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Abstract. Let HN be the quantum mechanical Hamiltonian for a neutral system
of 2N charged particles, each of unit charge. The Hamiltonian HN is assumed to
act on wave functions ψ in L2(R6]V) which satisfy Bose statistics. It is shown that if
the kinetic energy of ψ is sufficiently small, then (ψ\HN\ψy ^ — CNΊ/5 for some
universal constant C,

1. Introduction

In this paper we are concerned with a Hamiltonian acting on a system of 2N
particles which interact via a Coulomb potential. We assume that N of these
particles are negative with charge — 1 and located at positions xί9...9 xNeU3. The
other particles are positive with charge +1 and located at x]V + 1,...,x2 ] Ve[R3. We
may write the quantum mechanical Hamiltonian for the system as HN, where

2N N N N

HN=Σ(-Δi)+ £ \x.-Xj\-l + £ xi+N-xj + N\'1- £ \χ.-Xj+N -1.
/ = ! i<j=l i<j=l ϊ . j = l

(1.1)
Here Δt denotes the Laplacian in the variable xi9 1 rg i ̂  2N.

We consider HN acting on wave functions φ(x1 , . . . , x2N) in L2(U6N) which are in
the domain of the unique self-adjoint operator corresponding to HN. We shall
assume that these wave functions satisfy Bose statistics, and hence that ψ is invariant
under permutations of the sets (xl9...9xN) and (x jv+ι> >*2;v) Our result is the
following:

Theorem 1.1. Let A be a cube in [R3 and suppose that ψ(x1,...,x2N) is infinitely
differentiable with compact support in Λ 2N. Let yφ be defined by

(1.2)
L> /=!

where L is the length of a side of A. Then if γψ ̂  N1/3 there is the estimate

(1.3)
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and C is a universal constant.
We shall prove Theorem 1.1 by using the techniques developed in [1]. In fact one

has just to note some straightforward extensions of the estimates of [1] to obtain our
theorem. However this paper is written so that it can be read independent of [1].

Theorem 1.1 is in some sense the natural result one can expect to obtain from the
methods of [1]. The basic assumption of the theory developed there was that most
particles are in low momentum states and that the creation and annihilation
operators corresponding to these states can be approximated by multiplication
operators. By definition of y^ one can say that in the wave function ι// most particles
are concentrated in momentum states k with \k\^y^. The number of such states is
about yj, and hence if y^ « TV 1/3 there are on average many particles in each fe state.
Thus the creation and annihilation operators for these states can be approximated
by scalar multiplication operators.

We show how the main theorem of [1] can be obtained from Theorem 1.1 above.
Let us assume ψ is a product wave function:

\l/(xl9...9 x2N) = Ψ(xl9 . . . , XN) Ψ(xN+1 , . . . , x2jv)» (l 4)

and that Ψ has constant density on the box A. Then there is a well-known lower
bound on the potential energy, P.E.,

P.E. ^ - CJV4/3/L, (1.5)

where C is a universal constant. Now if y^ < N113 then Theorem 1.1 implies the result
of [1] that (1.3) holds. Otherwise we have a lower bound on the kinetic energy, K.E.,

(1.6)

Taking (1.5) and (1.6) together implies that (1.3) continues to hold provided we make
the constant density assumption of [1].

The motivation in obtaining Theorem 1.1 was to prove (1.3) independent of
restrictions on φ. The idea was that in the case when yφ > JV 1 / 3 one should
decompose the cube A into smaller cubes and then apply the Fourier analysis
methods of [1] to these smaller cubes. In order to do this one would need to be able
to prove the analogue of Theorem 1.1 in the case when ψ satisfies Neumann
boundary conditions. However the methodology of [1] breaks down when the
boundary conditions on ψ are changed.

2. Proof of Theorem 1.1

Here we shall show how the proof of Theorem 1.1 follows from some lemmas. In the
next section we shall give the proofs of these lemmas.

