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Abstract. The effect of relaxation is important in many physical situations. It is
present in the kinetic theory of gases, elasticity with memory, gas flow with
thermo-non-equilibrium, water waves, etc. The governing equations often take
the form of hyperbolic conservation laws with lower-order terms. In this
article, we present and analyze a simple model of hyperbolic conservation laws
with relaxation effects. Dynamic subcharacteristics governing the propagation
of disturbances over strong wave forms are identified. Stability criteria for
diffusion waves, expansion waves and traveling waves are found and justified
nonlinearly. Time-asymptotic expansion and the energy method are used in
the analysis. For dissipative waves, the expansion is similar in spirit to the
Chapman-Enskog expansion in the kinetic theory. For shock waves, however,
a different approach is needed.

1. Introduction

The phenomenon of relaxation is important in many physical situations. In the
kinetic theory of monatomic gases, when an equilibrium state is perturbed, it
gradually relaxes to the equilibrium state with Maxwellian velocity distribution.
In the continuum theory of nonmonatomic gases, there are other modes of internal
energy besides the translated one, and when the gas is perturbed, the translational
energy adjusts to its equilibrium value quickly. Other modes relax to their
equilibrium values through collision of gas particles. The time scale for such a
relaxation process may not be short and the phenomenon of thermonon-
equilibrium becomes important. In this case, the compressible Euler equations
should be supplemented by a rate equation governing the nonequilibrium mode of
the internal energy. For elastic material with memory, the stress depends on the
past history of the strain, and a perturbation of a constant state relaxes to the state
satisfying the equilibrium elastic stress-strain relation. For a river flow to be in
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equilibrium, the gravitational force and the frictional force with the riverbed are in
balance, and the water flows with constant speed depending on the depth of the
river. Other relaxation phenomena occur in MHD, traffic flows, etc. The process of
relaxation to equilibrium states can be studied with the aid of the time-asymptotic
expansion in deriving a simplified system. The expansion is valid only in the
absence of strong permanent wave forms. For strong permanent waves such as
traveling waves, certain dynamic subcharacteristics, different from the equilibrium
subcharacteristics obtained through the asymptotic expansion, become the basic
element in governing the propagation of disturbances. The purpose of the present
article is to present these ideas and their analytical justification through a simple
model. Subsequent studies will deal with other physical models.

Consider the following system of two quasilinear hyperbolic equations:

du ,
^ '

ot ox
_oo<x<oo.

The first equation represents a conservation law for u and the second equation a
rate equation for υ. The term h(u, v) acts as a source (or sink) when v is less (or
larger) than its equilibrium value v(u), which is a given function of u. Often h(u, v)
assumes the following form:

hM=v~^for some positive function τ(u), the relaxation time. We make the following general
assumption:

dh(U, V) , κ , xx ,A ̂

— <0, h(u, Vχ(u)) = () (1-2)

for all (M, v) under consideration.
When the solution is close to equilibrium, one often ignores the rate

equation and replaces the conservation law by the equilibrium equation:

The system (1.1) is assumed to be strictly hyperbolic with characteristics λ±(u, v)

<1>M «Mr,=Vl, ,=1>2,

" «?w/*^Y,4«Y'2 (1'4)
λ'2(u,v) = ί/2 br lΓ r-lΓ -\du dvj \\du dvj dv du)

The equilibrium characteristic for (1.3) is:

Λ»s/». (1.5)

For a finite perturbation of an equilibrium state (w0, V^.(UQ)), the solution
eventually relaxes to (w0, V^(UQ)). In such a process the equilibrium characteristic
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λ# plays the basic role in the propagation of the disturbance. However, the process
is not approximated accurately by the equilibrium equation (1.3). Instead,
waves diffuse and are approximated accurately by a viscous conservation law of
the form

9 ' —-' (1.6)

In Sect. 2, we derive such an equation for diffusion waves as well as for
rarefaction waves. The derivation differs from previous ones in that it is completely
nonlinear and is based on the time-asymptotic expansion rather than the
asymptotic expansion with small relaxation time, cf. [7]. The validity of our
expansion can be justified. Indeed, in Sect. 3 we show that under the assumption
that λ^ is a subcharacteristic, λi < λ# < λ2, diffusion waves and expansion waves for
(1.1) are nonlinearly stable and are accurately approximated time-asymptotically
by (1.6).

System (1.1) admits traveling waves (u, v) (x, ί) = (φ, ψ) (x — σί), σ the speed of
the wave. It turns out the traveling waves for (1.1) are directly related to the shock
waves for (1.3). For each admissible shock wave of (1.3) there exists a traveling
wave for (1.1) with the property that the speed σ lies between λ^ and λ2 This and
other properties are studied in Sect. 4. A traveling wave is a permanent wave form.
The nature of its stability differs markedly from that of a rarefaction wave. In
Sect. 5, we show that a traveling wave satisfying λ^ <σ<λ2 is non-linearly stable.
However, instead of the equilibrium characteristic speed λ#, a perturbation is
governed by a certain dynamic subcharacteristίc,

Λ Λ Λ V1 ' /du dυdu\dv

The stability is partly the consequence of the compressibility of the traveling wave
with respect to μ. The dynamic speed μ is close to the equilibrium speed λ^ for weak
waves, but in general they are different.

Finally in Sect. 6 we study wave patterns which represent time-asymptotic
states of solutions of (1.1) with different equilibrium states at x = ± oo. Such a wave
pattern consists of traveling waves and expansion waves. Weak traveling waves are
smooth. Strong traveling waves may contain discontinuity waves of the two
conservation laws

a u ) + > = 0 . (1.8)

We use the theory of [5] to study such discontinuity waves. The expansion waves
are based on the equilibrium equation (1.3) and are not exact but time-asymptotic
solutions of (1.1). A new procedure is introduced for the construction of wave
patterns.

Many physical examples are of the form (1.1), cf. [4, 7]. For more complicated
physical models, u e R", n > 1 , there is more than one subcharacteristic speed and
more than one mode may eventually survive. In this case, to study the stability of
waves one needs to decompose the solution into several elementary waves and use
a certain hyperbolic technique in addition to the energy method employed here,
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[6]. The study of stability of traveling waves for a model in the kinetic theory is
being carried out, [1]. It would be interesting to generalize the theory to other
physical models, [2, 3, 7].

