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Abstract. Let T0(fc,ω) + sV be the Schrόdinger operator corresponding to the
classical Hamiltonian H 0(ω) + εV9 where H0(ω) is the d-dimensional harmonic
oscillator with non-resonant frequencies ω = (ω1?...,ωd) and the potential
V(q1 , . . . ,qd) is an entire function of order (d -f 1)~ 1. We prove that the algorithm
of classical, canonical perturbation theory can be applied to the Schrόdinger
equation in the Bargmann representation. As a consequence, each term of the
Rayleigh-Schrόdinger series near any eigenvalue of T0(ft, ω) admits a convergent
expansion in powers of h of initial point the corresponding term of the classical
Birkhoff expansion. Moreover if V is an even polynomial, the above result and
the KAM theorem show that all eigenvalues λn(h,ε) of T0 + εV such that nh
coincides with a KAM torus are given, up to order ε°°, by a quantization formula
which reduces to the Bohr-Sommerfeld one up to first order terms in h.

I. Introduction and Statement of Results

Consider the formal Schrόdinger operator acting in L2(Ud):

T(h,ε)=T0(h) + εV. (1.1)

Here q = (qί - -qd)e 03d, <?-> V(q) is a real- valued function, and ε is a non-negative
number. The operator T(ft, ε) is obtained through formal quantization (i.e., through
the replacement Pi~+ih(dldq$) of the classical Hamiltonian defined on U2d

{pl9qj}=δij (1.2)

Let H0(p,q) be canonically integrable over R2d, namely (see e.g. [4, p. 289]) let
([R2\{0})d be canonically foliated into (R+)d x Jd through globally defined action-
angle variable (A, φ) = C(p, q)9 AεUd

+ , φ€Jd, C being a completely canonical map of
(R2\{0})d onto Rd

+ x Jd such that H0(C~1(A9φ)) =f0(A). Accordingly, we rewrite
(1.2) in the canonically equivalent form

H(C-l(A9φ)9ε)=f0(A) + εV(A9φ)9 V(A,φ)^V(C~\A,φ)\ (1.3)
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Correspondingly, let T0(h) be self-adjoint in L2([Rd), with purely discrete spectrum
given by simple eigenvalues /lM(ft)|oo as n = (n !,..., nd)->oo. Under appropriate
assumptions on the pairs (TQ(h\ V); (/f0, V) the perturbation series in powers of ε
exists in both cases. In the quantum case we have the Rayleigh-Schrόdinger

00

expansion, which yields a formal power series ]Γ λ*(h)εk of initial point any given
fc = 0

eigenvalue λri(h) of T0(tί). For conditions on (TQ(h\ V) ensuring convergence or
summability to an eigenvalue of T(ft, ε) see e.g. [7, § VII. 1, 2] or [1 1, §XII. 1, 2]. In the
classical case we have the canonical perturbation theory, which under some
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additional conditions [4, p. 472] yields a formal power series £ &fk(A) of initial
fc = 0

point /o(Λ), known as the Birkhoίf expansion. The set of values of A ("tori") such that
this power series, which is in general divergent (see e.g. the discussion in [9, §3])
yields an asymptotic expansion to all orders of an Hamiltonian/^A, ε) canonically
equivalent to (1.3), and hence to (1.2), is characterized by the KAM theorem (see e.g.
Chierchia-Gallavotti [3], Gallavotti [5], Pδschel [10]).

It seems natural to raise the question of the convergence of the quantum
algorithm to the classical one at the classical limit n->oo, fe-»0, nh->AeRd+, i.e.
nih->Ai,i=l~ d. Despite its obvious interest in semiclassical quantum mechanics
(see below) this problem seems to have attracted so far little attention: to our
knowledge, the only paper dealing explicitly with it is that of Turchetti [11].

The aim of this paper is to show that the answer to the above question is
affirmative, at least in a particular but already significant case, namely H0 the
harmonic oscillator with non-resonant frequencies, and V an entire holomorphic
potential of order (d + 1)~ 1.

More precisely let ω, >0, i=l, . . . ,d, ω = (ω1?...,ωd), with <ω, V > Ξ Ξ
ω1vl-\- -" ωdvd = 0 iff v = 0, and let

ffo(P,«ω) = ̂ Σ(P? + ω?«?) (1-4)
^ ϊ = l

so that the above mentioned canonical mapping is given by:

(1.5)

and

/o(Λ)=I>Λ = <ω,,4>. (1.6)

Let furthermore T0(h,ω) be the self-adjoint realization of the differential
d ( d2 \

expression £ -h2—Ί-\-ωfqf\ in L2(Rd). It is well known that T0(h,ω)
i = i \ aq J

has discrete spectrum, consisting in simple eigenvalues λn(h, ω) = λn(h) =
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Hi = 0, 1, . . . 9 i = 1, . . . 9d. Let in addition g -> V(q) be entire holomorphic of order
(d + 1Γ1, i.e.

