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Abstract. We apply the results of [BF1, BF2] on determinants of Dirac
operators to String Theory. For the bosonic string we recover the "holo-
morphic factorization" of Belavin and Knizhik. Witten's global anomaly
formula is used to give sufficient conditions for anomaly cancellation in the
heterotic string (for arbitrary background spacetimes). To prove the latter
result we develop certain torsion invariants related to characteristic classes of
vector bundles and to index theory.

String Theory has spawned a vigorous interaction between mathematics and
physics. This intermingling of two quite separate intuitions is fruitful for both
disciplines. Of particular value for mathematicians are the concrete examples
generated and discussed by physicists. The purpose of this paper is to consider the
relationship of some examples to the circle of ideas surrounding the Atiyah-Singer
Index Theorem.

Atiyah and Singer first demonstrated the connection between determinants (in
Quantum Field Theory) and the families index theorem [AS1]. Their concern was
with anomalies, which they interpreted as nontrivial topology (over the reals) in
the determinant line bundle if. Witten's work on global anomalies [Wl]
suggested a more refined geometric picture: if has a natural connection whose
curvature and holonomy represent the local and global anomaly, respectively.2

The mathematical ideas used to construct such a connection are largely due to
Quillen [Ql] who, for entirely different reasons, introduced a metric on if. The
connection on if was rigorously constructed in [BF1]. The analytical techniques
developed by Bismut in [B] were used in [BF2] to derive the formulae for its
curvature and holonomy. We discuss these developments in Sect. 1.

In Sect. 2 we interpret some known results about the bosonic string in terms of
the geometry of the determinant line bundle. We emphasize that purely
topological methods do not suffice here. In fact, our main purpose in this paper is

1 Partially supported by an NSF Postdoctoral Research Fellowship
2 Witten explicitly stated that his work could be interpreted in terms of this connection
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to explain examples which demand methods that go beyond the topological index
theorem. We consider first the conformal anomaly. In a recent paper Alvarez [A2]
explains a formal connection between the conformal anomaly and the index
theorem. Although we provide a geometric setting for his observation, we feel that
our understanding here is incomplete. In the critical dimension d = 26, the
conformal anomaly vanishes and the theory can be formulated over the Riemann
moduli space. There is then a "holomorphic factorization" of the partition
function, recently proved by Belavin and Knizhnik [BK] (cf., [CCMR]). That is,
the partition function is the norm square of a holomorphic function on moduli
space. We use the connection on <£ to recover this result. A recent announcement
by Manin [M] gives an explicit formula for the partition function.

Our other theme is torsion. Witten's original examples of global gravitational
anomalies can be explained in terms of torsion in the determinant line bundle. We
pointed this out to Witten, who applied this observation in many contexts [W2,
WW]. Witten's conviction that torsion phenomena are important in String
Theory inspired us to develop this material further. Hence, in Sect. 3 we give an
exposition of the relevant torsion invariants in cohomology, and in Sect. 4 we show
how they apply to anomalies in the heterotic string. These anomalies were
discussed (in special cases) by Witten in [W2], and we follow his work closely. Our
main theorem in Sect. 4 gives sufficient conditions for the cancellation of global
anomalies. This theorem applies to arbitrary spacetimes. Although torsion
invariants enter to compute the global anomaly, we emphasize that the global
anomaly is geometric, not topological. That is, one cannot recover these results by
studying just the topology of S£\ for S£ could be topologically trivial but have a
nontrivial connection. Because the typical element of the mapping class group has
infinite order, and because the topology of spacetime is arbitrary, the holonomy
around a typical loop is not computable from the Chern class. Rather, for certain
loops it can be expressed in terms of torsion invariants on spacetime. The torsion
invariants relevant to the index theorem (hence to anomalies) lie in X-theory,
though we work around the X-theory in this paper. They are related to ideas of
Dennis Sullivan, and are more or less known to topologists. We defer their
consideration to [Fl], where we discuss the connection with index theory.

Rather more algebraic topology than we would prefer enters our proof of the
global anomaly cancellation. More precisely, the relationship between the torsion
invariants in K-theory and the torsion invariants in cohomology involves a
bordism invariant (Corollary 3.22). Recall that bordism is the generalized
homology theory defined roughly by replacing "singular chain" with "manifold" in
the definition of ordinary singular homology. In [W3] Witten shows that the
global anomaly always vanishes in the 10 dimensional field theory limit of the
E8 x E8 heterotic string, given the same topological condition we require in Sect. 4.
The key ingredient of his proof is a very impressive bordism calculation of Stong.
Such bordism computations seem an indispensible ingredient in any discussion of
global anomalies.

The impetus to develop these ideas came in part from an effort to explain some
formulae of Vafa [V].3 He derived conditions for modular invariance of the

3 These have been derived by others as well [DHVW]. My knowledge of the String Theory and
literature is far from complete, so my references to it should not be presumed definitive
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heterotic string theory formulated on "orbifolds." (His orbifolds are orbit spaces of
representations of finite groups.) Modular invariance is equivalent to the absence
of global anomalies, and so we were led to look for an interpretation of his
formulae in terms of the determinant line bundle. The material in Sect. 4 is a
prerequisite for that discussion, which will appear elsewhere [FV].

The examples discussed in this paper provided motivation and guidance for a
general theory of determinant line bundles [BF1, BF2, F2] and of torsion
invariants [Fl]. We hope that our expository efforts in Sects. 1 and 3 form a useful
introduction to these ideas.

1. Determinants and Families of Dirac Operators

We begin by reviewing determinants of operators in finite dimensions. Let V be a
finite dimensional complex vector space and A:V^V an endomorphism of F
Then Δ induces an endomorphism

detΔ:detF->detF

on the one dimensional line of totally antisymmetric tensors detF = ΛmaxF, the
highest exterior power of F For vl9 v29..., vne F,

(detΔ)^! Λf2Λ ... Λvn) = Δv1 Λ Δ U 2 Λ ... ΛΔI? B . (1.1)

Since detF is a one dimensional vector space, the endomorphism detΔ is
multiplication by a complex number, which is the product of the eigenvalues of Δ.
We usually identify detD with this complex number.

Suppose now that W is another vector space and D: F-» W a linear map. If
dimF=dim W we can form the induced map

detD:detF->detW

on the highest exterior powers. Without additional choices there is no natural way
to identify this with a complex number. Instead we must be content to regard

detD e (detF)*® (detPF)

as an element of a complex line. Note that detD vanishes if D has a kernel and is
nonzero otherwise. In fact there is an exact sequence

0 —> kerD —-> V-°^ W—+ cokerD —* 0, (1.2)

and the multiplicative property of the determinant implies a natural isomorphism

(detF)*®(detFO~(detkerD)*®(det cokerD). (1.3)

If kerD = {0} then the right-hand side of (1.3) is canonically identified with C and
detD corresponds to 1 e C. If D is not invertible, then detD = 0.

Introduce a parameter space Y and imagine that the operator Dy: Vy-*Wy

varies smoothly over yeY. The determinant construction at y e Y gives a point in
the complex line (det F^)*®(det Wy). This fits together to yield a section detD of a
line bundle 5£-^Y. For operators in finite dimensions the line bundle ££ is
completely determined by the families of vector spaces {Vy} and {Wy} (which we
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assume fit together to form vector bundles over Y) In particular, it is independent
of the operators {Dy}.

We can pass to operators on infinite dimensional spaces by restricting to
Fredholm operators, which by definition have finite dimensional kernel and
cokernel; then the fiber of if is defined by the right-hand side of (1.3). Notice that
the left-hand side no longer makes sense as V and W are infinite dimensional. Also,
to rigorously construct the line bundle <£ we have to account for the possibility
that the dimension of kerDy can jump as y varies. (See [Q], for example.) For
operators in infinite dimensions the hypothesis dimF=dimPF is replaced by
dimkerD^dimcokerD^, i.e., by the hypothesis that the Fredholm operators Dy

have index zero. (Henceforth, we write D for Dy.) The line bundle S£ exists for
arbitrary index, but the section detD requires the index zero hypothesis. If
index DφO, then D is never invertible, so it is natural to set detD = 0.

We are concerned with Dirac operators on a compact manifolds. We also allow
operators of Dirac type, which includes the signature operator, Rarita-Schwinger
operator, self-dual operator, d operator on a Kahler manifold, etc. Recall that
determinants of Dirac operators arise in fermionic integration. These Dirac
operators depend on Bose fields, which are parametrized by a space Y, and the path
integral quantization dictates that detD be integrated over Y The preceding
discussion indicates that detD comes as a section of the determinant line bundle
j£f-• Y. But we can only integrate functions over Y. Hence we need to find a global
basis for if, that is, a trivialization of if, so as to express detD as a function on Y. (A
global basis is a nonzero section s of if, and with respect to this global basis we can
write detD = / s for some function /.) The obstruction to finding a trivialization is
called the anomaly.

This connection between anomalies and the determinant line bundle was
pioneered by Atiyah and Singer [AS1]. There is a topological obstruction to
trivializing if, namely its integral first Chern class cx{5£\ and they showed that it
can be computed by the Atiyah-Singer Index Theorem for Families [AS2].
Furthermore, over the reals the first Chern character chx{ί£\ which is the image of
cx{<£) in real cohomology, is expressed by an explicit cohomological formula. (The
torsion information in cx(<£) is only accessible via K-theory [Fl].) This
topological obstruction is strong enough to detect the anomaly in many situations.
Notice, however, that if this topological obstruction Ci(if) vanishes there are
many ways of trivializing ^£, and the function obtained from the section detD
depends strongly on which trivialization is chosen. Extra geometry is needed to fix
the trivialization, so as to fix the determinant function. That extra geometry turns
out to be a connection F(J?>) on f£. Hence we have the key

Definition 1.4. The geometric anomaly is the obstruction to trivializing the
connection on 5£.