2. Time Asymptotic Expansion

In this section we perform the time-asymptotic expansion for (1.1) and assess its
validity. The first-order expansion is the equilibrium equation (1.3). For (1.3) we
have

For second-order approximation we set

(2.1)

Instead of assuming that υ^(u) satisfies (1.3) we require that v+(ύ) + v1 satisfies a
new equation. The equilibrium equation (1.3) is used to determine the primary
direction of wave propagation.

In deriving (1.3), the rate equation in (1.1) is ignored. We now use the rate equation
to find ΌI :

—f M —

where we have used (1.2). Since v1 is the second-order correction, the above is
simplified into (2.1),

dt dx dv ί'

Finally from (2.2) we arrive at

«IΛ.M ΛΛ5 t t , 9(u^(u))
*v v *v vδx dx

with the simplified notations

I , ^ I, / ^ , ^ , / ^ 5/Z*/ Λ S Λ/ , ^ .h Λu) = h(u, vΛu)), gJ(u) = g(u, vJu)), -^- (u) = — (M, ^^(w)), etc.
OV UV

The value for vί is finally set to be

Plug (2.1) and (2.3) into the conservation law in (1.1) and we get

du d r( . . , . du
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This equation is approximated by

dt dx dx dv

or

""

dt+

(2.4)

The above procedure is of the same spirit as the Chapman-Enskog expansion for
the Boltzmann equation, [2]. For the Hubert expansion one would require v^(u) in
(2.1) to satisfy (1.3) and v ί to satisfy an inhomogeneous conservation law. Such an
expansion cannot be justified the way Chapman-Enskog expansion can. One
usually justified these expansions for small mean free path. In the present situation,
write

v ' ' τ(ιι) '

where τ(u) is the relaxation time. Equations (1.3) and (2.4) may be viewed as the
asymptotic expansions for small τ(u). Since our interest is on the behavior of
solutions for (1.1) with finite relaxation time, we will assess the validity of (2.4) time
asymptotically. Such an analysis will be useful for the study of large-time behavior
of solutions (1.1). Equation (2.4) was derived based on the principle that

This holds for diffusion waves and expansion waves of (2.4) as ί-»oo. In other
words, given a diffusion wave or an expansion wave u(x, t) of (2.4), set v(x, f)
according to (2.2) and (2.3); we expect (u, v) (x, ί) to represent a time-asymptotic
state of the original system (1.1). The purpose of such a time-asymptotic expansion
is to obtain the simplified system, (2.4), which is easier to analyze and yet represents
an important phase, the large-time behavior, of the original system, (1.1).

The derived equation (2.4) is well-posed only if the diffusion coefficient β(u) is
positive. From (1.4) and (1.5) it follows that

o/ \ / T T \ / n 1 \ /Ό £Λ

Thus the stability criterion becomes

λ1<λt<λ2, (2.7)

that is, λ^, is subcharacteristic.
For a perturbation of an equilibrium state (w0, ^(WQ)), (2.2)-(2.4) govern the

dissipation process as £-+00. The justification would involve the study of
linearization of (1.1) around the nonlinear diffusion waves provided by (2.4). The
time-asymptotic equivalence of (1.1) and (2.2)-(2.4) would be both in Lt(x) and
LQ^X) sense. On the other hand, for rarefaction waves, the stability is in a weaker
sense and the equivalence is expected only in L^x) sense. For L^ equivalence, (2.4)
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may be replaced by the simpler equation (1.3). In the next section we study such an
equivalence. One basic assumption we will make throughout is that the two
equations in (1.1) are coupled. Precisely we assume that

Λ /

— (u, υ) ή= 0 for all (u, v) under consideration. (2.8)

3. Nonlinear Stability of Rarefaction Waves

When f£(u) φ 0 and the initial data is such that λ^(x, 0) is a nondecreasing function
of x then the solution of the equilibrium equation (1.3) is an expansion (rarefaction)
wave. Given any state w_ and u+, λ^(uJ)<λ^(u+\ we may construct a smooth
expansion wave φ(x,i) of (1.3) with φ(±oo,t) = u+ by setting

(3.1)

where k is a fixed positive constant and u0(x) any smooth monotone function.
Suppose that (u,υ)(x,t) is any solution of (1.1) with equilibrium states (w+,ι>±),
v+ =Vχ(u±), at x= ±00. Our purpose of this section is to show that (u, v) (x, t)
-+(φ, Vχ(φJ) (x, t) as t-*oo. Since a translation or dilation of a rarefaction wave is
also a rarefaction, the convergence here is in the L^ sense and not in Lx. This is the
reason we do not use the more accurate approximation (2.2)-(2.4) but (1.3) in
constructing the rarefaction wave (φ, ψ) = (φ, v^(φj). The rarefaction wave expands
at the rate t:

[0 for \x\>mt+k

J0(l)ε0r
|α| for |x |<mί+k,ε 0ΞΞ|tι+-tι_|, ( }

for some positive constant m = max{\f'(u)\ : u between w_ and u+} and any partial
derivatives D"φ of φ with respect to x and t. The first step is to assess the accuracy
of (φ - ψ) as an approximate solution of (1.1). Since φ solves (1.3) and ψ = v^(φ), we
have

dφ t df(φ,ιp) _ dφ , df+(φ) _ Λ

~W+ dx ~ dt + dx ( h

Since \p = v^(φ\ h(φ,ψ) = Q and so from (3.2),

DαF_nm^ -Γ f°Γ \X\>mt + K

^-0(l)CTττ-1^.-ι-,d for |χ|<,

Consider a perturbation of (φ,ψ):

(u,v)(x,t) = (z+φ,w+ψ)(x,t), (z,w)( + oo,0) = 0. (3.4)
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Theorem3.1. Suppose that λ^ is a subcharacterίstic, λ1<λή.<λ2, for all states
under consideration, and that the rarefaction wave (φ, ψ) and the perturbation (M, v)
are weak, ε(0)<ξ 1, where