= Σ ^Xi1-^ Σ^",
m,. . . ,Λd=2 |n| = 2

Remark that, if we denote by VV(A\ veZd, the Fourier coefficients of the function
V(A, φ) from Rd

+ x Jd to (R, then there is L± > 0 such that

v! = |v1 |!-|vj!, |v| = V j + - + vd, (1.8)
AeΩ

ΩεRd

+ being compact. We also note that, by (1.7)-(1.5) and an elementary symme-
try argument, the function A-+V0(A) is entire in Cd. Let finally ω fulfill the
following Diophantine condition: there exist B > 0, y > 0 such that:

|<ω,v>Γ1<JJe y | v |, VveZd, v/0. (1.9)

Under these conditions it is well known that both the Rayleigh-Schrodinger and
Birkhoff expansions exist to all order in ε. However, some familiarity with both
classical and quantum perturbation theory shows at once that the two algorithms
are generated in apparently unrelated ways. The main point of this paper consists in
pointing out that, for perturbations of the harmonic oscillator, the Bargmann
representation allows us to generate the quantum perturbation theory by the same
algorithm of the canonical one. More specifically: by working in the Bargmann
representation it is possible to rewrite the Schrodinger equation under the form of
the classical Hamilton-Jacobi equation (written in canonical variables related to
the standard ones by a linear complex canonical transformation) plus corrections
under the form of a convergent power series in ft. Our first main result is thus
obtained by recursively solving this equation by means of the Birkhoff transform-
ation of canonical perturbation theory, up to the natural variant of working with the
Laurent expansion instead of the Fourier one. Namely:

00

Proposition 1. Let ω,#0, T0(ft,ω), V be as above . Let £ λk

n(h)εk be the formal
k = 0

Rayleigh-Schrodinger expansion of initial point λ®(h) = Λ,w(ft) = ft« n, ω > +i|ω|).

Let £ Nk(A)εk be the Birkhoff expansion for f0(A) + εV(A,φ), N0(A) =f0(A). Then
k = 0

for any keN there are constants β>0, D(/c)>0, and a family of entire functions
q -> Q{(q\ 7=1,2,. . . , such that, ifΩaCd is open and bounded:

(1.10)
qeΩ

h). (1.11)
j=ι

The formulation of the Schrodinger equation as a classical, perturbed
Hamilton-Jacobi equation plus explicit corrections in powers of h is of course
relevant to semiclassical quantum mechanics. It is well known that, for classically
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integrable systems in R2d, the eigenvalues of the corresponding Schrodinger
operator should tend to the classical Hamiltonian expressed as a function of the
actions at the classical limit. Moreover, the Bohr-Sommerfeld formula should
provide a quantization correct up to terms of order h [8], and an outstanding
problem is to determine all corrections in powers of h beyond the first one, whose
coefficient is known as the Maslov index. The above formulation of the Schrodinger
equation enables us to directly apply KAM theory, in the version obtained by
Chierchia and Gallavotti [3] in the analytic case (see also Gallavotti [5] for more
detail), and consequently to take up these kind of questions, to all orders in
perturbation theory, even for a class of non-integrable systems. The result is as
follows.

Proposition 2. Let ω, //0, T0(ft,ω) be as above. In addition, let Vbe a polynomial of
degree 2m such that:

(a) For ε ^ O the maximal operator T(h,ε) in L2(Ud) defined by the action of
T0(ft,ε) + εV has domain D(T0(ft,ω))nD(K), is self adjoint and has discrete spectrum.