In other words, the geometric anomaly is the obstruction to finding a global flat
nonzero section (see Fig. 1). If one exists it is unique up to a phase on every
connected component of Γ, and the ratio of the section detD to the flat section is a
function representing the determinant. (The determinant bundle also has a metric
gi^) and we take the trivializing flat section to have unit norm.) This connection
was constructed in [BF1], following closely ideas of Quillen. We remark
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that the Green-Schwartz anomaly cancellation [GS] involves a 1-form on
Y, which enters geometrically as a modification to the canonical connection V{se)

(cf. Sect. 4).

• det D

Fig. 1

Before describing the geometric setup abstractly, let us consider a few physical
examples.

Example 1.5 (Gravitational Anomalies [AgW, ASZ]J; Let X be a compact even
dimensional spin manifold, say of dimension n, and Met(X) the spacejliemannian
metrics on X. The spin structure a on X determines a double cover GL(X) of the
frame bundle GL(X). Now let

^ = {(g,f}e Met(X) x GL(X): the frame / is orthonormal in the metric g) .

Then #'->Met(X) x X is a principal Spin(n) bundle which restricts on {g} x X to
the bundle of spin frames on X for the metric g. Notice that the product
Met(X)xX carries a partial metric along the fibers of the projection
Met(X) x X->Met(X) onto the first factor. The half-spinor representations σ+ of
Spin(rc), applied to the bundle #*, yield vector bundles over Met(X) x X, which
restrict on {g} x X to the bundles of positive and negative spinors over X. For each
fixed metric the chiral Dirac operator can be defined as usual. Globally we obtain a
family of chiral Dirac operators on X parameterized by Met(Z).

The group of diffeomorphisms Diff (X) acts on Met(X) x X. The action on a
metric g is by pullback and the diffeomorphisms act on X by definition. Restricting
to the group of diffeomorphisms Diffα(X) which preserve the spin structure α, the
action lifts to an action (possibly of a double covering of Diffα(X)) on <F. Taking
the quotient we obtain a fibration of manifolds

Z = Met(X)xX/Diffα(X)
V (1.6)
7 = Met(X)/Diffα(X).

There is a consistent spin structure along the fibers, so that spinors are defined. The
metric along the fibers is preserved by the action of Diffα(X), so that the quotient Z
also carries a metric along the fibers. Although Z is not globally a product in
general, the infinitesimal version of the product structure Met(X) x X passes to the
quotient; there is a projection P: TZ^TvertZ. This should be thought of as a
connection of the fibration of manifolds (1.6) (see Fig. 2).

One difficulty we have not yet mentioned is that in general Diffα(X) does not
act freely on Met(X). The isotropy group at g e Met(X) is the isometry group of
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Fig. 2
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the metric g, which is a compact Lie group. In the case of major interest to us X = Σ
is a Riemann surface of genus ^ 2 and this isometry group for metrics of curvature
— 1 is finite. Thus the quotient Y is an orbifold and can be treated by standard
methods (cf. the discussion about group actions at the end of this section). As we
divide out only by diffeomorphisms preserving a spin structure, Y is a finite cover
of the quotient by all diffeomorphisms, the Riemann moduli space.

Example 1.7 (σ-Model [MN]j. Again let X be a compact even dimensional spin
manifold, now with a fixed metric, and suppose that M is an arbitrary manifold.
Let E ^ M be a Hermitian vector bundle with unitary connection V{E\ Consider
the mapping space 7=Map(X, M). For each φe Y we have a pullback bundle
φ*E-+X with connection φ*V(E). The Dirac operator on X couples to this
connection (vector potential) to give a Dirac operator on φ*E-valued spinor fields.
This family is parametrized by the map φeY Set Z=YxX and consider the
evaluation map e:Z-+M. We obtain the following diagram:

(E, , V{E))

M (1.8)

Here E->Z is the bundle e*E with its pulled back connection P(E) = ̂ *P ( £ ). Over
each φe Y this restricts to the bundle φ*E with connection φ*F (£).

The Polyakov formulation of string theory combines these two examples:
X = Σ is a Riemann surface and the bosonic fields are Met(Σ) and Map(Σ,M).

Next we abstract from these examples the precise geometric setup we need.

Geometric Data 1.9. (1) A smooth fibration of manifolds π'.Z^Y. We suppose
dimX = n is even. To define a family of Dirac operators we need to add the
topological hypothesis that the tangent bundle along the fibers 7^ertZ->Z has a
fixed spin structure. (This is stronger than assuming that X has a spin structure; the
spin structures on the fibers Xy must fit together over the parameter space Y. In
Example 1.5 above this hypothesis is guaranteed by dividing out only by
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diffeomorphisms which preserve the fixed spin structure on X.) If we consider a
family of d operators, say, then the spin structure is irrelevant.

(2) A metric along the fibers, that is, a metric g(TvertZ) on TyertZ.
(3) A projection P: TZ-+TyertZ. The kernel of P is a distribution of horizontal

complements to the vertical tangent spaces, as indicated in Fig. 2.
(4) A complex (virtual) representation ρ of Spin (n). This is used to specify the

exact combination of Dirac-type operators in the theory. It determines a bundle
Vρ->Z to which the basic Dirac operator couples. For example, if ρ = 1 — (σ+ + σ_),
then we have the Dirac operator minus the signature operator, (σ + + σ _ is the total
spin representation.)

(5) A complex vector bundle £-»Z with a hermitian metric g(E) and compatible
connection V(E\ This describes extrinsic data (gauge fields and particles) as in
Example 1.7.

The data (2) and (3) in (1.9) determine a connection V(TwertZ) on the tangent bundle
along the fibers of Z-> Y It is the projection of the Levi-Civita connection on Z
constructed by choosing an arbitrary metric on Y All of our constructions are
independent of any choice of metric on Y. We denote the curvature of this
connection by Ω(ΓvertZ).

The determinant line bundle 5£-^Y is constructed from the data (1.9) by
patching. Briefly, one handles the jumping kernels by throwing in a finite
dimensional space of low "eigenmodes" for the Laplacians D*D and DD*. Then
(1.2) and (1.3) are used to patch together the determinant lines constructed from
these low eigenmode bundles.

Theorem 1.10 [BF1]. The data (1.9) determine functorίally a smooth determinant
line bundle ϊ£-*Y. It carries the Quillen metric g{se) (constructed in [Q]J and
compatible connection V(se). If the Dirac operators have index zero there is a section
detD of <£.

Over the points in Y where D is invertible the section dctD gives a trivialization of
S£. In terms of that trivialization the Quillen metric is given by

||detD||fJ?) = detD D. (1.11)

The Laplacian A = D*D is a self-adjoint operator, but on a infinite dimensional
space, so that (1.1) cannot be used to define detD*Zλ Rather, we use a procedure
due to Ray and Singer [RS] - zeta-function regularization. Let {λ} be the
eigenvalues of D*D, listed according to their multiplicities, and set

C(s)=Σi=Tr((D*D)-0. (1.12)
λ A

Then ζ(s) is finite and holomorphic for Res sufficiently large, and has a
meromorphic continuation which is regular at s = 0. Define

{0). (1.13)

The connection V{se) on the section detZ) is also explicit where D is invertible:

-^idetD). (1.14)
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Here V is the connection V{TvertZ) operating pointwise, but with a correction term
due to the changing volume forms on the fibers of Z-> Y The resulting connection
V is unitary on the bundles of L2 spinor fields. Note that formally
Tΐ(V{D)D~1) = δlndetD, which is the usual expression in the physics literature.
Again we use a zeta function to define the right-hand side of (1.14). Set

ω(s) = Ίr{(DD*ysVD D-1), (1.15)

which is finite for Res^>0. The meromorphic extension is more complicated than
for ζ(s); in particular, ω(s) has a pole at s = 0 in general. We use the regular part to
define

Ύv(VD D-1) = (sω(s))/(0). (1.16)

These constructions extend to all of <£ by patching.
In the preceding paragraph we used the canonical section detD to trivialize if,

where D is invertible. Suppose instead that we work over a region in Y where kerD
and cokerD have constant dimension. We no longer require that D have index
zero. Choose smoothly varying bases {φj for kerD and {ψa} for kerD*. The φ{ and
\pa are harmonic spinors. Passing to determinants we obtain a nonzero section s of
i? [cf. (1.3)]. In terms of this section the Quillen metric is

( U 7 )

Here (φα, ψβ) and (φi9 φ j are the matrices of L2 inner products of the harmonic
spinors. The prime in det'D*/) denotes the omission of zero modes. This
determinant is defined using a (-function, as in (1.12) and (1.13), where λ now runs
only over nonzero eigenvalues. Similarly, the connection form is given by

V<*\s)= J Σ ^ o o V O - Σ (Fφuφd + Tr'iΫDD-ηhs. (1.18)

TV is defined as in (1.15) and (1.16), but restricting to the orthogonal complement
of kerD*.

The main theorems in [BF2] determine the curvature and holonomy of if. Of
course, the curvature and holonomy are the obstructions to finding a global flat
section of if. The curvature formula is related to Bismut's heat equation approach
to the index theorem for families [B] and represents the local geometric anomaly,
while the holonomy formula is Witten's global geometric anomaly [Wl].