ε(ί) = |u+ —u_| + max
3 S'(z,w)

-r-M

Then the smooth solution (u,v) (x,t) of (1.1) exists for all time and tends to the
equilibrium rarefaction wave (φ,ψ) as ί->oo:

lim sup (|z(
ί-»oo — oo ̂ x^ oo

Proof. Subtract (3.3) from (1.1) to obtain

-h(φ,'ψ)-F. (3.5)2

We have from (3.5)! that

(/», = - zt - (fuz)x - [/Jz, - [/J wx - Q0(fu)φx - Q0(fυyψx , (3.6)

and for z and w sufficiently small, cf. (2.8),

/JΓ J (-Z.-/A- Γ/J (z»+fc)- [/JvJ (3-7)

Here and thereafter the functions /„ = df/du, gv = dg/dv, etc., are evaluated at (φ, ψ),
and for any function β,

Γjβ] = β(z + φ, w + φ) - ]8(φ, φ) = 0(1) (|z| + |w|) ,

3 + H3). (3.8)

Plug (3.6) into hv(— /l)Λj"1(3.5)2),( to eliminate w and obtain

zu + (λϊλ2)zxt + λί λ2zxx - hv(z, + (λ*z)x)

= ~ f»(huuzz + huυzw + hvvww)x + hv(fuuz
2 + 2fmzw + fmw2)x

+ hv(Qι(f))x-ttQo(hv) (zx + φx) + Q0(ha) (
1 - hv(gvh~ Ox) (z, - λ0z

- /A~ 1 hvx(wt - AO w J - (f~ 1 [/„] (z, + <p J

λ- Λ0)/.~ 'C/J (z* + <Px

+ φ J + h~ ̂ .[/J (w, + φx))x

ΞR.H.S. (3.9)

In (3.9) the speed of propagation of the rarefaction wave (φ, ψ) is small. This is
achieved through the transformation ί->ί, x->x— λ0t, λ0 the average speed
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l/2(/lHί(w_) + /lί|ί(w+)). Since |w_ — u+\ is small, we have from (3.5) and the structure
of rarefaction waves that

λ±λ2<Q9 (3.10)

\φt\ + \ψt\<\φx\, W « l (3.11)

Because the rarefaction wave is expansive, we have

^c>0, Cλ^>\φx\ (3.12)

for some constant C>0.
In the energy estimate that follows, we make the following a priori assumption:

ε= max e(ί)«l- (3.13)
O ^ ί ^ τ

Multiply (3.9) by z and integrate over O gί^τ and — oo<x<oo, and use
(3.10H3.12) and (1.2) to obtain

O — o o

=i ί ((\hv\z2)(x,0) + (zzt(x,0)-(zzt(x,τ))dx+] f R.H.S.ΛcΛ. (3.14)
-oo O - o o

We next estimate the integral of the R.H.S. From Schwartz inequality

ϊ ί z2

xdx z2

xdx,
— oo — oo

and so

τ oo / / oo \^\ τ °° τ oo

j ί z6dxdt^( max ί z2(x,t)dx) Π f z2dxdt^ε$ ί z2dxdt.
0 -oo \ 0 ^ ί ^ τ \ - o o / / 0 -oo 0 - oo

Thus

ί ί (z6 + wβ)dxdt^ε] ί (z2

x + wl)dxdt. (3.15)
O - o o O - o o

For any given smooth function β of (φ,ψ)9 we have from (3.11) and (3.12) that

{ ί βz2ztdxdt=± J OSz'3)(x,τ)-08z3)(x,0)djc-ίJ J jS
O — o o — oo O — o o

Similarly,

O - o o /

(3.10!)

βz2ztdxdt = 0(l)ε$ J λ^dxdί. (3.16)2
O - o o O - o o

From (3.5)2

(3.17)
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From (3.8), (3.11), (3.12), (3.17), and by parts,

f f I
O - o o

ί (
O - o o

161

+ w2)

whence we have from (3.3)3 and (3.15) that

J J βz2wtdxdt = 0(ί)s(] (z2(x,0)+z2(x,τ))d;c+J J (
O - o o V - o o O - o o

+ w2)

= 0(l)ε/. (3.16)3

Similarly we have

f βz2wxdxdt
0 -oo

+

τ oo

J ί βzzxwdxdt
O - o o

j J βw2zxdxdt
0 -oo

+

1 I βz,w2dxdt
O - o o

τ oo
ί J βzwwxdxdι
0 -oo

f —

τ o

ί J βzwwtdxdt
0 -oo

= 0(l)εJ. (3.16)4

The estimates (3.16)1-(3.16)4 take care of the integral R.H.S. in (3.14).The second
term on the left-hand side of (3.14) is treated by (3.11) and (3.12), and we conclude
that

oo τ oo

ί z2(x, τ)dx + f J (IΛ^Jz2 + zx)dxdt
— oo O — o o

= 0(1) ί z2(x,0)+0(l)i I (zf + ελ^+εlPwftdxdt, (3.18)!
— oo O — o o

where we have used the hypothesis (3.13). Similar arguments yield the estimates for
higher derivatives of z by integrating (3.9)zf, (3.9)̂ , (3.9)̂ , (3.9XztJC, (3.9)xxzxx,
(ί.9)xxzxxt, (ί.9\xzttx, (3.9)«zm, respectively,

f zf(x9τ)dx+ z2

— oo O — o o

+ 0(1) J
0 -oo

J z2

x(x,τ)dx+ z2

xxdxdt =
— oo O — o o

J z2

x(x,0)dx

+ 0(1) f
0 -oo

(3.18)2

(3.18)3

z2(x,τ)dx+ί J z2dxdt = 0(l) J
> O — o o — oc

+ 0(1)f J
O - o o

(3.18)4
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I zfx(x,τ)dx+l ] z2

x
— oo O — o o

+ 0(1)} ? ε(|F(z,!
0 -oo

(3.18)5

oo τ oo oo

J z2

xx(x,τ)dx+ J J z2

xxdxdt=0(ί) J (z2

xx(X,0)+z2

xxt(X,τ)+z2

xt(x,0))dx
— oo O — o o — oo

τ oo

O - o o

(3.18)6

oo τ oo oo

ί /V2 (γ r}-\-72 (Ύ r\\d\ 4- f f 72 dvdt — ΠΓ1^ f ίV2 Γv 0^4-72 ^Y r\\d\\ XXX\ 9 ) " ^ XXt\ ' l^/vl Λ' I J J Δf χγ(Λ Λ'{ΛΊ< v / ^ J L I J ^ώvjcjcV ^? ^/ i^ JCJCίV ' *JJ**'Λ/
— oo O — o o — oo

