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Abstract. A planar Ising ferromagnet is investigated with a magnetic field acting
on one surface. The Yang-Lee zeros associated with this field are located exactly
on the imaginary axis and their limiting distribution is given. Above the critical
temperature, this distribution has a gap, near which the pair correlation for spins
in the surface exhibits critical behaviour. The zeros of certain antiferromagnets
are located, in particular those for an antiferromagnetic ring coupled fer-
romagnetically to a planar Ising ferromagnet.

1. Introduction

Since the seminal work of Yang and Lee [1,2], the location of zeros of partition
functions, in particular its limiting behaviour for systems of infinite volume, has been
a cornerstone in the statistical-mechanical treatment of phase transitions. For
instance, in the Ising ferromagnet with pair interactions and an applied magnetic
field h (in units oϊkBT) acting on all spins, no matter what the integer dimension d is,
the zeros all lie on the imaginary h axis [2]. The generally accepted picture is:

1. For T > Tc(d\ Tc(d) being the d-dimensional critical temperature, there is a
window (- ihg, ihg) uniformly free of zeros. As T-» Tc(d) + ,hg~(T- Tc(d))Δ, where A
is the usual gap exponent. For T< Tc(d\ there is a non-zero density of zeros at h = 0
in the infinite volume limit.

2. The density G(tfι, T) of zeros has a branch point singularity near hg of the type

(Xih,T)~(h-hg)*9 (1)

so that the magnetisation, which is essentially the Hubert transform of G as a
function of h, has the same singularity structure. It is periodic, period 2πί and
analytic in the strip - π < Im h< π provided it is cut on the imaginary h axis, ±
(hg, π) mod 2π.
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3. It is tempting to regard the Yang-Lee edge singularity as a critical point in its
own right [3,4], albeit controlled by a single "thermo-dynamic" parameter. In the
vicinity of the edge we therefore anticipate scaling behaviour of the correlation
functions as well.

4. Kortman and Griffiths [3] estimated σ from high-temperature expansions
obtaining σ ~ — 1/8 (d = 2) and σ ~ + 1/8 (d = 3) for the spin — 1/2 Ising ferromagnet.
The result for d = 1 is known exactly: σ = — 1/2 from the transfer matrix for nearest-
neighbour coupling. Universality for d = 1 has been investigated in depth by Fisher
[5]: the picture described in 1 through 3 above is rigorously confirmed. For the
spherical model, Fisher and Kurtze [6] obtained G(ih9 T\ with σ = 1/2, from the
analytic continuation of the infinite volume free energy, but did not confirm the
existence of a uniformly zero-free window for finite systems.

5. The Yang-Lee edge singularity has been linked to the following problems:
(i) φ3 field theory and an associated renormalization group scheme [4, 7].

(ii) Directed lattice animal enumeration [7] via (i).
(iii) The critical behaviour of branched polymers [8], again via (i).
(iv) Recently, exact relationship between certain d = 3 directed animal enume-

rations and d = 2 extended hard core lattice gases have been established by
Dhar [9] giving σ = — 1/6 for d = 2 (compare 4 above) from Baxter's solution
of the hard-hexagon problem [10].

The only model, however, for which points 1 to 3 have been established is the
d — \ Ising ferromagnet, which has a somewhat arcane phase transition at T = 0. In
Sect. 2 of this paper we give results for a field applied to one boundary of a
rectangular Ising lattice wrapped on a cylinder whose length is then taken to infinity,
but whose circumference has any finite value. This extends exact information
obtained by McCoy and Wu [11] on the equation of state of this model in the
thermodynamic limit. Only the limiting density of zeros follows from their
calculation, a point made quite clear by the work on temperature zeros by Fisher
[12] and by Brascamp and Kunz [13]. Section 3 is devoted to the study of the
motion of the Lee- Yang zeros for a finite system with respect to the z = 1 point of the
fugacity plane and to the determination of the limiting density as the total number of
spin becomes infinite. The corresponding edge singularity is developed in Sect. 4. We
finally locate the zeros of this model when it becomes antiferromagnetic (Sect. 5).
The case of an antiferromagnetic ring coupled to a ferromagnetic cylinder is also
studied.

