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Abstract. The space of solutions of the dipole equation

in a 3 + 2 de Sitter space with curvature constant ρ, contains a complete Gupta-
Bleuler triplet, consisting of pure gauge modes, physical modes, and "scalar" or
"auxiliary" modes. Indefinite metric quantization is carried out precisely as in
more conventional gauge theories. The associated Lagrangian and Hamil-
tonian field theory formulations reveal an interesting interplay between fields
on the de Sitter manifold and their boundary values at spatial infinity.

1. Introduction

The physical role of singletons [1], as fundamental constituents of massless
particles [2], has recently been extended to include hadrons [3]. The unusual
properties of singleton fields [4], that makes them unobservable at least at the
classical level, opens up the possibility of unusual statistics, intermediary between
classical and Bose-Einstein (or Fermi-Dirac) [3]. In its simplest form, a singleton
field theory in de Sitter space provides a composite model that is exactly equivalent
to QED, at least in the limit of vanishing curvature. In a second stage massive
particles appear and singletons seem ideally suited to assume the role usually
assigned to quarks.

Singleton field theory cannot be formulated directly in flat space - not, that is,
as a relativistic operator quantum field theory. To achieve an autonomous flat
space formulation it is necessary to give up the idea of local quantum field
operators as far as the singletons are concerned. But it is possible to construct a
field theory in terms of Green's functions, or Feynman rules, in the manner that
was attempted about 15 years ago in the context of conformal in variance and
operator product expansions. The S-matrix is expressed in terms of rc-point
functions that are defined on Minkowski space. Two- and three-point functions
(and perhaps four-point functions) must be specified a priori, although originally
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obtained as flat space limits of vacuum expectation values of products of field
operators defined on de Sitter space. The constant curvature of de Sitter space thus
appears as the parameter of a deformation that makes an operator formulation
possible. This is another aspect of the efficient infrared regularization that is
introduced through curvature.

The quantization of singleton fields is characterized by an indefinite metric and
a local gauge group. Some time ago [4] we carried out quantization associated
with the rac ( = bosonic singleton) wave equation

The associated propagator is logarithmic and the interpretation becomes less clear
than one could hope for (Sect. 2). The main purpose of this paper is to present a
better alternative. Logarithms will be avoided by replacing the Klein-Gordon
equation by an equation of higher order. The ghost that is introduced thereby is
just the degree of freedom that is needed to provide the gauge modes with
canonically conjugate field variables. It should be pointed out that the interpret-
ation of the electromagnetic potential as a singleton-composite field is also
facilitated by this new formulation of the free singleton theory. This is especially
true of the flat space limit, as will be shown elsewhere.

The Klein-Gordon dipole equation

has been examined many times, mostly in flat space [5, 6]. It demands an indefinite
metric Hubert space, even in flat space, but attempts to devise a physical
interpretation have nevertheless not been completely abandoned [6]. The
problem, reduced to its most elemental aspect, is the following. There are two kinds
of solutions (in flat space):

The first type satisfies the Klein-Gordon equation and spans an invariant
subspace. In canonical quantization, the two types are mutually conjugate and the
invariant Hubert space metric is zero when restricted to the subspace of solutions
of the first type. The theory remains unitary when interactions are introduced only
if these zero-norm modes remain uncoupled; in other words, interactions must be
gauge invariant. The analogy with electrodynamics is striking, with solutions of
the second type playing the role of the "scalar" photons. But the physical content of
QED rests on the existence of transverse modes, and here the parallel breaks down,
for the flat space dipole has nothing that corresponds to transverse modes. In
group theoretical terms it is only an indecomposable doublet, Scalar-* Gauge,
while the Gupta-Bleuler triplet of QED, Scalar -> Trans verse -> Gauge, is the
essence of its structure and its physical interpretation.