τ oo

0 -oo

(3.18)7

f (72 (γ T Λ_4_ 7

2 (γ τYWγ-+- f f 72 dvdt — Π(\\ f Γ7 2 % Γv Ω"i-I- 72 Γv τ^/7γJ V ίίJCV ? / "^ ίJCJCV ? / tU Λr Π^ J J Δftγ\AΆι\4ιl' l_/^-l^ J ^ώ^^^Λ'j V/y | ώ^i^.Λ'y (/JJIΛ Λ>
— oo O — o o — oo

τ oo

O - o o

(3.18)8

We next turn to the estimates for w. Integrate (3.5)2ίwί? (3.5)2ίίwίf, respectively, and
use (1.2) to obtain

O — o o

+ 0(1)} ? (wl+ Σ l
0 -oo V j =l

τ oo

O — o o — oo

(319)2

From (3.5)2ίί we have

and so

oo τ oo

ί w2ί(x,τ)dx+f ί w
oo O - o o

= 0(1)
j=0

0(1) J
0 -oo

(3.19)3
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By integrating the differentials of (3.7) we have

ϊ Σ (\r*wx\
2(x,τ)dx)

-oo j=0

oo / 2 / / 2 \ \ \

= 0(1) J Σ iW + β Σ (\rjw\2 + \λj*fa)))(x,τ)dx9 (3.19)4
-oo\7 = 0 \ \7 = 0 JJJ

] ί Σ (\rjwx\
2dχdt)

0 -oo 7 = 0

= 0(1)} ί (I (|PJz|3+ε(^(Z

2+w2)))+ Σ (|PV) + μ»,l3W
0 - o o \ j = l j=0 /

(3.19)5

From (3.17) it follows that

ί W

2(x,τ)dx = 0(l) ί (\rw\2 + z2 + \zx\
2 + μϊ)(x,τ)dx, (3.10)

(3.19)7

6
— oo

ί J (λ*x
0 -oo 0 -oo

We have from C-1((3.19)1 + (3.19)2 + (3.19)3)+(3.19)4+... + (3.19)7, C a large
number, that for e<ξί, (3.13),

ί Σ \r'wx\
2(x,τ)dx+} ? (i <\r>w\2 +

-007 = 0 0 -oo \7=1

= 0(1) J (Σ(l^|2(x,τ)))
-oo\j = 0 /

+ Σ |F(x,w)|2(x,0)dx+{ I f Σ
j = 0 O - o o \ j=l

Finally, we have from (3.20) + C~5(3.18)1 + C~4(3.18)2 + C~3(3.18)3

8)8, C a large constant,
that for ε^l, (3.13),

-oo j = 0 \ 0 -oo

oo 3 τ oo

= 0(1) J Σ(\^(z,w)\2)(x,0)dx + 0(ί)l J μ^pdxΛ. (3.21)
— oo 7=1 O — o o

With (3.21), the hypothesis (3.13) clearly holds. The global existence of the solution
follows from the standard local existence theory and the energy estimate (3.21). It

oo

also follows that J (z2 +w2)(x, £)->0 as ί-κx>, whence we have,
— oo

z2(x,ί) + w2(x,ί)= I (2zzx+2wwx)(y,t)dy
— oo

^ ( f (z2 + w2)0c,ί)ώc V ϊ (z2 + w2)(x,ί)ώcVθ as ί-+oo .
\-oo / \ - o o /

This completes the proof of the theorem. Q.E.D.
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4. Admissible Traveling Waves

Suppose that (u, v) (x, ί) = (φ, ψ) (x — σt) is a traveling wave for (1.1). A traveling
wave is a permanent wave form connecting constant states (u+,v±)
= (φ, ψ)(±oό). Since (u±, v +) are constant, and the only constant states solution
of (1.1) are equilibrium states, we have

»±=»»(«±) (4-1)

From the conservation law in (1.1) we have

σ(u+-u-) = f(u+,υ+)-f(u-,υ-). (4.2)

From (4.1) and (4.2) we see that, cf. (1.3),

σ(W+-ι/_)=/>+)-/>_) (4.3)

That is, (u _ , u + ) also satisfies the jump condition for the equilibrium equation (1 .3).
The following theorem relates the admissibility of shock waves for the scalar
conservation law (1.3) to the existence and stability of traveling waves for the
relaxation model (1.1).

Theorem 4.1. Suppose that (φ,ψ) (x — σt) is a smooth traveling wave of (1.1) and
that it is stable in the sense that the speed is subchar act eristic,

λι((φ, V) (0) < * < A2((φ, V) (0) , (4.4)

for ξeR1. Then the corresponding shock wave (w_, w+), u+ =φ(±od), for (1.3) is
admissible in the sense that

-/,(«-) < /»-/>-) (45)

for all u strictly between u_ and u + . Conversely, given an admissible shock wave
(u _ , u + ) of (1 . 3) swcft ί/iαί its speed σ differs from λ^u, v), i = 1 , 2, α/on# σw — /(w, u)
= σu+— f(u±,v±), v±=Vχ(u±), between w _ and w + , ίftβπ there exists a stable
smooth traveling wave (φ,ψ)(x — σt) of (1.1), and the end states (φ9ψ)(±od)
= (u±9v±) satisfy (4Λ).