Theorem 1.19 [BF2]. The curvature of the determinant line bundle if —• Y is the 2-
form

Ω^ = \2πi J i( ί2 ( Γ - t T ) ) ch(ρΩ(T- tZ)) ch(Ω(£))Ί .
L X J(2)

A and ch are the usual polynomials

The integrand is a differential form of mixed degree on Z which is integrated over
the fibers in the fϊbration of manifolds Z->Y The 2-form component of the
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resulting differential form on Y is the curvature of Jδf. For families of ^operators
replace the A polynomial by the Todd polynomial. On the level of real
cohomology (1.19) is the Atiyah-Singer Index Theorem for families [AS2].

The holonomy formula is more complicated to state. Let y: S1 -> Y be a loop. By
pullback we obtain a geometric family of Dirac operators parametrized by S1.
Thus there is an (w + l)-manifold P fϊbered over S1, a metric and spin structure
along the fibers, etc. Introduce an arbitrary metric g(Sί) and endow S1 with its
trivial spin structure. Then P acquires a metric and spin structure and so a self-
adjoint Dirac operator A (coupled to VQ®E). Since our constructions are
independent of the metric on the base, we must scale away the choice of metric on
the circle. Replace g{Sί) in the preceding by g(Sl)/s2 for a parameter ε, and let Aε

denote the Dirac operator for the scaled metric. Set

ηε = ̂ -invariant of Aε9 hε = dim ker^ε, ξε = \(\\ε + hε).

The ^-invariant is a spectral invariant defined by analytic continuation as the value
of

y sgn/l

AespecUe)\{0> \λ\*

at 5 = 0 [APS]. An easy argument shows ξε (modi) is continuous in ε.

Theorem 1.21 [Wl, BF2]. The holonomy of Vw around y is

(-l)indexD Urn e~2πίξ.

Here index D is the numerical index of the Dirac operator on X (for any fixed value
of the parameter on the circle).

There will be many applications of these formulae in succeeding sections. We
simply remark at this stage that ^-invariants are difficult to compute directly
unless the metric has some special symmetry. We will be able to compute the
holonomy in examples by topological methods involving torsion.

Any geometry added to the basic geometric data (1.9) is reflected by extra
structure in the determinant line bundle. We will have occasion to use group
actions and holomorphic structures.

Proposition 1.22 [F2]. Let Gbe a group acting on Z which preserves all of the data
(fibration π, spin structure, g{TvertZ\ projection P, g{E\ V{E)) in (1.9). Furthermore, we
assume that a lift of the action to spίnors is given. Then G acts on the determinant line
bundle 5£ preserving its Quillen metric g^ and connection V^\

If G acts freely we can equally work on the quotient family of operators. In general,
though, we resort to equivariant constructions - equivariant bundles with
connection, equivariant cohomology, equivariant K-theory, etc. This arises twice
in String Theory. The moduli space of Riemann surfaces has an orbifold structure,
so we can treat it using the equivariant geometry of the mapping class group on the
Teichmϋller space. On the other hand, the spacetime M is sometimes taken to be
an orbifold [DHVW, V] which also requires equivariant techniques [FV].

Consider now the d operator on a Riemann surface. Because we are in
dimension two it is elliptic. (For a higher dimensional complex manifold it is the
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operator d-\- d* which is elliptic.) Quillen [Q] considers the family of d operators
obtained by varying the holomorphic structure on some extrinsic vector bundle E.
The determinant line bundle Jδf then has a holomorphic structure, and one must
verify that the connection V{se), the construction of which is manifestly not
holomorphic [note the adjoint in (1.15)], is the unique holomorphic connection
compatible with the metric g{£e). This was done in [BF1, Theorem 1.21]. In string
theory the holomorphic structure on the Riemann surface also varies. The
following extension of [BF1, Theorem 1.21] guarantees that the connection on JS?
is holomorphic in this case.

Proposition 1.23 [F2]. Suppose in (1.9) that X is a Riemann surface and the
representation ρ is chosen so that D is the d operator, possibly coupled to a

x
holomorphic bundle. Let Z—> Y be a holomorphic fϊbration of Riemann surfaces.

Assume that the projection P is complex. Finally, if there is an extrinsic Hermitian
bundle E we take it to have a holomorphic structure and unique compatible
holomorphic connection. Then the determinant line bundle 5£ has a holomorphic
structure, and V{^?) is the holomorphic connection compatible with the Quillen metric.
Furthermore, if indexD = 0 then the natural section is holomorphic.

In Sect. 4 we shall need to know how the ^-invariant varies with the differential
geometric parameters (metrics and connections). The appropriate formula is
contained in the work of Atiyah-Patodi-Singer, though the precise form that we
use can be found in [BF2, Theorem 2.10]. Consider a geometric family of odd
dimensional spin manifolds X, which is defined exactly as in (1.9). Attached to each
manifold Xy is a self-adjoint Dirac operator, and so an ^-invariant ξy. This is a
function on the parameter space with values in R/Z. Its differential is given by the
usual index formula.

Proposition 1.24. The variation of ξy is the 1-form

dξ= ΓJ i (Ω ( Γ - t Z ) )ch(ρΩ ( T - t Z ) )ch(Ω ( £ ) )Ί (modi).
L J

2. The Bosonic String

The determinants which arise in the bosonic string illustrate the ideas of Sect. 1. We
consider the Polyakov formulation of the bosonic string in a flat Euclidean
background RA As usual, all metrics are positive definite. Our first goal is to give a
geometric description of the conformal anomaly. In the critical dimension d = 26
there is the "holomorphic factorization" of Belavin and Knizhnik - the partition
function is the norm square of a holomorphic function on moduli space. We derive
it using the connection on the determinant line bundle. As we have nothing to add
to other aspects of the theory, we will be extremely brief in our exposition.

Let Σ be a Riemann surface of genus ^ 2. The cases of genus 0 and 1 can be
treated similarly, and for simplicity we omit the modifications needed to treat these
cases. The partition function (for fixed genus) is

Z = ί ί [_dφ]^p(-\\{dψ,dφ)X (2.1)
<peMap(I,IRd) \ Z Σ J
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The action - f (dφ, dψ)g has many symmetry groups: the translation group of Rd,

the diffeomorphism group of Σ, and the group C+(Σ) of positive functions on Σ,
acting as conformal rescalings of the metric. The measures {_dg\ [dφ] in this
expression are the natural formal measures divided by the volume (of the orbits) of
the symmetry groups. Now the integral over φ is a standard Gaussian, and so

Z . (
Met( \ g /

Here detM^ is the regularized product of the nonzero eigenvalues of the Laplacian
Δg on functions. The factor (1, ί)g9 which is the total volume of the metric #, occurs
because of the translation symmetry. By a standard change of variables which we
will not duplicate here (see [DP] for a nice exposition), the partition function is
reexpressed as

7 f TΛ ^ίtetiA9YfdetddL\
Z= i \Ag\ y ) 1. (2.3)

Met (I) \ (1,1)̂  / \dQt(φi9φj)J

Now [dgj is a new formal measure on Met (Σ\ which reflects the product structure
Met(Σ) = Conf(£) x C™(Σ). Conf(£) denote the space of conformal structures on
Σ; it is the quotient Met(Σ)/C™(Σ). The second determinant is the Jacobian from
the change of variables. The operator dL (sometimes denoted Px in the physics
literature) is the d operator coupled to the holomorphic tangent bundle L-+Σ.
Here we use the fact that a metric on Σ determines a complex structure. Of course,
the second determinant in (2.3) also depends on the metric. The {φt} are a basis of
holomorphic quadratic differentials (which represent deformations on the
Teichmύller space). We choose the φt to be invariant under C™(Σ). Note that by
Serre duality kerδj is dual to the space of holomorphic quadratic differentials.
Also, the measure [dg~\ depends on this choice of basis. Our purpose is to focus on
the determinants in (2.3), not on the derivation of the measure, so we defer to
[DP] for details.

We ask whether the product of determinants in (2.3) passes to the quotient
Conf(Σ) = Met(I1)/C+(I'), i.e., whether it is invariant under conformal rescalings
of the metric. Any variation is called a conformal anomaly, and the precise formula
has been computed directly [Fr, Al]. Indeed, this is the calculation which fixes the
dimension d = 26, as this is the only dimension in which the conformal anomaly
vanishes. In [A2] Alvarez observed that formally the families index theorem yields
the same result. As the group C?(Σ) is contractible, one cannot attach purely
topological significance to his computation. Rather, we interpret his observation
in terms of the geometry of determinant line bundles. His calculation is then the
curvature of a connection, not a Chern class.

In the language of (1.9) take Y=Met(Σ) and Z = Met(2) x Σ with the natural
vertical metric and projection. No spin structure is necessary as we consider d
operators. The representation ρ is chosen so that VQ = — d/2 + L, where — d/2 is the
negative of the trivial d/2-dimensional bundle and L->Met(Σ)x2< is the holo-
morphic tangent bundle to Σ. (The spacetime M is assumed to have even dimension.)
This data describes the family of operators d_d/2+L on the Riemann surface,
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parametrized by the metric. Let if-• Met (£) be the determinant line bundle for this
family. Although these operators have nonzero index, the kernel and cokernel
have constant dimension as the metric varies. In fact, it is an easy consequence of
the Kodaira vanishing theorem (or Weitzenbόck formula) that kercΓL = 0. Fur-
thermore, kerd is the space of holomorphic functions on Σ, which always consists
only of the constant functions. By Serre duality we can identify ker 3* with the dual
of the space of holomorphic 1-forms. Let {ωα} be a basis of holomorphic 1-forms
locally on Met(Σ). This data determines a section s of i f whose norm square is
given by (1.17):

\det(φbφj)

The ωα and φt occur in the denominator because the Serre duality mentioned
above. Since jΛg = 3* 9" we see that | |s | |2 differs from the product of determinants in
(2.3) only by the factor [det(ωα,ωβ)~\~dl2. But as we can choose ωa to be invariant
under C?(2), since the d operator only depends on the underlying conformal
structure, and since the L2 inner product on 1-forms is conformally invariant, this
discrepancy is irrelevant to the computation of the conformal anomaly. In other
words, the conformal anomaly vanishes precisely when the function | |s | |2 on
Met(Γ) is invariant under the action of C™(Σ).