Curvature brings nothing essentially new as far as this triplet structure of
electrodynamics is concerned [7], but the effect on the dipole is dramatic. If ρ is the
de Sitter curvature constant and m2 = — f ρ, then the singleton appears as an
additional set of solutions of the dipole equation. Group theoretically it takes its
place in the middle of an indecomposable representation, Scalar -> Singletons
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->Gauge of the de Sitter group. The doublet turns into a triplet and becomes a
complete gauge theory. One way to study this theory is to examine the dipole
propagator. This is not logarithmic, and the interpretation of this new singleton
field theory is much more transparent than the one proposed previously [4]
(Sect. 3).

Singleton field theory is a gauge theory with a difference: the gauge structure is
non-local and is closely associated with boundary conditions [8]. In Sect. 4, we
study fourth-order wave equations in general, with special attention to surface
terms that arise in the variation of the Lagrangian. The dynamics associated with
the boundary is richer than in second order theories, for the fourth-order system
on the manifold may couple to a second order system on the boundary. In fact,
however, this possibility is realized in one case only: the fourth order equation
must be a dipole and the "mass" must be that of the singleton (to ensure the
required asymptotic behavior). The singleton dipole is thus a unique system in
which the interplay between the space time manifold and its boundary is most
intimate.

In Sect. 5, we study the Hamiltonian formulation. An interesting aspect is that,
on the "physical subspace" (defined by the "Lorentz condition") the Hamiltonian
reduces to a surface integral, which reminds us of the situation of the ADM
energy in general relativity.

2. Second Order Wave Equation

The physics of the Klein-Gordon equation is affected by curvature in many ways.
The analysis is in some respects simpler with curvature than it is without it. It is
enriched by an interesting fine structure in the region of very low mass - squared
masses of the order of magnitude of the curvature constant [9].

The Klein-Gordon equation is

The mass term is expressed as a multiple q of the curvature constant ρ. The simplest
expressions for the metric components are

g™ = (l + Qr2) - * , - gV = δij + ρx V , gQi = 0 .

The (intrinsic) coordinates £,x are global and r = |x|.
Though the wave equation can easily be solved directly, one gains more insight,

and more quickly, by evaluating the two-point function. Let {φ*}, i = 1 , 2, . . . be any
complete set of solutions, then the associated two-point function is

D(X, χ')=Σ± Φl(χW(χΊ (x = M >ί
in which ^denotes the complex conjugate ofφ. If φl is a stationary solution with
well defined angular momentum, then the sum will be referred to as the Fourier
expansion of the function D. Canonical quantization introduces the hermitian
quantum field operator
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and the vacuum state |0>, with α^O) = 0. The physical interpretation requires that
the solutions φ\ and consequently the one-particle states af |0>, have positive
energy. The two-point function is the vacuum expectation value

All important physical characteristics of the chosen set of solutions of the wave
equation (the "modes"), including positivity, causality, unitarity, and relativistic
invariance, are easily obtained by inspection of this function.

The requirement of relativistic (i.e. de Sitter) invariance goes far towards fixing
the two-point function. To impose it, it is very convenient to interpret space time as
(a covering of) a 4-dimensional hyperboloid

in 3 H- 2 dimensional pseudo-Euclidean space. The intrinsic coordinates x, ί are
related to (yα), α = 0, 1, 2, 3, 5 by

eτ, y = x, ^ +

In terms of yα, the wave operator takes the form

The two-point function is a relativistic invariant if and only if it can be expressed as
a function of the invariant pseudo-Euclidean scalar product z = ρy - /. The two-
point function satisfies the wave equation, and if it is relativistically invariant, it
may be regarded as a (generalized) function of one variable,

The wave equation then reduces to

We now study this hypergeometric differential equation.
Consider the expansion

The indicial equation gives

and the recursion relation for the coefficients is

Now we can investigate the unitarity of the theory.
Wave propagation is unitary if the two-point function is the integral kernel of a

positive operator. We shall show that this implies that λ must satisfy the bound
λ^.%. In fact, the requirement that the one-particle states α*|0> have positive
energy means that the so far ill defined generalized function z~λ~n must be
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interpreted as a distribution with positive frequencies, namely

Σ β-

The functions C\ are Gegenbauer polynomials, and they have the following
expansion in terms of Legendre functions :

The summation is over / = fc, fe — 2, . . . , 1 or 0. The distribution z ~ v is positive if and
only if all the coefficients in this series are positive or zero, which implies that
v^l/2. This must hold for v = λ + n, rc^O, so we must have λ^.ί/2.