Proof. From (1.1) a traveling wave (φ,φ) (x — σi) satisfies

(4.6)

). (4.7)

Integrate (4.6) to obtain

-σφ+f(φ,ιp) = a, a=-σu±+f(u±,v±)9 (u±9v±) = (φ9ψ)(±co). (4.8)

The equilibrium set
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is a curve, (1.2). From (4.1), (u+, v±) e Γ. Along the traveling wave (φ, φ) we have
from (1.4), (1.7), (4.6) and (4.7) that

* - • <4 9)

(4 12)

Suppose (φ, ψ) is a smooth traveling wave satisfying (4.4). Then from (2.8), (4.9), and
(4.10) we see that the only critical points for the autonomous o.d.e. (4.6) and (4.7)
are those on Γ, where h = 0. Consequently (φ, ψ)(ξ)φΓϊor —oo<ξ< oo, and φ(ξ\
— oo<£<oo, is monotone and lies between the limiting values w _ and u+.
Suppose that for some u between w _ and u+9

/>+)-/>-) /*(")-/>-)σ= - = - .
u+— M_ u — U-

Then by (4.8) we have for some £e( — oo, oo) with φ(ξ) = u,

f(u, υφ(uy)=ft(u)

And so from (2.8), υ+(u) = ψ(ξ). In other words (φ, ψ) (ξ) e Γ, which is a contradic-
tion. Thus to prove (4.5) it remains to show that the inequality holds for ξ ̂  — oo.
Since at ξ= — oo, (φ,ψ) = (u_,V-)eΓ, we have from (1.2) that (φ — v^(φ)) and h
have opposite signs. Consequently we have from (4.4) and (4.12) that σ<λ^ near
ξ= — oo. This proves (4.5) near ξ= — oo because

u-*u- U — U-

This completes the proof of the first part of Theorem 4.1 the second part is proved
by similar arguments. Q.E.D.

The above theorem completely characterizes traveling waves of (1.1) whose
speed is subcharacteristic, (4.4). From the study of the stability of equilibrium
states in the last two sections, we see that it is necessary to assume the equilibrium
characteristic λ^ to be subcharacteristic on the equilibrium set Γ

λί(u,v*(u))<λ*(u)<λ2(u,v*(u)). (4.13)

With (4.1 3) it follows that for weak traveling waves of (1 .1), the speed σ is close to λ^
and thereby is subcharacteristic. However, when a traveling wave is strong, its
speed may fail to be subcharacteristic. In this case, a traveling wave will have to
contain discontinuity waves. This issue will be taken up when we study the
admissible time-asymptotic wave pattern in the last section. In the next section we
show that weak traveling waves are nonlinearly stable.
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5. Stability of Traveling Waves

Let (φ, ψ) (x — σt) be a smooth traveling wave of (1.1) with speed σ, and (u,v) (x, f)
be a solution of (1.1) whose initial data is a perturbation of (φ,ψ):

(u,v)(x,0) = (φ,ψ)(x) + (ΰ,v)(x,0), (w,ιJ)(±α),0) = 0. (5.1)

Our purpose is to show that (M, υ) (x, t) tends to (φ, ψ) (x + x0 — σt) as £-κx>. The
amount of translation x0 due to the perturbation (M, v) can be identified from the
conservation law in (1.1):

00 CO

J (u(x,t)-φ(x-σt))dx= J u(x,Q)dx.
— oo — oo

Since u(x, i)-*φ(x + x0 — σt), we have

00

0= J iφc, ί) — φ(x + x0 — σt)dx
— oo

00 00

= j u(x,ff)dx- j (<Xx + x0-σί)-<Xx-σO)d;χ
— oo — oo

00

= J u(x,0)dx-x0(u+-u_),
— co

and

x0 = (u+-U-Γ1 ί ΰ(x,0)rfx, W ±=φ(±oo). (5.2)

From here on, we assume that x0 = 0 through the translation of (φ, φ) (x — σt) to
(φ,ψ) (x + x0 — σf). Thus we have

ϊ (u(x,t)-φ(x-σt))dx = Q. (5.3)
— oo

With (5.3) it is natural and convenient to write

u(x, t) = φ(x - σt) + zx(x, t) , v(x, f) = ψ(x - σt) + w(x, f) ,
(5.4)

z(x,ί)= ί u(y,t)-φ(y-σt)dy, z(±oo,0 = 0.
- oo

The last identity comes from (5.3). Since both (M, v) and (φ, ψ) satisfy (1.1), we have,
by integrating with respect to x the difference of conservation law in (1.1) for u and
φ, and by simply taking the difference of the rate equation in (1.2) for v and φ,

From (5.5)ι and (2.8) we may represent w in terms of z:

, (5.6)

fu=fa(ψ,ψ) etc.,
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and for zx-}-w2 small,

w = W(zt, zx9 φ, φ)O(l) (\zt\ + |zj) (5.7)

for some smooth function W. Plug (5.6) into —fυ(5.5)29 we have

ztt + (λι +Λ2)zxί + λ1 λ2zxx - hv(zt + μzx) = f~ % + f~ lgυfvx - gvx) (zt + fuzx)

+ Qo(/) OΓ W,* - ̂  + hv)-fvQ0(h) - Q0(Λ - ΛβoC

where the functions λί9 λ2, fu, etc. are evaluated at (φ, ψ) and Q0 is a higher-order
term defined in (5.6). The right-hand side of (5.8) are higher-order terms. The left
hand side contains a first-order term with speed

μ^L-fAh-1, (5.9)
which is the dynamic subcharacteristic speed and plays the basic role of governing
the large-time behavior of the weak waves traveling over the traveling wave (φ, ψ).
For an equilibrium state (w, v^(u}\ we have from differentiating (1.2) that

and so from (1.3) and (1.5),

In other words, the dynamics speed μ equals the equilibrium speed λ^ when the
state is in equilibrium. Since a traveling wave (φ, ψ) is not in equilibrium except at
end states x = ± oo, μ differs from λ+ in general.

The stability of a traveling wave is the consequence of three things. One is that
the speed is subcharacteristic.