There is a natural lift of the action of C+(Γ) to Met(Γ) x Σ - the conformal
rescalings act trivially o n l - which induces an action on the determinant line
bundle ^£. We claim that s is invariant under this action. For the section s is
essentially the d operator, and the complex structure of Σ is unchanged by
rescaling the metric. The other ingredients ins- the ωα, φb and constant functions -
are explicitly chosen to be conformally invariant. It follows that the partition
function is conformally invariant if g{se) is preserved by C+(Σ). In Sect. 1 we
introduced a unitary connection V{5e) on 5£. Since a metric connection determines
the metric through its holonomy, it suffices to prove that V{Sf) is invariant. For this
we use the following

Lemma 2.5. Let if}-^Ybea line bundle with connection and *§ a connected Lie group
acting freely on ϊ£ and Y Denote the connection I-form (on the corresponding
principal C* bundle) by ω{se) and its curvature by Ω{^\ Suppose that for each X in
the Lie algebra of ^^

(i) ιxω^ = 0, (ii)

Then the connection passes to the quotient bundle

The lemma is a simple application of the Cartan formula for the Lie derivative.
Alvarez's index calculation [A2] is the verification of condition (ii) for the

bosonic string.

Proposition 2.6. The curvature Ω{£e) of the determinant line bundle for the d_,
family vanishes if d = 26.

Proof We apply Theorem 1.19. Let

x=^-Ω(L)eΩ2(MGt(Σ)xΣ)
2π
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be the curvature of the holomorphic tangent bundle L. The index density for the d
operator is the Todd genus

l + 2 + Ϊ 2 + - ( 2 7 )

The Chern character of the auxiliary bundle — d/2 + L is

2

Then Ω{se) is 2πi times the integral over Σ of the product of (2.7) and (2.8). Since

ΓY x x2\ ( x 2 \Ί 26 ~d

we obtain
d-^\ j(ί2 ( L ))2, (2.9)
48π / i

which vanishes identically if d = 26.

The vanishing of Ω{se) in 26 dimensions is universal - it holds for any family of
Riemann surfaces.

Proposition 2.6 is condition (ii) in Lemma 2.5. To prove the vanishing of the
conformal anomaly in d = 26, it remains to verify condition (i). Unfortunately, this
is where our understanding falls short. Direct verification would involve
computing the connection form in (1.18), contracted along the orbits of C+(Σ). But
this is the original, direct calculation of the variation of || s ||2, which we are trying to
avoid. Roughly speaking, the connection from ω{£e) is the first derivative of ||s||2

and the curvature Ω{Se) is the second derivative. Our goal is to use some geometric
principle to show that in this particular situation it suffices to compute second
derivatives. One possible geometric principle is holomorphicity: If s is a
holomorphic section of a flat Hermitian holomorphic line bundle, then the
vanishing of the curvature δdlog ||s||2 implies that log ||s||2 is harmonic. Indeed, it is
possible to embed Met(Σ) in a complex space and j£? in a holomorphic line bundle,
with the rescaling action extending appropriately. However, we are unable to
prove that the harmonic function log ||s||2 is constant. For now we must content
ourselves with a geometric interpretation of the conformal anomaly calculation,
though we hoped for a geometric derivation.

Restrict to the critical dimension d = 26. Because the conformal anomaly
vanishes, we now have a line bundle if-^Conf(I') together with a metric,
connection, and nonvanishing section s. The next step is to divide out by the action
of the connected component Όiϊϊo(Σ) of the diffeomorphism group. We pause first
to review the basic geometry of the quotient Teich(Σ) = Conf(Γ)/Diff0(2), the
Teίchmύller space.

A conformal structure on Σ determines a ^-operator on 1-forms (since the *-
operator of a Riemannian metric is conformally invariant in the middle
dimension), and * 2 = — 1. Thus * defines an almost complex structure on Σ, and for
trivial dimensional reasons this structure is integrable. In fact, Conf(Σ) is exactly
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the space of complex structures on Σ. Now Conf(Z') itself is a complex manifold.
For the tangent space at * e Con^Z1) consists of real endomorphisms A of the real
tangent bundle to Σ with * A + A* = 0. An almost complex structure is defined by
sending A to *A. One can verify that the torsion tensor for this almost complex
structure vanishes, so that Conf(Σ) is a complex manifold. (We will not deal with
the technicalities of infinite dimensional manifolds here; see [FT1] for details.) The
product space Conf(Σ) x Σ carries a natural complex structure. On the first factor
it is the structure just discussed, and on { *} x Σ it restricts to the complex structure
* on Σ. Furthermore, the projection Conf(Z) x Σ-^COΏ.Ϊ(Σ) is clearly holomorphic.
Now the obvious action of Όiΐϊo(Σ) on these spaces is free and preserves the
complex structures. Hence the quotient

Z = Conϊ(Σ)xΣ/Όiiϊ0(Σ)
I* (2.10)
Y=Conf(Σ)/Diff0(Σ) - Teich(i )

is a holomorphic fibration of Riemann surfaces. Z is called the universal
(Teichmuller) curve. As in (1.6) the projection T(Conϊ(Σ)xΣ)-±TΣ passes to a
projection P: TZ-+ TyeτtZ on the quotient. It is clear that P is a complex mapping.

The uniformization theorem provides a Riemannian view of these spaces.
Recall that uniformization is a section of Met(I)->Conf(Γ) which assigns to each
* e Conf(£) a metric of constant curvature — 1. The action of Diffo(I) preserves the
space Met_1(2') of all such metrics, and so (2.10) can be identified with

Z = Met_1(20xΓ/Diffo(Σ)
I* . (2.11)
y=Met_1(Σ)/DiflF0(2) =

As in (1.6) the universal curve Z inherits a partial metric # ( Γ v e r t Z ) and projection
P: TZ-> TvertZ. Clearly this projection agrees with the one obtained in (2.10). Also,
the metric # ( T v e r t Z ) is Kahler on each fiber Σy (since any Riemannian metric on a
Riemann surface is Kahler). Hence the holomorphic picture (2.10) and Rieman-
nian picture (2.11) are compatible, in the sense of Proposition 1.21.

As our constructions are independent of any metric on the base Y=Teich(I),
we have not introduced one. We remark in passing, though, that the natural metric
on Met_i(r) descends to the Teichmuller space, and the lift to MGt-1(Σ)xΣ
descends to the universal curve. These turn out to be compatible with the complex
picture - they are Kahler metrics [FT2]. On Teich(2Γ) this is called the Weil-
Pet ersson metric.

We can carry along the holomorphic tangent bundle to Σ in these construc-
tions, and end up with a holomorphic Hermitian line bundle L-+Z.

Let us resume our discussion of the bosonic string. At this stage we have a line
bundle S£ -»Conf(£) with metric g(^\ connection V^\ and nonvanishing section s.
The action of DifF0(Σ) on Conf(Z) lifts to an action on Conf(Σ) x Σ, as in Example
1.5. All of our geometric data is invariant under Diffo(Z), so by Proposition 1.22 an
action is induced on JSf. The action preserves g{^] and V{£e). Furthermore, it is a
standard fact in Riemann surface theory that DifF0(Σ) acts freely on Conf(I'), since
we assume that the genus ^ 2. (In the physics literature one states, "there are no
conformal Killing vectors on ΣΓ) So there is an induced line bundle if ->Teich on
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the quotient with metric # m and connection F w . Alternatively, we can start
directly with the geometric data implicit in (2.10), (2.11) and the associated δ_l3+L

family. The resulting determinant line bundle, Quillen metric, and connection
agree with the previous ones obtained on the quotient. This is the content of the
functionality statement in Theorem 1.10, and it is clear from the constructions. The
section s of S£ -•Conf(Z') passes to a section of the quotient ££ ->Teich(Γ) if we take
care to choose the local bases {φt} and {ωα} to be Diffo(Σ)-invariant. We can go
further. The space of holomorphic 1-forms varies holomorphically with the
complex structure, so forms a holomorphic vector bundle over Teich(Σ). We
require that ωα be local holomorphic sections. Similar remarks apply to the
holomorphic quadratic differentials. Now Proposition 1.23 immediately implies

Proposition 2.12. The bundle <£ -•Teich(Z') is holomorphic and V{se) is the unique
holomorphic connection compatible with the metric g^\ Furthermore^ s is a
holomorphic section.

The bosonic string has no anomalies in the sense described in Sect. 1 there is no
obstruction to defining the determinants which arise. Indeed, we have realized the
partition function as \\s\\1 for a section s of «£?-»Teich(£). Now we ask whether ||s||2

is also the norm square of a holomorphic function.

Proposition 2.13 [BK, CCMR]. In the critical dimension d = 26 the partition
function for the bosonic string is the norm square of a holomorphic function F on
Teich(£).