(b) Consider again V0(A) = (2πΓd J V(A,φ)dφ, and let M(A)= \\(82V0(A)/
τd

S A ί d A j ) \ \ i j = ί t _ t d . Let Ω c Ud be any bounded sphere, Sp(A0) =
{AeCd:ma\\Ai-Af\^p}, C(p,Ω) = (J Sp(A0). Then there is η>0 such that

i A0eΩ

supldetM^)!"1 < η < + oo, where the sup is taken over C(p,Ω).
Let Γ°°(ε)c=ί2 be the set of the invariant KAM tori, andfco(A,ε) the integrable

Hamiltonian canonically equivalent to H(p,q;ε) on Γco(ε), which can be extended
to a C°° function of A in Ω. Then, for δ< + 00, and ε>0 suitably small, there is
(A,h,ε)^g*(A9h,ε)eC™(Ω x [0,5] x [0,ε]) such that

λn(h, ε) =/°°(πft, ε) + hg(nh, h,e) + h\ω\/2 + 0(ε°°) (1.12)

whenever nheΓco(ε). Here λn(h9 ε) is any eigenvalue ofT(h9 ε) close to λn(h)for ε < ε, and
0(ε°°) is uniform with respect to

Remarks.
(1) It is well known (see e.g. Gallavotti [5]) that μ(Γ°°(ε)) - (1 - Kε)μ(Ω) for

some K > 0. Here μ( ) denotes the Lebesgue measure.
(2) Formula (1.12) shows that the so-called Einstein-Brillouin-Keller quantiz-

ation, which amounts to performing a Bohr-Sommerfeld quantization on the
Birkhoff expansion truncated to any given order, is valid up to first order in h had to
all orders in ε for the "quantized KAM tori", i.e. for those quantum numbers n such
that nheΓco(ε).

The plan of the presentation is as follows: in the forthcoming Sect. II we describe
how Rayleigh-Schrόdinger perturbation theory can be generated by the classical,
canonical algorithm, and in Sect. Ill we will give the proof of Propositions 1 and 2
which will be easy consequences of the Birkhoff transformation and of the
Chierchia-Gallavotti [3] proof of the KAM theorem, respectively. Some useful
estimates are collected in an Appendix.

d

Notation. We use the abbreviations: z = ( z l 9 . . . 9 z d ) , z2 = Σ?2, (nlh,...,ndh) =
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d
nh, (ωizi9...9ωdz^ = ωz9 £ω2z2 = ω2z2, \z\ = \z±\ + ••• + \zd. If z->/(z) from

i = l

Cd to C is analytic at z, we denote its gradient by Vz/, and by (D£/)(z) its partial
derivatives (OJf/)(z) = ((#" + '"+μd/dzfίί - - - dz^f^z, - - zd). We refer to Gallavotti [3,
5] for all notation on canonical perturbation theory in the analytic case not
explicitly recalled in what follows.

II. Perturbation Theory in the Bargmann Representation

The starting point of our analysis is represented by some well known results on the
quantum harmonic oscillator and on their classical counterpart, stated for the sake
of convenience under the form of three lemmas.

2.1. Lemma (Bargmann). Let & ' ά be the Hilbert space of all entire functions z->
f(z)from Cd to C such that f \f(z)\2e-<z^dzdz < + oo. Let q-+\l/(q)εL2(Ud). Then

R2d

the map ψ-* Uψ = f(z),zεCd, defined as:

(Uψ)(z)=lA(x9q)ψ(<l)dq9 (2.1)
Rd

A(z,q) = (JπhΓd/\ωι' ωJ1/2 e-^+^+2J2<w>W (2.2)

is unitary between L2(Rd) and & 'd. If T0(h,ώ) is the Schrόdinger operator of the
harmonic oscillator in L2(Rd), with frequencies ω = (ω1,...,ωίί), then:

\9 (2.3)

where P0(h, ω) is the maximal operator in 2F ά generated by the differential expression

P0(fc, ω) = h f coiZiDZi = h < ωz9 Vz >.
i = l

As remarked by Bargmann himself [1], the spectral analysis of P0(h,ω) is a
triviality. However, following Voros [13], let us reobtain it in a different way, which
is much closer to the integration procedure of the Hamilton- Jacobi equation for the
classical oscillator and thus introduces a convenient quantum analogue of the
action-angle variables.

Consider the Schrόdinger equation in 3F ' ά.

P0(h, ω)ψ(z, E(h)) = E(h)ψ(z, E(h)). (2.4)

To find ψ, E we tentatively set:

φ(ZίE(h)) = e^(z^-z2/2^. (2.5)

Substitution in (2.4) yields

<ωz, VxW0(z9 £(»))> - ωz2 = E(h). (2.6)

Look now for solutions of (2.6) in separated variables:

E(h) = f Effa W0(z, E(h)) = f W\>(zi9 Etfι)\ i = 1, . . . , d. (2.7)
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Then (2.6) yields:

dMzt, Efft) = (Etfi) + ωpfi/ωfr, i = 1, . . . , A (2.8)

Analyticity of z -> ψ(z) yields the quantization condition

where F is any circumference in C avoiding the zeros of ψt( ) and ψt =
]/ft}. By (2.8):

(2πiΓl J df Wofc, £;(fc))ΛZi = Eβι)/ωt, i = l,...,d.
r

Therefore:

= E =

( - '
which are of course the familiar eigenvalues and eigenvectors (in the Bargmann
representation) of the harmonic oscillator; cnr..Md are the usual normalization
constants.