2. The Model and the Corresponding Yang-Lee Zeros

Consider a lattice ΛN a Zd, where xεΛN means l^xi^N{ori=l9...9d9d being the
spatial dimensionality. At each vertex of such a lattice there is a spin σ(ί) = ± 1. The
collection of spins has an energy

(2)
ijeλ ieΛ

and the partition function is

(3)
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where kB is the Boltzmann constant and T is the absolute temperature. Clearly
ZΛ(/z, T) is proportional to a polynomial of degree N(Λ), the number of sites in ΛN,
in exp(2/z) with h = H/kBT\ this polynomial has non-negative coefficients and
therefore no real positive zeros.

In this paper we consider a special case of (2) and (3) with d = 2 and nearest-
neighbour interactions on a cylinder with a field applied only to spins on one
"surface":

£*({*})= - Σ ΓYjισ(ij)σ(i+ lj)
j=l\_i=l

(4)
J

We then consider a suitably normalized partition function (3),

This is up to a factor a polynomial of degree M in exp (2/ι), with non-negative
coefficients so that the entire Lee-Yang procedure is again pertinent. Normally, for
instance with toroidal boundary conditions, one gets 4 terms, 2 from the "odd" and 2
from the "even" fermion number subspaces denoted Λ+ and A_. As can be seen,
| + > projects onto both /!+ and ^_. The free boundary condition at the other
edge eliminates the projection onto &-. The standard techniques of Schultz et al
[14] and the ghost spin method [15] reduce (5) to a single product:

fM,N(h,T)= Π jcosh2(/ι) + sinh2(/ί)cotan(ω/2)exp(2X*)x
ω>0 I

(6)
MI^/V y^ujj) T sillilyv y\ιυ))^us{υ \<uj)) \

with exp(2Xf) = cotanh (K^ and

tan(<5'(ω)/2) = sinh(2K2)sinω/(sinh(y(ω))

+ smh(2Kΐ) cosh(2X2) - sinh(2K2)cosh(2*:*)cos ω), (7)

cosh(y(ω)) = cosh(2Kf)cosh(2X2)-sinh(2X?)sinh(2K2)cosω, (8)

where y(ω)^0 for real ω. Finally the product in (6) is over ω such that exp
(iωM) = — 1; i.e. ω = (2j — l)π/M, where j = 1,... ,M; ω = 0 is never allowed, but
ω = π is for M odd.

The zeros of the partition function corresponding to (4) are obviously those of
the factors of (6). They are thus given by h = ίψ/2, where

cotan2 (ψ/2) = cotan(ω/2) exp(2Xf) tan((5'(ω)/2)

l-exp(-2JVy(ω))

Ί +tan2(^(ω)/2)exp(-2]Vy(ω))'
(9)

which has M real solutions for ι^e(0,2π) with exp(z'Mω)= — 1. The fact that the
zeros in h are pure imaginary, the Lee-Yang property, is not surprising: if a field h' is
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applied to the remaining spins in the system then for (Re/z) and (Re/z')>0,
ZΛ(/ι,/z', 7)^0. An intuitive continuity argument on taking h' to zero can be
made rigorous by deploying Hurwitz's theorem, as shown by Simon [24].

3. Behaviour of the Yang-Lee Zeros

The exact determination of the Yang-Lee zeros allows us to give a complete
description of their behaviour. We are mainly interested in the motion of the zeros
with respect to the z = 1 point in the fugacity plane not only for those which admit a
density, but for all of them.