Proof It suffices to produce a holomorphic section of i?->Teich(IΓ) with unit
norm. For this we observe that the curvature of V{Se) vanishes by the previous
calculation (2.6). Then since Teich(£) is simply connected there is a global flat
section s0 of unit norm, unique up to an overall phase. This section is also
holomorphic, as F ( ^ } is a holomorphic connection. The desired holomorphic
function is F = s/s0.

Proposition 2.13 is the "holomorphic factorization" referred to in the
introduction.

3. Torsion

Physicists are most familiar with cohomology via differential forms and the de
Rham theory. A smooth manifold M has an exterior derivative operator d which
fits into the de Rham complex. The deviation of this complex from exactness
defines the de Rham cohomology of M. In each dimension this cohomology is a
real vector space. Topologists, on the other hand, use singular chains and cochains
to define homology and cohomology, which then appear as abelian groups. The
fundamental theorem of de Rham states that the tensor product of these
cohomology groups with the real numbers gives the de Rham cohomology groups.
However, torsion information is lost in this process. Recall that an element g of an
abelian group G is said to be torsion if some multiple k g (k an integer) vanishes.
The torsion elements in G form a subgroup TorG, and there is an exact sequence

0-+TorG->G->FreeG->0. (3.1)
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Note that G projects onto its free part, but there is no God-given projection from G
to TorG.

Recently torsion phenomena have entered string theory, mainly through the
work of Ed Witten [Wl, W2, WW]. Our goal in this section is to develop the
torsion invariants in cohomology relevant to Witten's work. The analogous
invariants in K-theory also play a role, but we stop short of explaining them here.
(We will develop them in [Fl].) Still, those invariants enter the discussion through
analytic expressions (involving ^-invariants), and play a role in Sect. 4.

The author faces here the unenviable task of explaining these ideas, which
perhaps are not completely standard in mathematics, to an audience partly
composed of (brave) physicists, who are presumably unfamiliar with integral
cohomology. Fortunately, Witten has kindly provided expositions of some basics
[W3, WW], and we encourage the reader to consult these references first. The
beautiful book [BT] should also serve as a useful guide. In our present expository
account we omit proofs, which are in any case not too difficult.

Let M be a reasonable space. Then for the cohomology groups of M we have
by (3.1) an exact sequence

0-+ΎorHι(M)-+Hι(M)-+FreQHι(M)-+0. (3.2)

[Standard notation identifies H\M) = Hι(M; Z) as the integral cohomology.] The
universal coefficient theorem identifies these groups in terms of homology groups:

T o r i ί ^ M ^ T o r t f ^ ^ M ) , Free#'(M)~ Free Ht(M). (3.3)

The isomorphisms in (3.3) are noncanonical, that is, involve choices. The canonical
version of (3.3) is

Tor H\M) ~ Hom(Tor Hx _ X(M), Q/Z),
(3 4)

Freetf(M) ~ Horn (Free if, (M), Z).

Examples. (1) Consider the real projective plane K P 2 = S2/(Z/2). Since the 2-
sphere is simply connected, the fundamental group πί(ΊRΨ2) = Z/2. It follows that
the first homology group, which is the abelianization of the fundamental group, is
H 1(1RF2) = Z/2. From (3.3) we obtain H2(lRF2) = Z/2. The generator is represen-
ted by a nontrivial flat line bundle, the quotient of the trivial line bundle over S2 by
the nontrivial Έ/2 action covering the antipodal map. The holonomy of the flat
connection around the nontrivial loop in R P 2 is multiplication by —1.

(2) The lens space Ln,k = S2n~ιl(Zlk), where we identify S2n~x as the unit
vectors in C" and the generator of Z/k acts as multiplication by e2πi/k. Then as in (1)
we deduce H2(LnΛ) = Z/L In fact,

(Z/k, /even,

, /odd, ί < 2 n - l , (3.5)

, ί = 2 n - l ,

This example occurs in [W2, WW].
(3) Simply connected spaces can also exhibit torsion in their integral

cohomology. For the Lie group E8 we have H6(E8) = Z/2.
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(4) Set Y=Met(S1 0)/Diff(S1 0). Then π 1 (7) = π0(Diff(S10)) = Z;/992. (We gloss
over the fact that Diff(S10) does not act freely on Met(S 1 0); strictly speaking, we
should work with the equivariant quotient.) It follows that H2(Y) = Z/992. The
determinants considered in [Wl] are sections of a line bundle j£?-> Y, which is
determined topologically by c1(j£?)eZ/992. Wit ten's global anomaly detects this
topological invariant of the determinant line bundle. In general, however, the
global anomaly is not determined by the topology of if, but rather depends on the
connection V{Se\ as explained in Sect. 1. Only for torsion loops is the global
anomaly purely topological.

Fix an integral cohomology class c e Hι(M). According to (3.2) there is a well-
defined free part c f r e e e FreeH ι(M)~ Horn (Hι(M),Z), which can be detected by
evaluating on /-dimensional cycles. In terms of differential forms, c is represented
by a closed /-form γ e Ω\M), and if F: β->M is a map of a closed /-manifold (or
differentiable cycle) Q into M, then Q carries a homology class [ β ] e fΓz(M), and

< [ β ] U > = j F * ( y ) . (3.6)
Q

The angle brackets denote the pairing Hι(M)®H\M)^Z. So (3.6) describes an
analytic method of detecting Free H\M), as is well-known to physicists.

The torsion is more difficult to detect. Note from (3.2) that the torsion part of c
is well-defined only when c f r e e = 0. The key to detecting the integral information in
c beyond the rational information is to start with torsion information in
homology. Thus fix p e ΎorH^ γ(M). We will use p to denote both this homology
class and a cycle representing the homology class. Since p is a torsion class, k p = 0
in ίf,_ !(M) for some positive integer k. Choose an /-chain q e Q(M) with dq = k p

(as chains). Thus d ( - q I =p is an integral chain, so vanishes (modi). Let - q
_ k_
1 1

denote this chain with coefficients reduced (modi); then - q is closed. Hence - q
•— rC Γ C

represents an element oϊH^M Z/k). Note Z/k C Q/Z C R/Z; the cyclic group TLjk

is <-, -, ...,—j—\. We often write H^M ^/Z) or H^M ΈL/Z) even though -q

lives in the more precise group HX(M\ Z/k). Finally, we can evaluate the integral
1 J

class c on - q to obtain
k i —

1 q,cJeZ/k. (3.7)

This is the basic torsion invariant in cohomology. Notice that in general it depends
on q (not just on p). However, if c is a torsion class then we have the following

Proposition 3.8. Suppose thatcΐree = 0. Then c is a torsion class, which by (3.4) can be
identified with an element cior e Horn (Tor H^^M); Q/Z). Furthermore,

<p,O (3.8)

under this identification. In particular, this Z/k invariant depends only on p, not on q.
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Dennis Sullivan uses these invariants to study general properties of manifolds.4

His point of view is that an integral cohomology class can be specified by its Έ
periods (3.6) and its Q/Z periods (3.7). (This is [MS, Sect. 2].) Our present interest is
not in these topological discussions, but rather in analytic expressions for these
invariants when c is a characteristic class of a vector bundle.

Consider first a line bundle L-^M. Endow L with a Hermitian structure and

unitary connection, and denote the curvature 2-form by ΩiL). Set γ = —- ΩiL); then
2π

y is a closed form representing the real cohomology class c^L^e H2(M; R). Now
suppose / : P~^M is a loop (P = S1) which represents a torsion element in H^M).
Then we can find a 2-manifold Q whose boundary dQ consists of k disjoint copies
of P, and a map F: Q-^M which restricts on each boundary component (dQ)i to
the map f.P-^M (see Fig. 3). Consider the expression

^- lnhol(P)+ \ J F*(γ) (modi).
2π k Q

(3.9)

(The signs are explained by the fact that the log holonomy is minus the integral of
the connection form around the loop.) By Stokes' theorem k times this expression
vanishes. Therefore, it is a topological invariant (taking values in Έ/k), and it
should come as no surprise that

Γ~
whereProposition 3.10. The analytic expression in (3.9) is (-q,cί(L)/

Γ~ * _
- q e H2(M; Έ/k) is the fundamental class carried by the quotient space Q obtained
K

from Q by identifying the boundary components with P.

The identification space Q is called a Z/k-manifold by Sullivan, and plays an
important role here in deriving analytic expressions for Έ/k invariants. For flat
connections (3.8) and (3.10) combine to show that the holonomy around torsion
loops gives the torsion first Chern class.

(3Q)1

Fig. 3 (3d)

We generalize to a Hermitian vector bundle E-^M using Chern-Weil Theory.
To each unitary connection was assign differential forms yt e Ω2i(M) constructed
out of the curvature Ω{E):

(3.11)d e t ( l + —

4 1 thank Gunnar Carlsson, Mike Freedman, and Ron Stern for directing me to Sullivan's work
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The form γt is a de Rham representative for the real Chern class ci(E)ΆeH2i(M\ R).
To detect the torsion information in the integral Chern class ct(E) e H2i(M; Έ) we
introduce Chern-Simons invariants [CS]. These are differential forms α2i-i which
live on the total space of the principal bundle π: P-+M associated to E. They are
given by explicit formulas in terms of the connection, and have the following
properties.

Proposition 3.12 [CS]. (a) d<x2i-.1 = π*γ2i.
(b) The Chern-Simons form α2i-i determines a map

on (2i — ί)-cycles Z2i- ι(M). It is given by lifting the cycle to 0>/U(i — ί), integrating
α2t _i over the lifted cycle, and reducing (modi).