Our first task as in Sect. 3 of [1] is to approximate the Coulomb potential l/ |x |
by a potential φp(x) which is periodic on a cube QA containing A. The cube QA is
concentric with A but with side which has 4 times the length of a side of A. Let us
define φΛ(x) by

N^5/L
(2.1)
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where L from now on is the length of a side of QA. We consider the Hamiltonian HN α

which is defined like HN in (1.1) but with the Coulomb potential l/|x replaced by
φj(x). It is easy to see then that

<φ, HN » £ ™ - ̂  * - C'N^, (2.2)
L2 L

where C and C are constants. We may therefore replace the Coulomb potential in
our future considerations by the potential l/ |x | — φa(x).

Next we state a lemma which is analogous to Lemma 3.7 of [1].

Lemma 2.1. ForxeQΛwith\x\ < L/2, the potential l/\x — φΛ(x) may be expanded in
a Fourier series

l/\x\-φjx)= Σ vx(k)e2"ik'x/L, (2.3)
fceZ3

where vα(fe) satisfies the inequality

+ l). (2.4)

Now we wish to represent the expected value (1.1) with the Coulomb potential
replaced by (2.3) in the second quantised form. Let ak be the Boson annihilation
operator which acts on the variables (xί9...,xN) and corresponds to the normalised
wave function L~ 3/2 exp [2nik-x/L] on L2(QΛ). Similarly let bk be the operator acting
on the variables (xN+1,..., x2N). The 2N particle kinetic energy KN is then given by

K* = ̂ Σ*2fo% + ****]• (2-5)
L- fceZ3

Let Ak be the operator

Ak= £ laϊ+kan-bϊ+kbnl (2-6)
neZ3

Then if HN β denotes the Hamiltonian HN of (1.1) with the Coulomb potential
replaced by (2.3) we have for the wave functions ψ in Theorem 1.1 the representation

<ψ,HNtβψy = <ψ,κNψy + Σ vjίk)w\AΐAk\ψy -2τv]. (2.7)
fceZ3

Let fceZ3 and m = (n,± l )be in Z3 x Z2. We define the norm of m as \m\ = \n\ and
operators Sfc>m, Tkίtn for m\ ^ |/c|/4 by

^ =tfan + k if m = (n,l),

"'m - ,̂+, if * = (*,-!),

= a*an_k if m = (n,l)
k " -&;&„., if m = (n,-l). ^

It is evident from (2.6) that

A = Σ [S£m+Γk,J + **, (2.9)

where the operator Bfc contains only products a*aq, b*bq, where both |p| and \q\
exceed |fe|/4.
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We obtain a lower bound on the kinetic energy of ψ which is analogous to the
inequality (2.10) of [1]. We have the following lemma:

Lemma 2.2. Let δ > 0 and γ be a positive number with 1 rg y ̂  JV1 / 3. For fceK3 let
Ck(φ) be defined by

.,.+ Γ?.m7VJ^>. (2.10)

T/zen ί/zere is ί/ze inequality

<ΊΊK»\Ψ>*£γ2 Σ
JV1^ |/c|>4r

where Cδ is a positive constant depending only on δ > 0.
We define a function /k(ε,y) similar to (4.17) of [1] by

Ik(ε9γ) = εCk(ψ) + <iιl/\A\Ak\ψy-2N. (2.12)

Then we have

<^#N»^ -2JV Σ vα(/c) + Σ vJίk)Ik(Cδk
2/NL2vMy)> (2-13)

|/c|^4y |/c|>4y

From Lemma 2.1 we have

27V X vβ(Λ)gCJVy/L, (2.14)

for some constant C. From now on we take y = yφ as defined in Theorem 1.1. Since it
is evident that

Ny 2/L2 - CNy/L ^ - C'N, (2. 1 5)

for some constant C', it is only necessary for us to find a lower bound on the second
sum in (2.13) in order to complete the proof of Theorem 1.1.