λi<σ<λ2. (5.10)

As we have seen in Theorem 4.1, this is equivalent to the admissibility of the
corresponding shock wave for the equilibrium equation (1.3). The second is the
nonlinearity of the system (1.1). The simplest nonlinearity is that characteristic
speed is strictly monotone across the wave. For simplicity, we will assume that
f^(ύ) is convex so that (4.5) is equivalent to λ^(φ9\p)x<0. However, the proper
characteristic here is μ and not λ#. For weak traveling waves μ is close to λ#, and we
have

(5.11)

for some positive constant C. The third element for the stability is that (1.1) is a
relaxation model, (1.2). Our stability analysis can be refined to handle any weak
traveling waves when /^ may have isolated inflection points. We will not elaborate
this here though.

Theorem 5.1. Suppose that (φ,ψ)(x — σt) is a smooth traveling wave of (1.1)
satisfying (5.10) and (5.11). Then any perturbation (5.1) of (φ, φ) gives rise to global
solution (u,v) of (1.1) which tends to (φ, φ) (x + x0 — σi) uniformly in x as ί-κx>,
provided that ε(0) is sufficiently small, where

max J
o o / 3

-oo

d}z 2 2

+ Σ +
j=o

dx.



168 T.-P. Liu

Proof. Since the functions Λ,1? λ29 /„, etc. in (5.8) are functions of (φ, φ) (x — σί), it is
convenient to change the variables (x, ί) to (ξ, £), ζ = x — σ£, and (5.8) becomes

ztt + (A ! + A2 - 2σ)zξί + (σ - AJ (σ - A2)z^ - Λ^z, - σzξ + μzξ)

= O/tΓ V^ + /tΓ Wi* - 0*ξ - βvξ) (Zt - GZξ + /«*$)

+ 6o(/) (/tΓ lgj* - gvξ + Λ.) - LQo(h) - Qo( A + *Go( A
ί)« = R.H.S. (5.12)

All known functions λl9 λ29 /„, etc. are functions of ξ only. We now perform the
energy estimate much the same way as in the proof of Theorem 3.1. There are two
notable differences, however. A rarefaction wave is expanding, (3.12), and rarefying
(3.2), while a traveling wave is compressive (5.11) (or, in the general case, mostly
compressive) and maintains a definite shape. These differences are matched by a
major difference between Eqs. (3.9) and (5.12) in that on the left-hand side of (3.9)
the equilibrium subcharacteristic speed λ% is differentiated, while in (5.12) the
dynamic subcharacteristic speed μ is not. This is because we use the conservation
law (5.3) in deriving (5.12); while the convergence to a rarefaction wave is in general
not in L1? and the conservation law is of little use in deriving (3.9). Integrate (5.1 2)z
over O^ί^τ, -oo<x^oo and use (1.2), (5.10), (5.11) to obtain

\ f (|fcjz2)(x,τ>/x+j f
— oo 0 — oo

=i ϊ ((|̂ |z2)(

+ f (zt

2 + (A! + λ2 - 2σ)ξztz + (λί+λ2- 2σ)ztzξ
0 -oo

+ (O - Λ i) (σ - λ2H)ξZξZ + R.H.S.)dxd£ .

Under the assumption that

maxε(ί)«l, (5.13)
O^ί^τ

the above identify and (5.11) yield

f z2(x,τ)dx+l ϊ (\μξ\z2 + zl)dXdt
— oo O — o o

= 0(1) I (z2(x,0)+zt

2(x,0)+z(

2(x,τ)Xx + 0(l)J f (zt

2 + RM.S.)dxdt . (5.14)
— oo O — o o

From (5.6) and (5.7) we have

lβo(/l + lδo(ff)l + IδoWl = 0(1) (|z,|2 + |z,|2) . (5.1 5)

By the same arguments in deriving (5.14) we have from (5.14) and (5.15) that

1 z2(x,τ)dx+l ί (\μξ\z2 + z2

ξ)dxdt
— oo O — o o

oo τ oo

=0(1) J (Z

2(x,0)+z2(x,0)+z(

2(x,τ>ίx + 0(l)ί f zfdxdt. (5.Ί6),
— oo O — o o

Without going into details, we conclude from integrating (5.12)zί5 (5.12)̂ ,
(5.12)fzfί, (5.12)̂ , (5Λ2)ξξzξξ, (5Λ2)ξξzξξt, (5Λ2)tξzttξ9 and (5.12)̂ , respectively,
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that

I z2(x,τ)dx+] I zfdxdt
O - o o

= 0(1) J z?(x,0)ώc + 0(l)ί J (Z2

ξξ+ε(z2

ξ+z2

ξt+z$)dxdt, (5.16)2
— oo O — o o

ί z£(jc,τ)Λc+J f z&xdt
-oo O - o o

= 0(1) I zf(x,0)έίx+0(l)j ί (z2 + z2

ξ+ε\Pz\2)dxdt, (5.16)3
— oo O — o o

oo τ oo

ί 72fv T^/7γ4- ί f 7^f\Ύί\tfίV 5 JtΛ Λf i^ J J fj ffίΛΛtlΛΊ/

— oo O — o o

= 0(1) ί zt

2

t(x,0)dx+0(l)i ? (z^+z^+εdFz^+z^+z^xΛ, (5.16)4
— oo O — o o

J (z^+z^ίx.τjέlx+ί T z2

ξdxdt
-oo O - o o

= 0(1) I (z2

ξ+z2

ξ(x,0)dx+0(ί)] ] (z2

ξξ+ε(\Vz\2+z2

t+z2

ξ)dxdt, (5.16)5

oo O — o o

= 0(1) I (Z

2

ξ(x,0)dx) + 0(ί)] I (z^+βαPzf + IFV+z^Xxdί, (5.16)6
O - o o

τ oo

J (z2

ξξ+z2

ξξξ)(x,τ)dx+ί
— oo O — o o

= 0(1) (z2

ξξ+z2

ξξ(x,0)
0 -oo

+ 0(1)J ί (-Q0(f)t+σQ0(f)ξ-gvQ0(f)ξ+fvQ0(g)ξ)ξξZξξtdxdt, (5.16)7
0 -oo

oo τ oo

ί z*ξ(x,τ)dx+ J J

= 0(1) ί
O - o o

+ 0(1)} ϊ (-Q0(f)t+σQ0(f)ξ-gvQ0(f)ξ+fvQ0(g)ξ)tξzttξdξdt, (5.16)8
O - o o

and

ί z^τjdx+j f zg^xdί
— oo O — o o

= 0(1) ϊ z^O^ + Oίl)} ϊ ε(\Vz\2 + \V2z\2+z2

tξ)dxdt
— oo O — o o

ϊ (-Q0(f}t+σQϋ(f)ξ-gvQ0(f}ξ+fvQMt>ttztadxdt. (5.16)9
O - o o
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The above estimates treat all the first three derivatives of z. Note, however, the last
integrals in (5.16)7-(5.16)9 appear to contain fouth derivatives of z, cf. (5.15). This
difficulty is resolved by Taylor expansions and integration by parts. We illustrate
this by considering the first such integral using (5.6) and (5.7),