(c) // peZ2i-ι(M) is the boundary of a 2i-chaίn q, then

&2i-t(P)= i Vn (modi). (3.13)
q

Of course, (c) follows from (a) and (b) using Stokes' theorem. We often use
manifold representatives P and Q instead of chains, and then we write (3.13) as

1*21-1=1 ?2 i (modi). (3.14)
P Q

The left-hand side is shorthand notation for the map in [3.12(b)].

Now suppose that f:P->M is a map of a closed (2i — l)-manifold P to M
representing a torsion element in JFί2ί_i(M). Suppose also that F: Q-^M extends/
as in Fig. 3; the boundary dQ consists of k disjoint components each diffeomorphic
to P, and F restricts on each component to /. Then the identification space (Z/fc-

manifold) Q carries a fundamental class -qeH2ί(M;Z/k) as above.

Proposition 3.15. ί-q.clE)) = 7 J γ2i- f d2i^x (modi).
\k I kQ p

This should be regarded as a TLjk version of the Chern-Weil Theorem. That the
right-hand side of (3.15) is a topological invariant is clear; by (3.14) it is fe-torsion.
The identification of this invariant with the left-hand side of (3.15) proceeds by
passing to the universal bundle and connection. The special case (3.10) follows

since lnhol(P) = 2πi f ά1(modl).
p

Examples. (1) For the nontrivial flat bundle over R P 2 , the holonomy around the
nontrivial loop is —1, so

- ? - l n h o l ( P ) = ^ - ( i π ) = ^ (modi).
2π 2π 2

This reflects the fact that the Chern class cγ e H2(ΊRF2 Z/2) = Z/2 is the generator.
The flat line bundle over the lens space is similar.

(2) For the determinant line bundle if-^ 7 of a family of Dirac operators, (3.10)
provides the link between the torsion in cx(if) and the global anomaly [Fl] .
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Proposition 3.15 extends to principal bundles with compact structure group
and more general characteristic classes.

This entire discussion has an analogue in the index theory for Dirac operators.
Roughly speaking, the new point is the presence of denominators. For example, on
a closed spin 4-manifold Q there is a Dirac operator D whose index is given by the
Atiyah-Singer Index Theorem [AS3]:

^ y (3.16)

Hence there is a restriction on the Pontrjagin class of a spin 4-manifold: its free
part is divisible by 24. More generally, fix a complex vector bundle E->M, M an
arbitrary manifold, and consider a map F: g-»M of a closed, even dimensional
spin manifold Q into M. Then the Dirac operator on Q couples to the pullback
bundle F*(E)9 and the index theorem asserts

indexZ)f,(£) = <[β], J(β)ch(F*(£))>. (3.17)

For simplicity we have omitted the intrinsic twisting bundle VQ of (1.9(4)). It can, of
course, be absorbed into E. If differential geometric data - a metric on g, metric
and unitary connection on E - are specified, then there is a local formula [ABP]

indexiW) = f A(Ω{Q)) ch(Ω(F*(£))). (3.18)
Q

The analogue of (3.6) is the index theorem, which equates a K-theory invariant
with the expressions in (3.18). Note that the characteristic classes of the "probing
manifold" Q enter in the K-theory invariant (3.17), whereas the corresponding
cohomology invariant (3.6) only involves the fundamental class of Q.

K-theory contains torsion information, just as cohomology does, and there are
torsion invariants in K-theory analogous to (3.7). We will not pursue this here, but
simply introduce the analytic invariants involved. We state a proposition relating
them to Chern-Simons invariants, which is all we need in this paper. These
invariants appear in the next section when we discuss global anomalies for the
heterotic string.

As above, let £->M be a Hermitian vector bundle with connection. Suppose P
is a (2i — l)-dimensional spin manifold, and Q a 2z-dimensional spin manifold with
dQ having k disjoint components, each diffeomorphic to P. Choose a metric on Q
which is a product near dQ and agrees on each boundary component {dQ)t with a
fixed metric on P. Finally, suppose F: Q->M is a map restricting on each {dQ)ι to a
fixed map f:P-*M. On P we have the self-adjoint Dirac operator Af*{E) coupled to
/*(£). As in Sect. 1 it has an associated spectral invariant ξ(Af*{E)) in 1R/Z.
Consider

- J Ά(Ω«»)ch(Ω^E»)-ξ(AΓ{E)) (modi). (3.19)
K Q

We claim that this expression is fc-torsion. For multiplying by k the second term
becomes the total ξ-invariant of dQ, and now the index theorem for manifolds with
boundary [APS] expresses the difference as the index of an elliptic boundary value
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problem on Q. This index is an integer, and so vanishes (mod 1). Therefore, (3.19) is
a topological invariant, independent of the differential-geometric data.

The integrand in (3.19) is the Chern-Weil differential form for a combination of
Pontrjagin classes of Q and Chern classes of E, but with denominators. In other
words, for some positive integer JV,

is the Chern-Weil form for (the image in real cohomology of) an integral
characteristic class c. For example, if Q is a spin 4-manifold and we consider the
ordinary Dirac operator, then N = 24 and c = px(Q) is the integral first Pontrjagin
class. Let α2ι -i be the Chern-Simons form on M associated to the characteristic
class c.

Proposition 3.20. The difference

Ί&n-i (modi) (3.21)

is a spin bordίsm invariant depending only on the (stable) class of /*£->P in
@2i-1(% x BU). In particular, if P bounds a spin manifold over which f*E extends,
then (3.21) vanishes.

The stable class of f*E->P is an element of K(P), which determines a
homotopy class of maps P-^ΈxBU, and therefore an element
if^E'jeΩf^^ZxBU). Notice that the manifold M is irrelevant; Proposition
3.20 can be stated purely in terms of P. This relationship between ^-invariants and
Chern-Simons invariants is proved in [APSII, Sect. 4]. [It follows easily from
(3.13) and the index theorem for manifolds with boundary.] As remarked in that
paper, the ^-invariant is more delicate than the corresponding Chern-Simons
invariant.

A simple example shows that (3.21) does not vanish identically. We take P to be
the circle and omit the extrinsic bundle E. The circle carries two spin structures.
Denote the trivial one by Slrivial and the nontrivial one by S*. The disk D2 has a
trivial spin structure, and one can check that δ(D2) = S*. In fact, the spin bordism

class of Strivia! generates Ωψm=Z/2. Now the Dirac operator on S1 is —, and we
dθ

easily compute

ξ(Sl) = O (modi).

(In both cases the ^-invariants vanishes, but only for Slτiyial does the Dirac
operator have a kernel.) On the other hand, A has no component of degree two, so
that N=l and c = 0. Hence α± = 0 also. For Slήyiab then, the difference (3.21) equals
1/2. Therefore, (3.21) detects the nontrivial element in Ωfin = Z/2.

An immediate consequence of (3.20) is the relationship between the K-theory
invariant (3.19) and the cohomology invariant (3.15).
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Corollary 3.22. The difference

" {^ί 72Γ- ί «2i-i} (modi)

is a spin bordism invariant depending on [/*£] e Ωf^^Έ x BU).

Again, because of the presence of denominators, the K-theory invariant is more
delicate than the corresponding cohomology invariant.

4. The Heterotic String

In this section we consider anomalies in the E8 x Es heterotic string for a general
curved background spacetime. The local anomaly cancellation was first dis-
covered by Green and Schwartz [GS] in the low energy 10 dimensional field
theory limit. Of course, this sparked the current excitement in String Theory. In the
string theory setting the computation of the local anomaly is somewhat simpler.
Global anomalies in the heterotic string have already been treated by Witten in
[W2]. One purpose here is to illustrate how the torsion invariants of Sect. 3 enter
into global anomaly considerations. We use these invariants to generalize Witten's
arguments and thereby give sufficient conditions for global anomaly cancellation.
Unfortunately, some variations on the algebraic topology presented in Sect. 3 are
required. Again we choose not to burden the exposition with all of the proofs, but
leave them instead for the enterprising reader.

Rather than start from the beginning - an action on the space of all metrics - we
simply set out the combination of determinants which result from the fermionic
integration in the heterotic string. Indeed, we immediately pass to the space of
conformal structures Conf(Γ). As spacetime M we take an arbitrary 5 dimensional
complex Hermitian manifold, which is usually the product of (C2 with a so-called
Calabi-Yau manifold, that is, a 3 dimensional compact manifold with vanishing
first Chern class. Let Vt-+M, i = 1, 2 be complex rank 8 Hermitian bundles over M
and V(Vi) unitary connections.5 Finally, denote by SρinStr(Σ) the set of 22g spin
structures on the Riemann surface Σ of genus g^2. The family of Riemann
surfaces relevant to the heterotic string is

Z = Conf(i ) x Map(Σ,M) x (Spin Str(£))3 x Σ/Diϊϊo{Σ)

iΣ (4.1)
Y=Conϊ(Σ) x Map(£, M) x (Spin Stτ(Σ))3/ΌiS0(Σ).

The connected component Diffo(I) of the diffeomorphism group acts trivially on
the spin structures. As in Sect. 2 we use the uniformization theorem to identify
Conf(Z') with Met _ ̂ Σ). Then the vertical tangent bundle in (4.1) has a Riemannian
structure. The complex vertical tangent bundle is a complex line bundle L-+Z with
Hermitian metric. Note that (4.1) is not a holomorphic fibration, since we do not
restrict to holomorphic maps Σ-*M.