Since the converse direction is trivial, we have:

2.2. Lemma. E(h) = h(n,ωyίsan eigenvalue ofP0(h, ω) if and only if its eigenvectors
admit the representation (2.5), with W0(z9E(h)) determined by (2.6)-(2.9).

To see that the variables {dί WQ, zj are a sort of quantum, complex action-angle
variables, let us now examine the classical problem.

Consider again the Hamiltonian (1.4) and the canonical transformation (1.5). Set
now:

IK = 2 /Xcos (111)

inverted as

and generated by

+ iz?), (2.13)

where Logz denotes the principal branch of z->logz,zeC. Under the natural
identification Rd

+ x Td^(C\{0})d, (2.11), (2.12) define a holomorphic bijection of
(C\{0})d onto itself, which is completely canonical because

{Rj, zk} = tip, {RJ9 Rk} = [zj, zk} = 0. (2.14)

The canonical image of f0(A) = <ω,v4> under C1 is

F0(z, R) =/0(CΓ x(z, R)) = f ωtzfr - zf). (2.15)
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Equivalently, we may look at C1 as the composition C° C0, where C0 is the linear
complex canonical transformation on Cd ~ U2d defined as follows:

C0:(zί9 Zi) = ((ω^ + φ ^ Λ 2 α , (cofa - ipj/ 2ω)++(zi9 zt + zt) (2.16)

that is, z, = ((Ufa + ipi)/^/2ωi, Rt = gίλ/2<ί
Remark that zfa = Ai9 so that

K. = z. + z-. = dzW(A,z) = (A, + zf)/zh (2.17)

and W(A, z) fulfills identically the Hamilton- Jacobi equation:

F0(z9VzW(A9z))=f0(A\ (2.18)

which is the analogue of (2.6) under the correspondence A-^nh,R =
(Rΐ9...,Rd)^VzW0.

Let us sum up these simple remarks:

2.3. Lemma. The harmonic-oscillator Hamiltonίan H0(p, g ω), considered in Cd

9

admits the canonically equivalent form F0(z, R). The analytic, completely canonical
transformation mapping F0(z,R) into f0(A) is given by (2.11 )-(2.12). Its generating
function is given by (2.13), and solves the Hamilton- Jacobi equation (2.18).

Next, let us proceed to write the perturbed Schrόdinger equation in the
Bargmann representation. Let T(h, ε) once more be the maximal operator in L2(IRd)
generated by the differential expression (1.1). Since the unitary image under the
Bargmann transform U of the maximal multiplication operator by qt in L2(IRd) is the

maximal operator generated by (zf + h(d/dzi))/^/2ωi in 3F ' ά, the unitary image of
T(h, ε) in ̂  ' ά is P(h, ε) + %h\ω\9 where P(h, ε) is the maximal operator in 2F ' ά generated
by:

P(h, ε) = P0(ft, ω) + εV(z + Wx)/Jto), (2.19)

where, as usual, z/^/2ω = (z1/λ/2ω1 , . . . , zd/^/2ωd).
Our purpose now is to generate the perturbation expansion in powers of ε of

initial point any given eigenvalue /lπ(ft) = /z<n,ω> of P0(h,ω). The following
preliminary result is proved in Appendix.

2.4. Lemma. Let £eC, ε > 0 and let the family of functions z -> W(z\ E, ε) indexed by
(£, ε) be locally holomorphic in Cd for any fixed (£, ε). Set, for I = 1, 2, . . .

21 , _ *
Rl(W(z;E,ε))= £ ^(V^O/v^Σ Π

|t | = /+l 2^|μ[^/

(2.20)

where t = (ί1?...,ίd), μ = (μ1,...,μd) are multiindices, th μ, = 0, 1 , . . . , / =
*

l,...,d, |ί| = ίι+ + ίd, |μ| = μι + μd, ί f = t^. tjί, u\ = μι\ ~μh and
summation over all non-negative integers aμ such that

l+l l+l

W(z;E, ε) is holomorphic in Ω(E,ε) a Cd, continuous in Ω, Ω open and
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bounded, there are K^E, s) > 0, K2(E, ε) > 0 such that

max\Rj(W(z'9E,ε))\^KίK
l

2, /=1,2, . . . . (2.21)
zefl

Moreover, KI(£, ε), K2(E, ε) can be chosen independently of(E, ε) whenever Ω(E, ε)
is independent of(E9ε) on the compacts ofCx [0,0] and the family z-+W(z',E,ε) is
equibounded.