We define N(u) by

<A>. (2.16)
|n|>u

The following lemma is analogous to Lemma 4.1 of [1].

Lemma 2.3. For mεZ3 x Z2,let

, ,
m .I^> if m = (π,-l) l J

Lei αm, |m| ̂  |fe|/4, fee ί/ze positive roots of the polynomial in μ,

/v /v

w/zere ί/ie double sum in (2.18) is only over m with \m\^ |/c|/4. T/zen /Λ(ε, y) satisfies the
inequality
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Now we have by definition of y.

N(u) ^ Ny2/u2, and hence (2.20)

£ vJίk)N(\k\/4)£CNγ/L, (2.21)
|fc|>4y

for some constant C. In view of (2.15) it is sufficient for us to bound below
appropriately the sum in (2.19). This is accomplished by the following lemma.

Lemma 2.4. Let Jk(ε,y) denote the sum on the right in (2.19). Then Jk satisfied the
inequalities

Jk(ε,y)^-2N, (2.22)

(2.23)

where Cδ is a constant depending only on δ > 0.
Lemma 2.4 is analogous to Lemma 4.2 of [1], but is a weaker estimate for large ε.

However this estimate is still sufficient to prove Theorem 1.1. We need only to
estimate

X v«(k)Jk(Cδk
2/NL2vMy} (2-24)

|/c|>4y

and by (2.23) this is bounded below by

Γ* /V 5 /4Λ,//' W4 (Ί 9M— o^-ίV \y / LJ) ? \L.Δjj

where Cδ is a constant depending on δ. Now since

N(y/L)2 - CδN
5/4(y/L)314 ^ - C'δN

Ί/5, (2.26)

for some constant C'δ depending only on δ, we have completed the proof of
Theorem 1.1.

3. Proof of Lemmas

Here we turn to the proof of Lemmas 2.1 to 2.4.

Proof of Lemma 2.1. For u > 0 and ξelR3 let

L/2e-u\x\

I(u,ξ)= \—-<*t'*dx. (3.1)
o |*|

It is easy to see that / is given by the formula

(ML)ι§ ]̂} (3 2)

The coefficient vα(/c) in (2.3) is given by

2πk

and it is easy to see from (3.2) and (3.3) that the inequality (2.4) holds. Q.E.D.

Proof of Lemma 2.2. First note that the sum in (2.10) is finite since Skftn and Tk >m are
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defined only for |m| g |fc|/4. We have

4π2

(3-4)
m,/c

Now we have

\k\2

£ alamk2alak = £ fl*flm(m + /c)2α* + fcαm + k^ £ — -
m,k m,k k ^ \

- ιU Λ £-* 9(3+<5)r(m)L^k,m^k,m "m + fc"m + kJ5 \^^f
k T" jwι < m 74 ̂

where

r(m) = r if (2r - l)y ^ |m| < (2r+1 - l)y. (3.6)

The last expression in (3.5) gives an inequality for the kinetic energy of the desired
form except for the terms in a*+kam+k. These are negligible since γ3^N. This
follows since

and from (3.6) it is evident that

^Qy3, (3.8)

for some constant Cδ depending only on δ > 0.
By similar argument we therefore obtain an inequality

(3.9)
\k\>4γ ^

where Cδ is a positive constant depending only on δ > 0. The inequality (2.1 1) clearly
follows from (3.9). Q.E.D.