For simplicity, let us consider the semi-infinite cylinder case, i.e. when the
number of rows becomes infinite. Using (7) and (9), the Yang-Lee zeros are simply
given by

ω = (2; - l)π/M, (10)

cotan2 (\l//2) = F(ω), (11)

where

F(ω) = Gxp(2Kf) sinh(2X2)(l + cos ω)/(sinh(y(ω))

+ sinh(2K?)cosh(2K2) - sinh(2K2) cosh(2X*) cos ω). (12)

The right-hand side is non-negative, monotone non-increasing in ωe(0, π], even and
with period 2π in ω. For all T, F(π) = 0; thus when M is odd, ψ = π (mod 2π) is a zero.
The remaining zeros are symmetrical in the exp(i^) plane with respect to the real
axis.

The value ω = 0 is never allowed (ωmin = π/M) but the behaviour of F(ω) as ω + 0
must be considered carefully. For T> Tc,

F(0) = exp(2K*) sinh(2K2)/sinh(y(0)), (13)

giving a uniformly zero-free window [ — φθ9 + ̂ 0], where

(14)

In the case K1 = K2, it is easy to see that ψ0 is monotone decreasing as the
temperature decreases. As a function of M, the nearest zero is

-«»(*«))W«.V , J i
,M.

On the other hand, when T < Tc the behaviour is quite different: F(ω)-> + oo as
ω->0. This means that the zeros close onto the real axis as M-> oo:

(16)
1V1\ \™-//

where

B = lim ω2F(ω). (17)
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Precisely at T=TC, yet another behaviour is given:

2(2 exp(2K2(c)

where K2(c) simply means that we are at the critical temperature. This agrees with
Itzykson et aΓs scaling hypothesis for the zeros [17].

Let the zero corresponding to ω = (2j — l)π/M be labelled ψj{M). Then if j is held
fixed and M is increased, ψj{M) is monotone decreasing. This confirms a conjecture
of Griffiths and Nishimori on the "first zero" (nearest to the positive real axis) in this
case [18].

We now consider the limiting zeros density.
As N -> oo, one gets from (6),

/*.«(*> T) = fί [cosh2 (Λ) + sinh2 (h) cotan2 «r(ω)/2)]. (19)
ω>0

The mean value of the magnetisation variable can therefore be written as

which, in terms of the Yang-Lee variable z = exp(— 2h\ leads to

. (2.)

As the number of rows becomes infinite, the magnetisation per spin m(/z, T) can be
computed as

m(h, T) = lim ^log/^.JΛ, Γ), (22)
M-*oo-M

i.e.

' (23)

since this integral obviously exists. It remains to change the variable of integration to
let the limiting density of zeros appear:

. <24>
where, formally,

on the limiting solution set of (11), zero elsewhere. The existence of this density is
guaranteed by the existence and the sign of the derivative

**- -1 .**(«>) α6)

fa'" — r^' ( }

where the prime denotes derivation with respect to ω.
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For T> TC9 where T= Tc is the unique real solution of Kf = K2, define the gap θg

by

Then one gets

θg= sup (0:0(0) = 0}. (27)
0e[0,π]

tan2(θ,/2) = exp(-2Xf)sinh(7(0))/sinh(2K2). (28)

As Γ-> Tc +, one easily gets from this relation

θg~(T-Tcyι\ (29)

giving a gap exponent A = 1/2.
Whenever Γ> Tc, we now turn to the "edge-singularity" of the density g(θ). Up

to the second order in ω, one has

cotan2(0/2) = F(0) + iF'(0) ω2. (30)

Since for 0> ̂ ,

cotan2(0/2) = cotan2(0,/2) - cotan(0/2)sin-2(0,/2)(0 - θg) + O(0 - 0,)2,
(31)

one obtains

Ml, ,7 Z r V, ^ (32)

so that, using (25)

This is like the d = 1 Ising ferromagnet (with Tc = 0) and unlike the spherical model
[6].