The case of interest is just the limiting case:

//-_! -i -iq— 4, Λ _ — 2 j A + — 2 -

It may be seen that the lowest energy that occurs in the Fourier series is λ. The
singleton has minimum energy E0 = 1/2, so we would expect a two-point function
of the type Σ0πz~(1/2)~2". However, λ+ — Λ,_ is an integer. The general theory of
differential equations predicts that only the larger of the two solutions of the
indicial equation may give rise to a power series that solves the differential
equation. In fact, if λ = λ+ =5/2, we get the two-point function

n (7\ — 7-5/2 P Λ5 !. 9 -2\
Lf + (Z) — Z 2 Γ 1 V 4 ? 4 ? Z ? Z ) )

but if λ = λ- = JT the recursion relation fails already for π = 0. The other solution,

D_(z)= £ ̂
n = 0

is unavoidably logarithmic.
The propagator D+(z) contains modes with lowest energy 5/2, and therefore

does not contain the singleton. The logarithm in D_(z) complicates the picture, for
the expansion

includes mode functions of the form telE\ and the space of one particle states does
not have a basis consisting of energy eigenstates. It is nevertheless possible to
quantize the theory, as was shown elsewhere [4], but here we shall find an
alternative treatment that avoids logarithms and is more interesting in other ways
as well.

3. Fourth Order Wave Equation

If A is an ordinary, second order differential operator, for which the origin is a
regular singular point, consider the equations Af(x) = 0 and A2g(x) = Q, in a
neighborhood of x = 0. Let λ+ and λ- be the solutions of the indicial equation. If
the difference λ+—λ- is non-integral, then the first equation will have two
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solutions by power series :

/+W=χΛ + Σ «„*", /-(*)=*Λ- Σ M"
π = 0 n = 0

For the other, fourth order equation, λ+ and Λ _ will be double solutions of the
indicial equation, and the two additional solutions will normally be logarithmic.

Now suppose that s = λ+—λ- is a non-negative integer. The power series
solution /+(x) will still exist, but /_(x) will be replaced by a logarithmic function.
On the other hand, one will gain an additional power series solution of the fourth
order equation. In fact, set

GO 00

g(x) = xλ- Σ gjf = xi+ Σ 9n+sx",
n = 0 n= —s

then it is always possible to choose the coefficients so that

Ag(x)=f+(x)9 .'.

Consequently, we can avoid logarithms in our two-point function if we replace our
wave operator by its square.

Taking A = π -f ρ, we get the following recursion relation for gn (x = z~2)

The recursion relation for an, with A = 5/2, is

φ + lK = (rc + i)(" + t

and this allows us to rewrite our first equation as

cB-cπ + 1 = l

A solution is n

which leads to the following two-point function,

D(z) = z-1/2

2F1(i|;l;Z-2), (3.1)

for the wave equation

This is the wave equation that will be used from now on. The non-logarithmic two-
point function is unique except for the possibility of adding a constant multiple of
D+(z). As we shall see, this corresponds to a change of gauge.

The first two terms in the expansion of D(z) are

The lowest energies are contained in
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The argument of the Legendre functions is

x x 1/2 1/2

-
rr ρr ρr'2

consequently, the P2~
term conceals a contribution with angular momentum zero.

The contributions with energy 5/2 and angular momentum zero are of two kinds,

(Γy^-5/2e-5r(τ-τ')/2 an(j ^2 + Γ'2)(yy/)- 5/2g- 5i<τ-τ')/2 ^

This bespeaks the presence of two types of modes, namely

The first satisfies the second order wave equation and appears as the contribution
of lowest energy in D + (z)', the other satisfies

and the squared wave operator thus annihilates it.
We are now in a position to describe the space Ίfr of one-particle states

associated with the fourth order wave equation. It is precisely the space of modes
that occur in the Fourier expansion of D(z).