I ί -Qo(f\tξzttξdξdt=-l ]
O - o o O - o o

τ oo

= -ί ί
0 -oo

+ W222zttξξ))zttξ

where Wt^(W222) *s the third derivative of the function Win (5.7) with respect to
the first (second) variable and L.O.T. are lower-order terms and not including
fourth derivatives of z. The term L.O.T. are absorbed into the left-hand sides of
(5.16). We have by parts

~ ί I (Uu]Znξξ + [/„] (Wi i ,Ztttξ + W222Zttξ^Zn^xdt
O - o o

τ oo

= ί ί (
O - o o

Since [/J, [/J, Wίlί and W222 are functions of zt, zX9 φ and ψ, the above
expression involves only up to the third derivatives of z. Similar treatment applies
to other terms, and we conclude that the last integrals in (5.16)7-(5.16)9 are

0(1) j ί z(\Vz\2 + \V2z\2 + \V*
O - o o

+ 0(1)8 f (i |(7Jz|2(x,0)+ Σ |F'z|2(x,τ)
-oo\j=l j=0

With this, we conclude from C-4(5.16
+ C"1(5.16)6 + C"1(5.16)6+(5.16)7 + (5.16)8 + (5.16)9, C is a sufficiently large
constant, that under (5.13) we have

ϊ Σ |FMx,τ)|2dx+ί I (\μx\z2+ Σ \r>z\*)dxdt
-oo 7 = 0 0 - o o \ j = l /

= 0(1) J Σ \rjz(x,0)\2dx. (5.17)
-oo 7 = 0

The right-hand side of (5.17) also contains the derivatives of z with respect to t
which are not part of the initial data. Nevertheless, using (5.5), the derivatives of z
with respect to t can be converted to z, w and their derivatives with respect to x.
The estimates for w can be derivated from (5.6), (5.7), and (5.17). In conclusion, we
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have the desired energy estimates

f
-αo\ j=0 j=0

\μx\z2+ Σ
0 - o o \ 7 = 1

ί
-oo \j=0

Σ \rjw\2)dxdt

2 2

+ Σ
j = 0

dx, (5.18)

provided that (5.13) holds. Clearly (5.13) is a consequence of the derivation of the a
priori estimate (5.18). That the solution exists global in time follows from the
standard local existence theory and the a priori estimate (5.18). The convergence of
(u,v) to (φ,φ) is equivalent to (zx, w)-»0 as ί->oo. This again follows easily from
(5.18) by the same arguments toward the end of the proof of Theorem 3.1. This
completes the proof of the theorem. Q.E.D.

6. Time Asymptotic Wave Patterns

By a time-asymptotic wave pattern we mean a combination of nonlinear waves
which tends to an exact solution of (1.1) and becomes noninteracting as ί->oo.
Consequently such wave patterns would represent the large-time states for general
solutions of (1.1). From the study of Sect. 3 we see that a rarefaction wave u of the
equilibrium equation (1.3) together with v = v^(u) form a time-asymptotic wave
pattern for (1.1). Sections 4 and 5 show that a smooth traveling wave of (1.1) is a
time-asymptotic wave pattern if the wave speed is subcharacteristic. This is so if the
wave is weak and the equilibrium speed is subcharacteristic, (4.13). In general, we
have to consider traveling waves which are not smooth. By Theorem 4.1, this
happens when the wave speed may equal the characteristic speed λ1 or λ2.
Discontinuity waves for (1.1) are the same as those for the associated two
conservation laws

ut+f(u,v)x = Q, vt + g(u, v)x = 0, (6.1)

and have been studied by Liu [5]. We now recall briefly this theory.
A discontinuity wave (ue, ve, ur, vr) for (6.1) with speed s satisfies the jump

condition

s(ur - ue) = f(ur, vr} - f(ue, ve), s(vr - ve) = g(ur, vr) - g(ue, ve). (6.2)

Given a fixed state (w0, v0), let s(w0, v0) be the set

S(u v ) = {(u v)'σ(U~U°] = ί^U'^~^M°'V(^\
°' ° I \V-VQ) \g(u,v)-g(uQ,Vo) J

for some scalar σ = σ(w0, v0 u, v)

It turns out that, at least for a small neighborhood of (w0, v0), S(u0, v0) consists of
two curves SΊ(w0? ^o) an<l S2(w0, ̂ o) Along S^UQ, f0), the shock speed σ is close to
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λi9 i = l,2. The jump condition (6.2) is equivalent to

s = σ(ue, ve Mr, ϋr), (ιιr, i;,) e S£(ue, O, i = 1 or 2.

In place of (4.5) for scalar conservation law (1.3), a shock wave for the system (4.13)
is required to satisfy the admissibility criterion:

σ(ue, ve wr, t?r) ̂  σ(ue, ve w, ϋ) for all (ti, ϋ) e St(ue9 υe)

between (ue,ve) and (ur9vr).

A consequence of (4.15) is the following linearized stability criterion.

μr9 υr) ̂  σ(ue, ve ur, t?Γ) ̂  ̂ (ιιβ, ι?β) .

(6.3)

(6.4)

Following [6] and consistent with most physical examples, we assume that the set
S1 and S2 are defined globally and that system (6.1) is strictly hyperbolic in the
global sense. The latter means that shock speeds of one family never equal the
characteristic speed of the other family.