We can now state and prove the extension of 2.1 to the perturbed case.

2.5. Lemma. The Schrόdinger equation

P(h, εMz; E, ε) = E(h, ε)ψ(z; E, ε) (2.22)

admits for each fixed (E, ε) as above a locally holomorphic solution z -> φ(z'9 E, ε) under
the form:

ψ(z; E, ε) = ίjWΆO-*2/*]* (2.23)

if and only if z -> VF(z; E, ε) is α locally holomorphic solution of

<ωz, Vz > W(z; E9 ε) - ωz2 + εΓ V(VzW(z; E,

+ ft'Λjί W(z; JE, ε)) - £(ft, ε). (2.24)
1 = 1 J

Remark. Making h = Q in (2.24), and taking E=f(A9ε)9 we formally recover the
Hamilton- Jacobi equation, written out of the (R, z) coordinates. I.e., one looks for a
solution W(A, z, ε) of (2.24) for h = 0, parametrized by (A, ε), which represents the
generating function of the canonical transformation mapping F0(z9 R) +

εV(R/^/2ω) into the new Hamiltonian/(y4, ε). It will be seen later on that this remark
can be rigorously implemented in perturbation theory.
Proof. Of course we have:

= < ωz, Vz > W(z, ) - ωz2. (2.25)

To determine the action of V((z -f Wz)/χ/2ω) on ,̂ let us first recall the formula (see
e.g. Voros [12]):

V((z + hVx)/^2ω)eLWM-χ/2]/h = e~z/2h V(hVJD)eW(z^\ (2.26)

Next, we recall the Faa di Bruno formula in d variables (see e.g. Bolley-Camus
[2] ): if P = (P! - - - pd) is a multiindex taking values in (N u {0} )d, g: Cd -> C is analytic at
z, and /: C -* C is analytic at #(z), we have:

IPl * n!

(D>f*g)(z)= Σ /(m)(^))Σ Π Γί^-fPf^)^ (2.27)

where the notation is the same as in (2.20), except for £ which now means

summation over all non-negative integers aμ such that

μ = m,
\μ\ =
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(2.28)

* IP! IP!

where Σ means summation over all αμ such that Σ αμ = |p| — /, and Σ μidμ = Pi-
2 |μ| = l lμ l = l

Consider now the d multiindices μί9...9μd of length 1, i.e. such that \μ\ = 1,

denoted as (μ1),- = ίy, i9j=l...d, and rewrite the right-hand side of (2.28) in the
following way:

(229)' ( }

where ̂  means summation over all aμ such that
3

(2 3°)

Now the condition £ α^ = |p| — / yields ^ afi g |/?| — /, i.e. |p| — X
|μ| = l i = l i = l

furthermore we have:

. ̂  /, and

Ipl IP!
Since Σ Wμ = A and Σ aμ = I p l - I (2 31) yields

\μ\=\ \μ\ = l

Now equality in Σaμ- = \ P \ ~ l implies aμ = 0 for |μ|^2, and then
i=l l

p, that is aμ, = pf and thus / = 0 by (2.30). Hence we have:

/ + I ^ I P I - Σ^^2''
N=ι

| p | = Σ v ' = 0-
M = ι

Set now ίj = ̂  - .̂. Then, by (2.33), (2.29) can be rewritten as:

pi \P\~I 2l n» d

(2.32)

μaμ =

•Σ π <2 34)

where Σ means summation over all aμ such that
4 Ipl IP!

(2-35)
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\p\
Now the second of (2.35) yields Σ \μ\aμ = |ί|, and thus by the first

M = 2

Σ αμ (|μ| -1) = /. Recalling that V(q) = Σ i? ,̂ we get:

00 21 n\ d / d W V i - ' i * /ΠμW\aμ 1

Σ*1 Σ Σ v-^Π(ιr-) Σ Π ί^T-l A (2 36>P -

* ί+1 ί+1

where Σ means summation over all aμ such that Σ aμ = Ul ~~ '? Σ ̂  = ίβ

5 |μ| = 2 |μ| = 2

We can thus conclude:

(2 37)

where Rt(W) is given by (2.20). Then (2.37), (2.25), (2.26) and Lemma 2.5 yield the
assertion.