Let us begin with the subspace i^g oW that consists of those modes that satisfy
the second order wave equation and appear in the expansion of D+(z). The lowest
energy in this space is 5/2, and this space carries the unitarizable, irreducible
representation D(5/2,0) of so (3, 2). We observe that all these modes satisfy

lim r1/2ό(x, t) = 0 (Gauge modes) .
r-> oo

Next, consider the subspace y of 1f' that consists of those modes that satisfy the
second order wave equation, whether they contribute to D+(z) or not. The lowest
energy mode in this space has energy 1/2, and consequently i^ contains modes in
addition to those that appear in i^Q. However, these additional modes do not form
an invariant subspace complementing ifg. The structure of if is precisely
analogous to the space of modes of the electromagnetic potential, after the Lorentz
condition has been imposed. The invariant subspace ifg corresponds to longi-
tudinal modes and the complement is analogous to the space of transverse modes.
The representation of so (3, 2) realized in If is the nondecomposable D(l/2,0)
->D(5/2,0). If we define φ, a function of t and the angles, by

then the contribution from the gauge modes is removed, and we obtain the
irreducible singleton representation D(l/2, 0), realized in terms of functions on the
cone at infinity.

The representations D(E0, s) considered so far are algebraic representations of
so (3, 2). The corresponding unitary representations of SO (3, 2) will be described
below.

We have seen that D + (z) is the only invariant two-point function that satisfies
the second order wave equation, and that it does not contain the singleton modes.
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Table 1. Comparison between the indefinite metric structures of electrodynamics (in flat space)
and the singleton dipole (in de Sitter space). The representation D(0, λ) of the Poincare group has
mass zero and helicity λ

Wave equation
Lorentz cond.
Gauge modes

Group

Re- Scalar
pre-
sen- Physical
ta-
tion Gauge

QED
(Flat space)

°AA = 0

Poincare

/>(0,0)
1

I
D(0, 0)

Singleton dipole
(de Sitter space)

(D — ~4.o) ^ = 0
(π — 4 ί?) 0 — 0
Iimr1/2(ί(x,t)=0

SO (3, 2)

0(5/2,0)
1

D( 1/2,0)
I

0(5/2,0)

Equations hold in

Ί"}'.
Representation space

If-
r]

The situation is precisely as in electrodynamics with the Lorentz condition
imposed. The two-point function D(z) contains the singleton modes and, besides,
additional modes that do not satisfy the "Lorentz condition;" that is, the second
order wave equation. These modes of y complement f^, but do not form an
invariant subspace. The total representation of so (3, 2) in if' is D(5/2,0)
->D(1/2,0)->D(5/2,0). See Table 1 for a detailed comparison with
electrodynamics.

The "function" D(z) is actually the integral kernel of an operator; it is not
positive. The mode expansion has the form

D(Z) = Σ Wβ* (3 2)

where the subscripts refer to gauge, scalar, and physical modes. Unitarity is saved
in the usual way: the "Lorentz condition" (the second order wave equation) must
be imposed on the physical asymptotic states, and the gauge modes must be
decoupled by gauge invariance. Thus everything decouples except the singleton
modes.

The flat space dipole equation (D + m2)2^ = 0 can be handled in analogous
fashion, but in that case the modes that remain after imposing the "Lorentz
condition" (D + m2)φ = 0 are all lost to gauge invariance. The total representation
is D(0,0)-»D(0, 0); there is nothing that corresponds to the singleton middle
member in the triplet D(5/2,0)->D(l/2,0)->£>(5/2,0), and no physics.