5 This differs slightly from [W, (18)] since we use complex operators - see [SW, (1.1)] for an
explanation
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We have only factored out the identity component of Diff(Σ), and so must
account for the action of the mapping class group π0Diff(Γ) later. The
configuration space Y splits into components corresponding to different triples of
spin structures and different homotopy classes of maps Σ-+M. If we treat all
genera simultaneously, then the genus is a further discrete invariant distinguishing
components of Y. Recall that when the anomaly vanishes, which will be true for the
heterotic string, then the determinant of the Dirac operator is only determined up
to a phase on each component of Y

The natural evaluation map Map(Σ, M) xΣ-+M factors through the action of
the diffeomorphism group to give a diagram

-> Vt,TM

ϊ I
Z ^ M (4.2)

[compare (1.8)]. The pulled back bundles over Z also have Hermitian connections.
The final piece of physical data is a 3-form H e Ω3(M). This 3-form is supposed

to satisfy
dH = ch2 (Ω(M)) - ch2 (β<Fl)) - ch2 (Ω(F2)). (4.3)

The 4-form ch2(£2) = — Ί ΎrΩ2 is the second component of the Chern character
oπ

form. In the physics literature there is also a potential field B (whose field strength
is if), but it will not enter into anomaly considerations. Integrating over the fibers of
(4.1) we obtain a 1-form

ω = {2πΐ)π*e*H EΩ\Y). (4.4)

The physical connection on the determinant line bundle J£ is the canonical
connection V{Sf) minus this 1-form.

With all of the data before us, we can display the combination of fermionic
determinants in the heterotic string:

(detDβfΓM)(detD/ϊfκ1)"1(detDyfFa)-1(detZ)βiI3-1. (4.5)

Here α, /?, γ is a triple of spin structures which depends on the component of Y The
chiral Dirac operator D is coupled to an extrinsic bundle in the first three terms,
and to the complex tangent bundle of Σ in the last term. In general this
combination of Dirac operators does not have zero index, so the determinant line
bundle J?->Y has no canonical section. This will not concern us as we are only
interested in calculating the curvature and holonomy of the physical connection

Our first result states that the local anomaly vanishes.

Proposition 4.6. The curvature of V{se) — ω vanishes.

Proof. This curvature is Ω^ — dω, where Ω{se) is given by (1.19). Let

4
2π
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denote the curvature of the complex tangent bundle L; then

For convenience we use the formal notation E = TM — Vί — V2. The contribution
of the first three determinants in (4.5) to Ω{^]/2πi is

(4.7)

The '4' denotes the component of the differential form of degree 4. The
contribution from the last determinant in (4.5) is

Combining (4.7) and (4.8), we obtain

cy{ * 1 1 1 —i— f u n K v i

- 2 - = ί 24 * 2 + ch2(Ω<£>). (4.9)

But rank£ = 5 —8 —8 = — I I , and so the first term vanishes. Now by (4.3)

~ = f rfiί=f ch2(Ω<£)),
2πi Σ Σ

which, together with (4.9), shows that the curvature of the physical connection on
5£ vanishes.

We next consider the global anomaly. Fix spin structures α, /?, γ and restrict to
the corresponding components of Y Then our family is equivariant with respect to
the subgroup GΛtβtyC π 0 Diff (Σ) of the mapping class group fixing the triple of spin
structures. Since a Riemann surface can have nontrivial automorphisms, this
group does not act freely in general. Therefore, we should pass to equivariant
arguments. If the reader is happy with such ideas, then he should use the
equivariant quotient Ϋ=(YxEGatβty)/Gatβty; else, he can view Yas Y/Gatβ>r The
fundamental group πγ Ϋ is a twisted product of ̂ M a p ^ M ) and G α X r Suppose
that S1-* Y is a nontrivial loop. Let P-+S1 be the induced fibering of Riemann
surfaces. Witten's holonomy formula (1.21) demands that we evaluate a combi-
nation of <!;-invariants, involving 3 different spin structures. The following two
lemmas reduce us to the case oc = β = γ.

Lemma 4.10. Let P be a 3-manifold and Vt-^P, i = l,2, complex vector bundles.
Denote by lVJeK(P) the stable class of Vt. Then [Fi] = [y 2 ] if and only if
rankV x= rankV2 and c1(V1) = c1(V2).

In other words, stable complex vector bundles over 3-manifolds are classified
by rank and first Chern class. The proof follows easily from the following three
facts: stable bundles are classified by ΊL x BU; the space BU splits topologically as
K(Z,2)xBSU; the homotopy groups ntBSU vanish for ifg3.
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Corollary 4.11. Suppose V-+P has even rank and c 1 (7) = 0(mod2). Then there
exists a bundle W-*P with [ F ] = 2[W] in K(P).

Lemma 4.12. Let Pbea compact 3-manifold with two spin structures ά and β. Fix a
Hermίtian vector bundle V-+P with unitary connection, and denote by ξ& the ξ-
invariant for the Dirac operator on P coupled to V. Then

if the rank of V is divisible by 4 and c1(K) = 0(mod2).

The proof of this lemma is deferred to an appendix.6 Lemma 4.12 applies to
our 3-manifold P by combining the vertical spin structures α, β (or α, γ) with the
trivial spin structure on S 1 to construct spin structures on P. We use the lemma
on the second and third determinants in (4.5). The corresponding ^-invariants
arise in the holonomy calculation below. By the lemma we can replace the spin
structures β and γ with α. Henceforth, we will restrict our attention to the case
where all three spin structures are equal.

Vector bundles E whose first Chern class vanishes modulo 2 are associated to
the nontrivial double covering group U(ή)2 of U(n). These are the complex vector
bundles which admit a spin structure. Recall that U(n) bundles have an integral
four dimensional characteristic class pγ = (c x ) 2 — 2c2. Of course, U(n)2 bundles can
also be regarded as U(rc) bundles, and so carry this characteristic class.

Lemma 4.14. There is a unique integral characteristic class λ of U(n)2 bundles with
2λ = px. For bundles with c1=0the class λ = — c 2. The image of λ in realcohomology
is the second Chern character class ch2, which is represented via Chern-Weil Theory

by the 4-form -r—- TrΩ2.
oft

A given U(n) bundle £-»M has a lift E to a U(n)2 bundle if and only if
cx(E) = (mod2). There may be several lifts; differences of lifts are parametrized by
Hγ(M; Z/2). However, the characteristic class λ(E) is independent of the lift. All of
these arguments extend to stable complex vector bundles by replacing U(n)2 with
U(oo)2.

The exact conditions for the cancellation of the global anomaly are somewhat
difficult to state, as we explain below. Therefore, we state a set of sufficient
conditions, which are topological restrictions on the spacetime M and extrinsic
bundles V v

Theorem 4.15. The following are sufficient conditions for the cancellation of global

anomalies: (i) c^Λ^^c^V^c^^O (mod2); (ii) λ(E) = 0.

However, we may have to adjust H (by a closed 3-form) to cancel all global
anomalies.1

Remarks. (1) The first condition states that the spacetime M and the extrinsic
bundles Vt admit spinors. This seems to be a reasonable physical hypothesis. We

6 The author thanks Vafa for focusing on an erroneous factor of 2 in the original version. The
appendix is written jointly with John Morgan
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use it to avoid X-Theory. However, a more careful study may in fact show that (i) is
a necessary condition for anomaly cancellation. A consequence of (i) is that
cϊ(E) = 0 (mod2), so that λ(E) is well-defined. We remind the reader that the
stronger hypothesis in (i) - that cx (mod 2) vanish for each bundle separately - is
used in Lemma 4.12.

(2) The condition on integral characteristic classes is too strong for anomaly
cancellation. The torsion information in λ is detected by mappings of 3-manifolds
into M, as discussed in Sect. 3. (Because we are in dimension 3 we can use manifolds
instead of chains.) However, we are restricted to a spherical class of 3-manifolds -
those which fiber over the circle. In general, then, the condition we state above is
sufficient, but not necessary (cf. the discussion in [W2, p. 89]). There is another
physical constraint beyond anomaly cancellation which may render the condition
on integral Pontrjagin classes necessary: unitarity of the theory.8 This requires a
certain "factorization" condition on the Dirac determinants, which has been
discussed in other contexts [V, SW]. In particular, the factorization condition
places strong restrictions on the phases assigned to the Dirac determinants.

(3) The conditions in Vafa [V] for modular invariance are exactly (i) and (ii),
suitably interpreted in the equivariant context.

Proof. Fix a loop S1-*!^ From (4.2) we obtain a diagram

E -> E

ϊ ϊ
P -*» M (4.16)

i*
S1

The 3-manifold P carries a spin structure α and we can form the self-adjoint Dirac
operator corresponding to the combination of operators indicated in (4.5). By
Theorem 1.21 the holonomy of the physical connection V{Se) — ω is

exp-2πi lYlim ζλ - f e*H~]. (4.17)

LV° / p J
[Recall the definition of ω in (4.4).] Note that each operator in (4.5) has even index
by our hypothesis (i). We first show that ξε is independent of ε.

Lemma 4.18. The ξ-invariant for our particular combination of Dirac operators is
independent of the metric on S1.

Proof We have already described the general formula for the variation of the ξ-
invariant in (1.24). The relevant diagram for this case is

E

ϊ
MetiS1) xP

I?
MetίS1)

7 In physical terms, this is accomplished by adding a Wess-Zumino term [W2, p. 90]
8 This was suggested to me by Witten. He also mentioned that Killingback has a different
approach to the global anomaly question which sheds light on this issue



Determinants, Torsion, and Strings 509

and the variation of ξ is a 1-form on M e t ^ 1 ) given by (4.9) as

dξ= $ ch2(Ω(E)) (modi) . (4.19)
pp

But Ω{E) is independent of the metric on the circle, and so lives as a form on P.
Hence ch2(Ω(E)) is a 4-form on the 3-manifold P, which therefore vanishes.