We are now in a position to generate the Rayleigh-Schrδdinger perturbation
theory by applying to Eq. (2.24) the Birkhoff transformation, as described e.g. in
[4, §5. 10, Proposition 17]. We have:

2.6. Proposition. Let Ω be any bounded open sphere in Cd. Then there is δ(k,Ω) > 0
such that, ifnheΩ and heCδ = {zεC:\z\ ^ δ}, the equations

<ωz, VzyWk(n9 h; z) + K £ s*VzW(n9 h;
(K— ij! as \_ \ y = o

fc-1

ε = 0

A0(n,ft) = ft<n,ω>; VZV

= (M + zD/z,,..., (ndh + z2)/zd) (2.38)

are recursively solved by a family of functions z -> Wk(nh, ft; z), parametrized by (raft, ft),
and a family of functions (nh, ft) -> Afc(nft, ft), ft = 1,2,..., swcft ίftaί:

(1) Wk(nh,h,z) is holomorphic with respect to

(nft, ft, z)eΩ xCδx Cd\{0}, fc ^ 0.

(2) λk(nh, ft) is holomorphic in Ωx Cδ and admits the representation:

λk(nh, ft) = Pk(hn) + £ δ'GίίM, (2 39)
/=!

wftere the functions x->Ffc(x), x -> β^x), (ί, ft) = 1,2,... ,are holomorphic in Ω and the
series is convergent for heCδ.

co oo

(3) The formal power series Σ λk(nh, h)εk and Σ WΛ(W^» ̂  z)εk represent the
k=0 fc=0
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perturbation expansion to all orders near λn(h\ W0(nh,z), respectively, for Eq. (2.24),
and thus for the original Schrόdinger equation (2.22), i.e. for all N =1,2,... we have:

εk < ωz, Vz > Wfc(wft, ft; z) - ωz2 + ε
Γ /tf-1

KΣL \fc-o
εkVzWk(nh,h;z)/^/2ω\

(2.40)

Remark. By unitary equivalence and the uniqueness of the perturbation expansion
the numbers λk(nh, ft) are just the Rayleigh-Schrδdinger coefficients. Then formula
(2.39), together with (2.57) below, yields their full, explicit semiclassical expansion.

Proof. Set, heuristically:

(2.41)

E(n,M= (2.42)

Insertion in (2.24), Taylor expansion of both sides near ε = 0 and equality of the fe-th
order coefficients of both sides yields (2.38), with (see [4, p. 477])

1 dk'1 Λ"1

i η Σ(k-\)dεk'1 V; = o

αp, α p d j=l \ s=l
(2-43)

where ap^...,apd are multiindices: ap. — (a\.,...,ad

p^ and £ means summation

over all non-negative integers a{ such that Σ Σ α« ~ ̂  — 1;
j=ls=l

fc-1

ε = 0

iϊ= Σ Σ

-ι-«. (2-44)

Σ πίft0,X( )Λ/2ω;X (2-45)
V«P,/=1V=1 J

μl {~p)"1 (2.46)

where J] has the same meaning as in (2.20), and ]Γ means summation over
all non-negative integers n1,...,nk_i such that nί + —\-nk- ΐ=aμ 9 and
n2 H- 2n3 + ••• + (k - 2)n f e_i =7.

We then see that the procedure is triangular, because for each k the right-hand
side of both (2.43) and (2.44) only depends on WQ,..., Wj up to 7' = k — 1, and on their
derivatives. Therefore for each k (2.35) becomes an inhomogeneous, linear first order
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equation for Wk. Denoting by Yk(W0, . . . , Wk. J, Zk(W0, . . . , Wk_ x) the right-hand
side of (2.43), (2.44) respectively, the infinite hierarchy of Eq. (2.38) can be rewritten in
abbreviated form:

<ωz, Vz> Wk(n9 ft; z) + Yk(W0, . . . , Wh. J + Zl

k(W0, . . . , Wk^)hl = λk(n, h\
1 = 1

(2.47)

To find Wk and λk,k ^ 1, we look for the Laurent expansion of Wk:

Wk(n, ft; z) = £ O> h)z\ z« = zf - - zjd. (2.48)
geZ"

Inserting this in (2.47) and requiring the identity of the Laurent expansion of both
sides we get:

ft) + y(ϊ\n, h) + £ ft'flω 'fa ft) = 0, <? ̂  0, (2.49)

y$\n, ft) + ft'θff^π, ft) = Afc(n, ft), (2.50)
/=!