4. Lagrangian Field Theory

Singleton field theory is a gauge theory with a difference: the separation of gauge
modes is non-local. A pure gauge field is characterized by the fact that it falls off
faster than r ~1/2 when r tends to infinity [4]. The pure, on-shell gauge field can also
be characterized by the inequality £^/ + f; the physical singleton modes have
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energy E = I 4 \ [1], (Energy is measured in units of ρ1/2.) But this is also essentially
non-local, for any cut-off in volume (or in time) will mask the singleton component.
A most striking characteristic of singletons is their extremely poor localizability.
The boundary surface at spatial infinity must be taken more seriously than in other
field theories. This is also indicated by the extremely slow rate at which the physical
modes decrease towards infinity. Finally, curvature is essentially a volume cut-off,
and physics on the boundary is the infrared problem [10].

Since the singleton wave operator is a fourth order differential operator, we
consider briefly the problem of setting up a canonical formalism for an equation of
the type

(Adf + Bdf + C)φ = 09 (4.1)

in which A is a real function, B and C are formally self-adjoint differential
operators, and all three are independent of the time. As Lagrangian density we try
the general expression (φ = dφ/dt)

<$? = (/>aψ 4 ψbψ 4 φcψ 4 φdφ 4- φeφ .

Here a9b,...,e are either real functions or formally self-adjoint differential
operators, independent of the time. The dot denotes the time derivative, and the
field ψ is introduced to cover for φ.

The Euler-Lagrange equations are

— at/) 4 cip — 2dφ 4 2eφ = 0, — aφ + 2bψ 4 cφ = 0 .

In order that φ can be eliminated in favor of φ, we need that α, b Φ 0, and we take
a = 2b = A with no essential loss of generality. (Only the scale of ψ is fixed.) Thus
Aψ = Aφ — cφ. Eliminating ψ we are left with the Euler-Lagrange equation for φ,
and for this to take the form (4.1) we must fix

while c remains arbitrary. The resulting Lagrange density is, up to surface terms
(that alone depend on the choice of c)

φAφ +

It remains to discuss the surface terms.
Consider the case of the invariant wave equation

= 0, DΞδχv5v, (4.2)

in which u, v are constants. Invariance limits the choice of surface terms but still
leaves some ambiguity. We consider
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where α, β, y are real parameters. The variational principle is

<5L=0, L=αL4 + βL3, L4 j 3- fd4xJ2?4 > 3.

For the time being, we look at ψ as shorthand for (π + u)φ, and evaluate

φ}. (4.4)

The second term is a surface term. If this term could be ignored, then we could vary
φ and ψ independently, since independent variation ofψ would give the constraint
ψ = (D + u)φ. The surface term is

fdXί-flW7,, (4.5)
Fv = φv(o+u)δφ + δφv(D + u)φ. (4.6)

We are concerned with the behavior of Fr as r— > oo. To investigate this we specialize
the metric.

In de Sitter space

in which L2 is the operator of total angular momentum. The integral (4.5) reduces
to

ί d4xdμ( - g)l/2gμvFv = f dtdΩ lim r2^F, ,
^ r->oo

lim r2grrFr= lim (-ρr4^).
r->oo r->oo

Suppose that there is real N such that

then the leading contribution to r4Fr is

and this must be finite. One way to ensure this is to have φ fall off faster than r ~ 3/2

as r->oo. The more interesting possibility is to choose

(4.8)

The next leading contribution to r4Fr is now finite, provided

JV=-i, u=-ίρ. (4.9)

In this case φ~r~1/2, ψ = (π + u)φ~r~5/2, and

limr4Fr - - i(^F(5^+ (5^F )̂ , (4.10)

F = limr2(D + w) = δτ

2 + L2 + έ (4.11)

We adopt (4.9) from now on.
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Variations that vanish on the boundary give us

[(D + w)2-w]^(x) = 0, r<oo,

valid in the interior of de Sitter space. In order that this equation admit solutions
that fall off as r ~ 1/2 when r-» oo, it is neccessary that w — u2 — v is zero. We suppose
so from now on and thus end up with the singleton dipole equation

(D-ίρ)V(*) = 0, r<oo,

in the interior.
Returning to (4.4), we shall now regard φ and ip as two independent fields.