Our purpose is to study the asymptotic state of a general solution whose initial
data tend to constant states as |x|->oo. A constant state initial data for (1.1) give
rise to a solution which tends to an equilibrium state at exponential rate as ί-»oo.
Thus we assume the end states to be equilibrium. A general solution consists of
many waves which interact nonlinearly and would become a simple wave pattern
which is noninteracting. Consequently, our task is to find wave patterns which
consist of equilibrium rarefaction waves based on the equilibrium equation (1.3),
smooth traveling waves of (1.1) and discontinuity waves of (6.1). Moreover, these
waves should be noninteracting, that is, a wave has a slower speed than those to the
right of it. Given any two equilibrium states (ue, v^(ue)) and (ur, υ^(ur)\ such a wave
pattern can be constructed uniquely. By (2.8) we may use the coordinate system
(tt,/(ιι,ι?)) for convenience. From (1.2) we see that the equilibrium set
Γ = {(u, v^(uj)} is a wave along which / is a function of u (Fig. 6.1).

Fig. 6.1

The curve Γ divides (u, /)-plane into two parts. We assume, for definiteness, that
[cf. (2.8)]

dv
(6.5)



Hyperbolic Conservation Laws with Relaxation 173

so that h>0(h< 0) in the upper (lower) part. Along Γ, f(u, v) = /(M, v^(u}} = f^(ύ)
and so the slope of Γ is /*(w) = λ^(ύ) the equilibrium characteristic speed. Suppose
that ue < ur (the case ue > ur is analogous). Let a string (the dotted line in Fig. 6.1) be
fixed on Γ at ue and ur and consists of straight lines lying below Γ (between ue and
ul9 and also between u2 and w3) and portion of Γ (between u^ and u2 and also
between u3 and ur). When the string coincides with Γ it is clear that λ^(u) is
increasing there and a rarefaction wave for (1.3) can be constructed. Correspond-
ing to the straight lines in the string, a traveling wave for (1.1) can be constructed.
Thus in Fig. 6.1, the asymptotic state connecting (ue, v^(ue)) and (wr, v^(ur}) consists
of traveling waves (ue, wj, (wn w3), (w4, ur) and rarefaction waves (w1? w2), (w3, w4).
The construction of a rarefaction wave (φ,ψ) is simply by setting φ to be a
rarefaction wave of the equilibrium equation (1.3) and φ = v^(φ). Smooth traveling
waves have been studied in Sect. 4. In the present setting we note that h< 0 along
straight lines in the string. Thus we have from (4.9) and (6.5) that if the shock speed
is always subcharacteristic, then a smooth traveling wave exists along each of the
straight lines in the string and that u is increasing along the wave. From (4.3) and
the present construction, such a traveling wave moves with the same speed as the
neighboring rarefaction waves and thereby is noninteracting. It remains to show
that a traveling wave can still be constructed even if its speed is not subcharacter-
istic. Thus we consider two equilibrium states (u-9v^(u-)) and (u+,v^(u+J),
M_ <M+, with the property that h(u, v)<0 along the line

σ_ */*("+)-/*("-) (6.6)
U+—U-

Suppose that σ may equal λ1 or λ2 along L. For definiteness we assume that σ is
always greater than λv but may equal λ2. Since we assume that (w_,w+) is
admissible for (1.3), [cf. Fig. 6.1 and (4.5)], we have λ^(u+)^σ^λ^(u-). From the
basic assumption that the equilibrium speed λ^ is subcharacteristic, (4.1 3), and that
σ>λ1(u,v) along L, we have

(u-). (6.7)

From (4.9) and (4.10) we have along L that

d(g(u,v)-σv) -fv

du (λί — σ) (λ2 — σ)'
(6.8)

It follows from (6.5), (6.6), and (6.8) that g — σv increases along L near (w_, ι^(w_)).
As u increases along L, σ may become larger than λ2 and in that case g — σv
becomes decreasing. We make the hypothesis that σ is mostly subcharacteristic in
the sense that σ — λ2 never becomes too large along L. More precisely, we assume

g(u9v)-συ^g(u-9Vt(u-.y)-συt(u-) for (u9v)eL9 (6.9)

We now construct the traveling wave connecting (u _, v^(u _)) and (u+, v^(u+)) first
by locating states (w1,^1), (w2,ι;2)... on L with the property that g(u,υ) — σv
^g(u\vl) — σvl =g(ui+ί, υl+i) — σvl+1 along L between u1 and w ί+1, ί odd, and
increasing between u1 and ui+1, i even, Fig. 6.2. By (6.9) this construction is possible
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g-C/V

u_u-

Fig. 6.2

when g(u,v) — σv is increasing, σ is subcharacteristic by (6.7), and so a smooth
traveling wave with speed σ exists. Thus between ul and uί+1, i even, we have
smooth traveling waves along L. Between ul and w ί + 1, i odd, we have from the
construction that (wί+1, vl+ί)εS2(ui,vi) since the jump condition (6.6) and

are satisfied. Moreover since g(u, v) — σv^ g(ul, t/) — σv l between ul and ul + 1 along
L, it can be shown easily the discontinuity waves (ul, vim

9u
i+1,vi+ 1), i odd, satisfy the

admissibility condition (6.3). Thus we have the construction of a wave pattern
connecting (w_, !^(w_)) and (w+ , v^(u+J) and consisting of smooth traveling waves
and admissible discontinuity waves. This completes the construction of time-
asymptotic wave patterns connecting equilibrium states.

In some applications f^(u) is a convex function, In this case an
asymptotic wave pattern consists of either a rarefaction wave or traveling waves,
Fig. 6.3 (cf. Fig. 6.1).

Fig. 63

The situation is further simplified if the characteristic value λi9 ί = 1,2, is strictly
monotone in the rt direction. In this case σ is strictly monotone along the shock
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u_

Fig. 6.4

curve St and it follows that g(u, v) — cv has at most one critical point, Fig. 6.4 (cf.
Fig. 6.2). Consequently, a traveling wave is either smooth or consists of a smooth
wave followed by a discontinuity wave.
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