where yf('\θf>l() stand for the Laurent coefficients of Yk(WQ(n,h,z\

Wfa ft; z), . . . , Wn _ Λn, ft; z)) and ZJM'X - , ̂ - ι(')λ respectively.
The formal solution of (2.49) is of course recursively provided by:

w<0V ft) = 0, <>(n, ft) = - -l-L*)̂ , ft) + g ft'flcw.'fo ft)], , φ 0.
\ ,̂(?>|_ / = ι J

(2.51)

Let us now prove that

yf(n, ft) = yf\nh), 0<fc)'<(n, ft) = ^^(nft) (2.52)

and that there are Cί(k)> 0, C2(k) > 0 such that

sup|j;f>(nft)/<ω,4>| ^ C^fe)^^1, (2.53)
nheΩ

sup I ̂ '(n ft)/<ω, q) \ ^ C2(k)Dle~^ (2.54)
nheΩ

for some D > 0 and any α > 0. In fact, by the initial condition in (2.38) and (2.43) we
immediately see that y(q\n, ft) has the form (2.52) and nft -> ̂ υ(wft) i§ holomorphic in
ί2. Moreover, it fulfills (2.53) by (1.7)-(1.9). Looking now at (2.44)-(2.46), we see that
also θ(^l(n, ft) has the form (2.52) and the same holomorphy property.

Proceeding as in the Appendix, it is not difficult to show that there are C3 > 0,
D > 0 such that

sup I fflv l(nh)/(ω, q) \ ̂  C3D
le~^9 Vα > 0. (2.55)

nheΩ

By (2.51) we can thus conclude that the function nft -> w^nft) is holomorphic in ί2,
and that there is C4 > 0 such that, for all α > 0:

sup|w^(nft)|^C4e-αkl. (2.56)
nheΩ
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Therefore the function (nh, ft, z) -> W^nh, h, z) defined by (2.48) and (2.51) with k = 1
and by the initial condition in (2.38) is holomorphic in Ω x Cδ x Cd\{0}.

The whole argument can now be iterated to all k> 1, yielding the existence of
nh-*y(® l(nh), nh-^θf)tl(nh) holomorphic in Ω, and of constants C1(fe)>0,
C2(k) > 0, D^k) > 0, D2(k) > 0, such that for any α > 0,

supl^*)fl(wft)/<ω, q) \ ̂  C^D^kfe'^, (2.57)
nftefl

sup I θ^ l(nh)/<ω, <?> \ g C2(k)D2(k)le~^, (2.58)
nheΩ

yf(nh] = f ft^ 'ίnftλ flf'fyfc) = θf^'(nft). (2.59)

This proves all assertions, and furthermore yields the explicit expressions:

pk(nh) = /O

fc)'°(nft), Ql

k(nh) = ̂ ''(nΛ) + W(nh). (2.60)

III. Proof of the Main Results

By Proposition 2.6, we have:

\imλk(n,h) = Pk(A), k = 0,1,2,.... (3.1)
nh^ A

Therefore Proposition 1 is a direct consequence of the following statement:

3.1. Lemma. Let AeΩ, Ω as in Proposition 2.6. Let Nk(A)9 k = Q,l,2,...,be the k-th
order term of the Birkhoff expansion for H(p, q; ε) = H0(p, q; ω) -f &V(q\ Then:

Pk(A) = Nk(A)9 fe = 0,l,2,.... (3.2)

Proof. The assertion is true for k = 0 as recalled in Sect. II. To prove it for all fc,
consider the classical Hamiltonian H(p9q'9ε) and write it in the (R,z) canonical
variables (Sect. II):

H2(R, z; β) EE ff(CΓ l(R, z);ε) = F0(z, R) + εV(R/j2ω) (3.3)

the notation being as in (2.11)-(2.18). Now, according to canonical perturbation
theory (see e.g. [4, § 5. 10] ), look for a completely canonical bijection Cε(R, z) = (A, φ)
of (C\{0})d such that H2(C~l(A,φ)) has a formal expansion in powers of ε with
coefficients independent of φ. To this end, look for the generating function Φ(A, z; ε)
ofC ε:

= VzΦ(A9z;ε)
( ' }

under the form of a formal power series in ε:

Φ(^z;ε)=£φ fc(Λ,z)ε fc (3.5)
k = i

where Φk(A, z), k = 1, 2, . . . , have to be recursively determined, because by (2.17) we
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have:

V,Φ0μ, z) = ((A,+ zl)/Zl ,...,(Ad + z2

d)/zd). (3.6)

Look now for the Laurent expansion of Φk(A, z):

Then, upon insertion of (3.7), (3.5), (3.4) in (3.3), and after a universal expansion in
powers of ε, the request that all the resulting coefficients be z-independent yields

<ω, qyΦMA) + $\A) = 0, k^l, (3.8)

where y(f\A) are the Laurent coefficients of Yk(Φ0, . . . , Φk- 1), defined by (2.43) with
Φ0, . . . , Φ fc_ ! in place of W0, . . . , Wk_ l . Therefore the recursive equations (3.8) are
identical to the recursive equations (2.49) with h = 0 and have the same initial
condition by (3.6). Thus proves the lemma.

Proposition 2 is now an immediate consequence of Proposition 1, given the
KAM theorem and the C°° version of the Borel summability method (see e.g.
Hόrmander [6]).

Proof of Proposition 2. Since Fis a polynomial of degree 2m, by (2.20), (2.38), (2.60)
we have Ql

k(nh) = 0 for / ̂  2km.
Set now:

βk= sup "I WWI, /c=l,2, . . . , (3.9)
xeΩ,0^y^δ 1 = 0

2mfc-l

Ffc,y)= Σ δΓW, fc = ι,2,.... (3.ιo)
/ = o

so that (x,y)^Fk(x,y)eCx(Ωx[Q,δ']), and sup \Fk(x,y)\^βk. Let

x -» χ(x)e C^(R), χ(x) = 1 for | x \ ̂  1, χ(x) = 0 for | x \ > 2, and let {yj^ j be a positive
sequence increasing monotonically to + oo. Set:

M*. 3^ «) = Σ F*(χ> y)A*yά N = ι,2,.... (3.ιi)
fc=l

Then we can directly apply [6, Theorem 1.2.6], choosing a sequence {γk} suitably
large, depending on {βk} (and thus not on y) to conclude the existence of
(x,y9e)-+g«>(x9y9e)€ C*>(Ωx [0,5] x [0,έ]) such that

= 1,2,..., (3.12)

uniformly with respect to (x,y)εΩ x [0,<5].
Next we recall that, for nh =

= 0(sN), N= 1,2,... . (3.13)
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Since under assumption (a) it is well known that, for any fixed h > 0, one has:

AΛft, β) - NΣ λn(W = °(£NΪ> AT = 1, 2, . . . . (3.14)
fc = 0

equations (3.12), (3.13), (3.10) and Proposition 1 prove the assertion.

Appendix

We have to prove (2.21). To this end, consider first the entire function q -» V(q). Let
Γ c Cd be compact. Integrating the Cauchy formula on S^R^ x Sd(Rd)9 S^R^ the
circle in C of radius Rt centered at the origin, for min Rt suitably large there is

K(Γ) > 0 such that

(A.I)

= max

Let now z -> W(z) be holomorphic in Ω a Cd, Ω open, bounded and connected,
and let /3d d β be compact. Then there are A > 0, Bt > 0, ί = 1,... ',d, such that

We have to estimate the maximum over Ω of the right-hand side of (2.20). By (A.2):

l+l 1 / d \

(A.3)max
zeΩ

Since ^ in (2.20) means summation over all non-negative integers aμ such that
ί+ l l+l

= th ί =!,...,</, and ^ αμ = |ί|-/, we have:

max
Z6/3

* ί+l

Σ Π
1,1=2 V A*

where B = max(B1,...,5d), and £ has the same meaning as in (2.20). Now the
number of multiindices μ such that 0 ̂  |μ| g |ί| is \t\d. Since / + 1 rg |ί|, we have:

l+l li

(A.5)

the second inequality being implied by \t\ ̂  21.
Therefore we can estimate (2.20) as follows:

!̂  Σ

Now we can always choose Γ such that (VzW)(z)eΓ, whence:

) Σ T
lίl=/+ι(|

(A.6)

(A.7)
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where R = min(Rl9'. . . , Rd). Since 1 1 1! ̂  ί!, we have:

so that:

C2/V
1

J . (A.8)
ze/2 /!

Choosing R = f+ 1, by our assumption on K (formula (1.7)), we have
V(R1 , . . . , Rd) ^ e ,̂ whence the assertion for (E, ε) fixed. If now W(z9 E, s) represents
an equibounded family of holomorphic functions on ί2, then the constants
A, B9 K(Γ) can be chosen independently of (£, ε) and the stated uniformity holds.
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