Having fixed the asymptotic behavior of φ and ιp9 we can write (4.4) as follows :

δL4=$d4x(-gY/2{δψ(ιp-Ώφ-uφ)-δφ(Ώ+u)ψ}

+ ̂ d4x(-gγ
l2δ00(x){δψ(x)φ(x) + 5ψ(x)δφ(x)}. (4 12>

Here δ^ is the distribution, defined for functions F that satisfy

limr3F(x) = F(t,Ω),
r-*oo

by

I Λc(- g)^2δ00(x)F(x) = if ΛcOF(x) = ρ f dtdΩF(t, β) . (4.13)

The coefficient of δ\p in δL4 gives us

ip = (D + u)φ - i<U*¥W (β = 0). (4.14)

This is problematical.
It does not seem possible to live with the last term in (4.14), for if we try to use

this equation to eliminate ψ, then we encounter δ^xjδ^x). We avoid this
problem by including the surface term L3 in L. First, we shall show that γ ί = ρ/4. In
fact,

~r~2{φφ- (r2δij - r^diφdjφ ~iφφ}- (ρ/4)φφ .

The last term decreases too slowly and must be compensated by γtφφ, so y±=
This gives

The coefficients of δψ and δφ in <5L=0 are

Thus βγ2 must be equal to — α/2 to avoid a surface term in the expression for φ, and
β must be 2α in order that φ satisfy the dipole equation : β = 2α, y2 = - J, in which
case the variational equations become

with u= — |ρ.
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The Lagrangian is thus finally fixed up to overall scale,

In this form it is ready for passage to the Hamiltonian formalism in the next
section. Another form is

5. The Hamiltonian

The singleton dipole is a model of a system for which the boundary is of
exceptional dynamical importance. It is of some interest to cast it in Hamiltonian
form. We note that the boundary also plays a certain role in massless field theories,
and that boundary terms in the Hamiltonian have been investigated in that
context [8].

The momenta conjugate to φ and ψ are

The Hamiltonian is H= ίd3x(-#)1/2^, with

3if = φπ + ψπ' — J£? = a{g00φψ — gijφίψj 4- uφψ — ̂

, - J ΦΦ+ \
We verify that

uφ — ψ) + φ(π + u)ψ} + 2oίδ(X)φ(πφ + uφ — ψ) = Q
aτ

by virtue of the field equations.
Originally, in the context of the homogeneous, fourth order wave equation, the

Lorentz condition had the effect of eliminating the "scalar" modes. One should
expect that the only contribution to the Hamiltonian that remains, when the space
is cut down by the Lorentz condition, is that of physical singleton modes (since the
gauge modes have zero norm). But the gauge modes uncouple only at the
boundary, so the implication is that the Hamiltonian must reduce to a surface
integral. Indeed, the Lorentz condition is simply ψ = Q, and then

It remains to determine the scale.
The free wave equation for <}> is

V$(t, β) = R2 + L2 + Mi, Ω) = 0 .
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The solutions

φlm = [2ρ1/2(/+ i)] - 1/2β-' <«

are normalized to

The expectation value of H on one of these states is αρ1/2(/+ 1/2) so if H generates
idt then α = l. The reproducing kernel is

= - lim (ri yρy /)1/2 = lim (rr'Y'2D(z) ,
8π r^oo 8π » ^oo

where D(z) is the two-point function (3.1).
We end with the following two remarks:
(a) Among all possible free fourth-order equations (in flat or de Sitter spaces)

for scalar fields, it is the Rac dipole equation - and only this one - that gives rise
to a unitary theory.

(b) The formula for the energy of the Rac field as a surface term at infinity has
a strong analogy with the ADM [11] formula of the energy of the gravitational
field. One can deduce a similar formula for the Fermi singleton of the de Sitter
group - the Di. This suggests very strongly that the mysterious spinor field that
appears in the analog of Witten's demonstration [12] of the positivity of the
energy in general relativity, for the case of de Sitter boundary conditions, is
exactly the Di singleton.
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