Proof of Lemma 2.3. We apply a Bogoliubov transformation to the operators
Sk^m, Tk^m with |m| ̂  |fe|/4. Let M be a matrix which is in the block form

Γ V W~]

'[w v\M' (3 10'
and satisfies the matrix identity

_?Mί J)
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where / is the identify matrix. The matrices M,V,W are assumed to be real with
adjoints denoted by M', F, W. One can see that (3.11) holds if and only if

V'V-W'W=l V'W=WΎ. (3.12)

Further, it is clear that M"1 is given by the formula

V -W'Ί

• w v \ (3'13)

From (3.13) it follows that, as well as (3.12), one has

VV'-WW = I9 VW'=WV. (3.14)

Now let K, W be matrices with the same dimension d as the number of elements m
with |m| ^ |/c|/4. We write Ik in (2.12) as

(3.15)

where the Sm and Tm denote Sktm and Tfc>m as defined by (2.8). Now let us denote by σ
the sum,

and λm, \m\ ^ d, be arbitrary positive numbers. We make a transformation on the
Sm,Tm,by

Sm = W m - B*/εm(l + 2σ), Tm = AmGm - B/εm(l + 2σ). (3.17)

Then (3.15) becomes

4fey) = < Ά I Σ e«^[F*Fm
\m\Zd

Σ U^ + G
Ngrf

σ)B*B + σ

σ MS((

We obtain a lower bound on the last term in (3.18). Indeed it is the same as

. (3.19)
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and since the first expression in (3.19) is identically zero this is the same as

2σ
(3.20)

It is easy to see that

(3.21)

and this yields the lower bound on the third term in (3.18).
The second expression in (3.18) is evidently positive and so we are reduced to

estimating the first expression which we shall write as

G J Σ λmίF* + Gm] I ψ > - 27V. (3.22)

Our next goal is to find an accurate lower bound on Jk by using Bogoliubov
transformations. To do this we write Jk in matrix form as

-2^ (3-23)

where F and G are vectors with entries Fm and Gm, m ^d, respectively. The matrices
C and D are given by

C = (λmλn\ D = (εnλ
2

nδn,m). (3.24)

Next we choose a Bogoliubov transformation M given by (3.10) which
diagonalizes the matrix in (3.23). Thus

(3.25)

Hence if we define the transformation

we have Jfc(ε, y) given by

- Σ

(3.26)

-2N. (3.27)

We conclude therefore that

-2N. (3.28)

We need to estimate the commutators in (3.28). To do this we see from (3.13) that

η=V'F- W'G*, C = - W'F* + K'G, (3.29)
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and hence we have

n = YV F -W G* = Yλ~1[V S -W T*Ί'/m /^ γ n,m j n rvn,myjn Z~ι n L ' n,m°n vrn,mίnΔ
n n

B*

371

Thus the right-hand side of (3.28) is

(3.30)

,,«w>

(3.31)

We wish to bound below the last expression in (3.31). The last sum in (3.31) can be
written in matrix form as

h'(V-W] (V-W)'h, (3.32)

where h is the vector with entries hm given by hm = l/λmεm. The expression (3.32) is
clearly bounded in absolute value by

2h'<V

One can see from (3.25) that

α0

<*! V' + W
α0

«! W>h. (3.33)

α0

«1 V'+W
α0

«1

Thus (3.33) is

2[h'Cft + fc'Dft] = 2[σ2 + σ].

(3.34)

(3.35)

It follows then that the coefficient of <^ 1 5*, B] | ψ > in (3.3 1) is bounded in absolute
value by 1/2.

We need now to consider the expression

V l(Vn,mS*n ~ Wn,mTn)\ - Σεm[Sm, S*] I ψ > - 2JV.
_j m

(3.36)
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This is the same as

\m\£d

~ Σ ε ™ [ ^ m > S n ϊ ] \ ψ y ~~ 2N. (3.37)
n

To proceed further we need to explicitly compute the commutators involved in
(3.37). First we introduce a slight change of notation from the definition (2.8) for the
Sm and Tm. Let raeZ3 x Z2 and m = (n, α), α = ± 1. Then if &eZ3 we define m -f fe by
m + k = (n + fc, α). For m = (n, α) we define am by

αm = ̂  if α = l ,

= bn if α = - l . (3.38)

Thus from (2.8) we have

C _ Λ//7*/7 T1

 = /γ/7*/7 if γγi = (γι rΛ (^ 39)