For T< Tc, we are particularly interested in the behaviour of the density at the
origin. Since one has within this regime of temperature

F(ω) = ^F^M/^y^2; 2
v ; [cosh(y(0)) //(0) + sinh(2X2)cosh(2K*)]ω2V v )h v ;

one easily deduces from (25) and (26) that

(35)

which is as expected different from zero. At T= Tc, the same kind of calculations
leads to

0(0) ~ 101 - (36)

Remark. We now would like to stress the connection existing between the behaviour
of the first Yang-Lee zero and the nature of the scaling limit at the critical point. For
the model we consider in this paper, one of us (DBA) has indeed already calculated
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the critical point limit law for the magnetisation variable suitably renormalized. The
result is the following [15]:

/ / M \ I \

lim ( exp u £ σlk) (MlogM)112 } = exp(Cw2/2) (37)
M-oo \ V fc=l / / /

for any real u, where C is some positive constant and where the mean value < > is to
be taken with respect to (4) at the critical point as N -> oo. One gets using the Yang-
Lee theorem combined with the Hadamard's representation of an entire function

[19]:

where u2^ u2

2 <; - - - are the Yang-Lee zeros given, modulo 2π, by (10-12). Therefore

Let us assume that as M-»oo, the sequence of reduced variables
M
Σ <W(M log M)1/2 converges in distribution to some variable X. One obtains that

fc=l

the moment generating function of X has to be entire of order between 1 and 2, with
variance unity. The fact that the order p has to be between 1 and 2 follows by use of
the Levy's theorem [20] (p ̂  1) and of the usual Gaussian domination (p ̂  2). The
other properties can be proved using standard probabilistic techniques. This means
that, for any we(R:

£{exp(w*)} = exp(Cw2) Π(l + u2/Cj) (40)

00

with ΣCj~2 < + oo. Hurwitz's theorem and Newman's results [23] then guarantees

that

u] MlogM — >CJ as M->oo. (41)

Since one has proved in (18) that

one easily deduces from (40) and (41) that the scaling limit has to be Gaussian.
Whether or not the first Yang-Lee zero verifies some universal property such as

suggested for instance by Aizenman's result [21] remains an open interesting
question.

4. The Yang-Lee Edge Singularity

Kortman and Griffiths [3] and Fisher [4] have stressed the significance of the edge
singularity: for fields near the edge, the system is expected to display critical
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fluctuations. To investigate this, we have calculated the magnetisation and pair
correlation function between spins on the edge for any complex value of edge field
[11]. Our results are

1 π

m(h) = Qxp(K2)-\dωA ~ \ω) (43)
π 0

and

<σ(l, l)σ(l, 1 + s)> - m2(h) = / + /_ + J+J_, (44)

where

A(ω) = (cosh(2/ί*) - cos(ω)sinh(2/z*)}exp(K2)

+ sin(ω)sinh(2*)exp( - K2)tan(δ/(ω)/2)9 (45)

tanh(<5/(ω)/2) = sinh (2£f) sin (ω)/[exp (γ(ω)) - exp( - 2K2)

x (cosh(2K*) + sinh(2K*)cos(ω))], (46)

1 π

7± =— J dωexpOωsM'Hω) [exp(-(K2)cosh(2/z*)sin(ω)tan(δ*(ω)/2)
2n -π

+ exp(K2) sinh(2Λ*) - cosh(2/ι*) cos(ω))

+ ϊ{exp(X2)sin(ω)cosh(2/z*) + exp(-X2)tan(δ*(ω)/2)

• (cosh(2Λ*) cos ω ± sinh(2Λ*)}], (47)

1 π _

J± =— J dωexp(+/ωs)>4~1(ω)
~ 2τc -π

•[{±exp(K2)cos(ω)Texp(-K2)sin(ω)tan(5*(ω)/2)}

+ i(exp(K2)sin(ω) + exp(-X2)cos(ω)tan(δ*(ω)/2)}]. (48)

Therefore

<σ(l, l)σ(l, 1 + s)> - m2(h) - exp(-ω0 s)G(ω0) for sω0 » 1, (49)

where G does not depend on s and is non-zero, and where

exp(y(iω0)) = exp(2K2)[cosh(2K*) - cosh(2/z) sinh(2K*)], (50)

where the gap is given equivalently by

exp(y(0)) - exp(2K2)[cosh(2K*)-cosh(2/ι,)sinh(2X*)]. (51)

Clearly the inverse correlation length has the asymptotic form

ωl = -4sinh(γ(0))sinh(2^)exp(-y(0) + 2K2)\hg - h\ (52)

so that the exponent v* = +1/2. Also m(h) ~\hg — h\~1/2, implying δ = —2 for the
magnetisation near the "edge."