Of course, we could replace MetΐS1) by Met(P) in the preceding. The ξ-
invariant does depend on the connection φ*V{E) induced by φeMsip(Σ,M), the
variation over a one-parameter family being given by (4.19). Therefore, the
combination

f e*H-ξ (modi) (4.20)
N

which appears in (4.15) is independent of Met(I) and Maρ(Z,M), hence is a
topological invariant.

Although this invariant (4.20) is defined for general vector bundles E, we will
use hypothesis (i) to simplify the discussion, as (4.20) then has a cohomological
interpretation. As remarked in (1), this hypothesis implies cί(E) = 0 (mod2) so that
E carries a four dimensional characteristic class λ(E) characterized by (4.14). The
point is that for arbitrary complex vector bundles we would need to multiply by 2
before obtaining a cohomology invariant.

Lemma 4.21. Let ά: H3(M)->IR/Z be the Chern-Simons invariant associated to the
class λ(E) and connection V{E). Then

ί e*H - ξ = f (e*H - S) (mod 1). (4.22)
p P

Proof. By Proposition 3.20 it suffices to show that e*E^>P and L-+P vanish in
Ωfin(ZxBU). (We should work with BU2 instead of BU in the bordism
calculation, but these spaces have the same homotopy type.) Recall that L is the
holomorphic tangent bundle to the Riemann surface and enters in the last factor of
(4.5). First, it is well-known that ί2 | p i n = 0 so that P = dQ for some spin 4-manifold
Q. Now the Atiyah-Hirzebruch spectral sequence yields an immediate upper
bound on Ωψ\Έ x BU) as ®i+ = 3 ^ ( Z x BU; Ωfn) = Z/2; the possible generator
is the Hopf bundle over S2 x S t r i v i a l. Much more sophisticated techniques can be
used to show that Ωfin(Έ xBU) vanishes,9 which immediately gives the lemma.
Rather than rely on this result, we give a direct argument that [>*£] and [L] are
divisible by 2 in Ω s

3

p i n(ZxBU). By our simple upper bound, it follows that these
elements vanish.

It suffices to prove that [>*£] and [L] are divisible by 2 in K(P), for which the
exact conditions are stated in (4.11). Recall that E=TM— Vί — V2. Let V denote
any of e*TM, e*Vl9 e*V2, and ίP the trivial bundle of rank one over P. Then F © 1 P

has even rank and its first Chern class vanishes (mod 2) by our simplifying
hypothesis (i). Therefore, F ® 1 P extends to a bundle U^Q.10 Now ίQ clearly

9 I thank Lionel Schwartz for explaining this to me
1 0 To see that all four bundles extend over the same 4-manifold Q, we apply our arguments to the
class of e*TM x e*Vx x e*V2 x L in Ωfin((Έ x BU)4)
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extends 1P, so [£/] — [1Q] extends [V® 1P] — [1P] in K- theory. Lemma 4.10 implies
[ F 0 1 P ] — [1P] = [F] in K(P), since the bundles on each side of the equality have
the same rank and first Chern class. So [F] = 0 in Ωfin(ZxBU) as desired. A
similar argument applies to L. The fact that we divide only by diffeomorphisms
which fix the spin structure on Σ implies that the vertical tangent bundle to our
family carriers a spin structure. Therefore, the first Chern class of L is divisible by 2.
The argument proceeds as before.

Now it is clear that the right-hand side of (4.22) depends only on the class of P in
H3(M), and so defines a linear functional λ(jE)R/z: #3(M)->IR/Z. By the universal
coefficient theorem λ{E)w is an element of H3(M; R/Z). Furthermore, there is an
exact sequence

H3(M;ΈL) -U # 3(M;R/Z) -Λ H\M;Z) —> # 4 (M;R) .

Our work in Sect. 3 implies δ(λ(E)πlπ) = λ(E)eH\M;Z). Now our second
hypothesis on the topology of £ is λ(E) = 0. Over the reals this is already contained
in (4.3); the crucial information here is torsion. It follows that for some
v e H3(M; R) we have j(v) = λ(E)πlz. Represent v by a closed 3-form v and replace
H by H — v. Since dv = 0, Eq. (4.3) is still satisfied. Also, for this new H we have
λ(E)w = 0. So (4.22) vanishes for all P, in particular for those arising from loops in
Y [see (4.16)], which shows that the holonomy (4.17) is trivial. Therefore, the
heterotic string has no global anomalies if (i) and (ii) are satisfied.

We emphasize that the relationship of /l(£)R/z to our torsion invariants is
Proposition 3.8. The torsion in λ{E) is simply the restriction of A(E)R/Z: H3(M)
->IR/Z to the torsion subgroup Tor if 3(M) [cf. (3.4)].

Acknowledgements. The author heartily thanks Gunnar Carlsson, Greg Moore, and Cumrun
Vafa for discussions related to this paper. He is also grateful for the hospitality of the mathematics
departments at University of California, San Diego and Universite de Paris-Sud, Orsay while
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In this appendix we present a proof of Lemma 4.12.

Lemma 4.12. Let Pbea compact 3-manifold with two spin structures ά and β. Fix a
Hermitian vector bundle V^>P with unitary connection, and denote by £5 the
ξ-invariant for the Dirac operator on P coupled to V. Then

&-£, = (> (modi)

if the rank of V is divisible by 4 and c1(V) = 0 (mod 2).
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Proof. The index theorem for flat bundles [APSIII] gives a topological formula
for this difference of ^-invariants. The two spin structures differ by a flat bundle,
which is an element [μ-ft] e K ^ P Q/Z). Denote the K-Theory class of V by
[ F ] G K ( P ) . Then the spin structure β gives rise to a direct image map
Pi: JKΓ^P Q/Z^Q/Z, and the index theorem states

β lάt-β]) (modi).

The lemma will follow from the stronger assertion that

-jS] = 0 in K ^ P Q/Z). (A.I)

We first recall the definition of [μ-ft] eK~\P;(S^/Z} from [APSII, Sect. 5].
The difference of spin structures determines a homomorphism πγ{P)-*Έβ, and
therefore a homotopy class of maps / i P - ^ Z ^ - R P 0 0 . Define X*(RP°°) as
the inverse limit lim K*(JRJPN). The reduced groups K*(RJP°°)(g)Q vanish, since

< N

the rational cohomology of IRJP00 is trivial. From the K-Theory exact sequence
associated to the coefficient sequence Z-»Q->Q/Z we deduce X0(RP0 0)
^K'1(KPCD; Q/Z). Let [ζ] be the class of the nontrivial complex line bundle
over IRJP00. Then, by the above isomorphism, [£] — 1 determines an element of
K ~1 (RP 0 0 Q/Z), and [α - ft] e K ' x (P Q/Z) is the pullback of this element via /.

Our first observation is that / can be realized by a map into R P 4 . This
follows from simple obstruction theory - any map from an rc-complex to a space
Y is homotopic to a map into the n-skeleton of Y11 Now K°(]RJP4) = Z/4 and
K-1QRP*) = 0. (See [At, p. 107], for example.) Hence K'^WP4; Q/Z) = Z/4,
and so 4[ά—β~] = 0 in K~i(P; Q/Z). By the same reasoning, over the 2-skeleton
P ( 2 ) the difference of spin structures is realized by a map into R P 2 . Since
X°(RP2) = Z/2 and K'^(KP2) = 09 we have K ' ^ R P 2 ; Q/Z) = Z/2. Therefore,
the restriction of 2[ά-/?] to P ( 2 ) is zero.

Complex vector bundles on a 3-dimensional space are classified by rank and
first Chern class (cf. Lemma 4.10 and Corollary 4.11). Hence [7] = 2[W] in K(P)
for some bundle W. Note that W has even rank. By the preceding paragraph we
see that 2 [ ά - ft] vanishes on P ( 2 ), so can be lifted to a e K~ X(P, P ( 2 ); Q/Z). The
following lemma computes the product [_W~\ a.

Lemma A.2. Let X be any finite n-dimensional CW complex, and X0CX the
complement of an open n-cell. Let \_W] be an element of K(X), and let G be an
abelian group. Then the multiplication map

,X0; G)^K*(X,X0; G)

is multiplication by the rank of W.

Proof First consider the case G = Έ. By excision and Bott periodicity,

for * = n(mod2),

1 1 It follows that we can actually push / into IRJP3. However, for our present purposes RIP4

suffices and is simpler to use (since K - 1 ( R P 4 ) =0)
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Furthermore, the isomorphism K°(Sn)^Έ is given by the Chern character chπ/2.
The desired result now follows from the product formula for the Chern character
and from the fact that chf vanishes on K*(X,X0) for ί<n/2.

To treat arbitrary G we recall that associated to G is a Moore space MG with
H^MQ) = G and all other reduced homology groups zero. The group K*(Γ, A; G)
is defined to be K*(YΛMG, AΛMG). Since K*(X,X0) is free, the Kϋnneth
formula implies K*(X,X0; G) = K*(X,X0)®K*(MG). This decomposition is
natural with respect to multiplication by [W~\eK*(X), and the lemma follows
easily.

Let φ denote the natural map φ K ' ^ P ^ Q / Z H K ^ P Q/Z). Then
φ(α) = 2[α- iβ] by definition, and φ{[W] α) = [W] 2[α-£) = [F] [α-jff]. But
the lemma implies [W] a = rkW a, from which φ([PF] a) — φ(rk W a)
= rkF [ά-/?]. This vanishes as the rank of V is divisible by 4.
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