From (3.39) it is easy to calculate the commutators involved in (3.37) as

[S*.m,Sf.J = <am - a*+kam+k, [Γt,M> Tt* J = α*αm - α*_kam.k. (3.40)

Thus (3.37) is the same as

Σ«»
\m\^d

Pt(ε,y)J (3.41)
m

where

^fey)= Σ
\n\^\k\/4 m

+ Σ < /Ίαn*-A-,IΆ>Σ«m^"2(^,J2 (3-42)
|«|̂ |/c|/4 w

From the matrix identity (3.34) it is clear that

ΣαJK,,J2^(l+α (3.43)
m

It follows therefore that

Pk(ε,y)^-N(\k\/4). (3.44)

Finally we consider the first expression in (3.41). If we let λn -> < ψ\ a*an \ ψ > = Nn

and use the identity (3.14), it is clear that this expression converges to

ΣK-tf+eJtfJ. (3-45)
m

and this is exactly the sum on the right in (2.19). Equation (2.18) which determines
the roots αm is just the characteristic polynomial for the matrix diagonalization
problem (3.11), (3.25). The polynomial is explicitly computed in [1]. The lemma now
follows easily from the estimates we have made. Q.E.D.
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Proof of Lemma 2.4. The inequality (2.22) follows since the αm can be arranged such
that

(3.46)

Now define nr, r = 0, 1, 2, . . . , by

nr= £ Nm, (3.47)
(2 r-l)yg|m|<(2 r + 1-l)}>

and let βr, r = 0,1,2,..., be the positive roots of the equation

n n

where β'r are the positive roots of the polynomial equation

Άr
+ 1=0.

where C is any positive constant which satisfies

X 1 = C23ry3 (3.49)
(2r-l)y:gM<(2r+1-l)y

Then we see by the argument of Lemma 4.2 of [1] that

oo r / f> \ Ί
Λfey^Σk- 1+^τK (3 5°)

By definition of y we have

nr^C'N/22r, (3.51)

for some universal constant C. Thus if we define ηr,v by

ηr = C'/22r,v = ε/y\ (3.52)

we have Jk(s, y) bounded below as

β'-(\+-^-\λ (353)Pr I λ i Λr(6 + <5) I ' r ' \J.JJ)

+ .̂... ,j;+«. +1=0. (3.54)

Now let # be the root of (3.54) which lies in the region

> β' ^> —. (3.55)

We bound β'r below by

-C"' * «̂S1. (156)

If the restriction on v in (3.56) is violated we proceed differently. Consider a
particular β'r such that v > 2r(6 + δ). Then it is clear that

γt τιιι\\j^υ) y. y'w ' υ)
lm < v L v — < c' - n <

}m(6 + δ) , of = LJ Γ^ ^ L^ /?/ = ^ „ ' VJ-
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for some universal constant C". Similarly it is easy to see that

r-2 2^6 + δ">

' = c ' - > (3 58)

for some constant C. Thus there is a positive constant C such that β'r satisfies the
inequality

+ _ _ _ι_ _ _ + i > o (3 59)
6 + ' ^ = ( ^Cvηr_ !/2(Γ- 1)(6 + ί) - β'r

The inequality (3.59) is a quadratic inequality in β'r, and it is not difficult to see that as
a consequence we must have

,, (3,o>

for some constant C (which may differ from the constant in (3.59)). From (3.60) we
obtain a lower bound on β'r if v > 2r(6 + δ} as

Cvn C'
r i r - — l , - (3-61)

We shall find a lower bound on Jk in (3.53) by using the estimates (3.56) and (3.61)
on the β'r. We have

V >N Σ -Vr + N Σ -— 1rL-j — L^ ir L^ \r
2^(6+ <5) υ <2> (6 + <5) υ>2^6 + <^

(3.62)

for some constant C'.
The inequality (3.62) completes the proof of the lemma. Q.E.D.
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