The analysis of (43) and (44) is done by locating the zeros of A(ω) nearest the real
axis. There is thus an intriguing connection between this problem and the surface
binding—unbinding transition [22], but there it is the low temperature behaviour of

with real h which is of interest.
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5. Antiferromagnetic Zeros

The same methods give the location of surface zeros for the antiferromagnet with
coupling -,/! and - J2 (^1^2 >0) at

tanh2 h = [sinh(y(ω)) + sinh(2X?) cosh(2K2) + sinh(2K2) cosh(2K?) cos ω]/

[exp(2K?) sinh(2K2)(l + cos ω)], (53)

where exp(ϊ'Mω) = ί and

cosh(f (ω)) = cosh(2K*) cosh(2K2) + sinh(2K?) sinh(2K2) cos ω (54)

with γ(ω) ^ 0 for ω real. In order to verify that the zeros lie on the negative real axis in
the exp(2/ί) plane, typical of the d = I antiferromagnet, one only has to prove that

cosh (2k) ^-1. (55)

Using hyperbolic identities, one gets

coβhβλ) - - 1 + 2

s™M2K2)exp(2K*)(l-^OSω)
cosh(2/0- 1 + 2 (56)

In order to prove the validity of (55), it remains to show that

exp( - flω)) < exp(2Kf - 2K2), (57)

which is indeed the case for any finite value of M (cf. (54)).
As a final generalization, the problem of the d = 1 antiferromagnetic ring with

coupling constant - J3 (J3 > 0) coupled ferromagnetically to a ferromagnetic
cylinder with couplings Jί , J2 («Λ ,J2>ty can be analysed. The zeros are given for
any finite cylinder N, M by:

cotanh2(h) = - cotan(ω/2)G(ω)/H(α>), (58)

where

G(ω) = [cosh (2K3) - smh(2K3)cos(ω)]Qxp(-2Kf)sm(ό/(ω))smh(2Nγ(ω))

- sinh(2K3)sin(ω)[cosh(2]V'y(ω)) + cos((5'(ω)) sinh(2Ny(ω))],
(59)

H(ω) = »sin(ω)sinh(2K3)exp(-2ίCf)sin(δ/(ω))sinh(2Ny((ϋ))

+ [cosh(2K3) + sinh(2X3) cos ω] [cosh(2JVy(ω))
+ cos(δ'(ω)) sinh(2Ny(ω))]. (60)

As the number of rows N becomes infinite, this leads to

[cosh(2K3) - sinh(2K3)cos(ω)]exp( - 2ίC*)sin(<5'(ω))

. u2/Ii, , ( ^ ~ sinh(2K3)sin(ω)(l
cotanh (h)= -cotan(ω/2)-—

^̂

-f sinh(2X3)cosω](l +cos(δ'(ω)).
(61)

Let us first consider the case K1 ^co, i.e. when the cylinder becomes more
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ferromagnetic. We then have from (61):

cotanh2 (h) = - cotan2 (ω/2) (62)

for any coupling — J3 < 0. The zeros are therefore given by

h = iω/2. (63)

They are thus located, as it should, on the unit circle in the exp( — 2h) plane.
However, as K1 ->0, all the zeros move into the real axis:

2 sinh(2J£3)(l + cos ω)

- + sinh(2K3) cos ω '

In terms of the antiferromagnetic coupling — J3( < 0), it can also easily be proved
that as K3 ->0, the zeros are on the unit circle and that they move through — oo as
K3-> + oo.
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