they give the same integration measure. Of course
this is one method that could be used to prove that the Polyakov theory is unitary,
since in the light cone formalism unitary is manifest.

In conclusion, we see that the light-cone scattering diagrams of string theory
cover moduli space and provide a very nice parametrization of that space. The
parametrization for generic surfaces is extremely simple. This fact is relevant for
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the integration over moduli space since exceptional surfaces form sets of
codimension one or higher. Nevertheless, since in essence we are representing
moduli space as one cell, the identifications on the boundary must be relatively
complicated in order to agree with the known topological complexity of moduli
space.
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Note added in proof. The interaction signals provide a natural decomposition of the surface into
bi-infϊnite strips; the light cone structure restricted to such a strip makes it Euclidean. Generally
there are two interaction points per strip, and more in the case of non-generic surfaces. The
combinatorics of these strips encodes the cell decomposition of moduli space.

Recently [13] the Polyakov integration measure has been shown equivalent to that of the
light-cone formalism, establishing the equivalence of the two approaches.




