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Abstract. A rigorous analysis is given of the dynamics of the renormalization
map associated to a discrete Schrodinger operator H on 12(ΊL\ defined by
Hψ(n) = ψ(n + /L) + ιp(n — l) + Vf(nσ)ψ(ri), where V is a real parameter, / is a

certain discontinuous period-1 function, and σ = (— 1 + J/5)/2 is the golden
mean. The renormalization map for if is a diffeomorphism, T9 of R3, pre-
serving a cubic surface Sv. For 7^8 we prove that the non-wandering
set of the restriction of T to Sv is a hyperbolic set, on which T is conjugate to
a subshift on six symbols. It follows from results in dynamical systems
theory that the optimally approximating periodic operators to H have
spectra which obey a global scaling law. We also define a set which we call the
pseudospectrum" of the operator H. We prove it to be a Cantor set of mea-
sure zero, and obtain bounds on its Hausdorff dimension. It is an open
question whether the pseudospectrum coincides with the spectrum of H.

Introduction

There has been much interest in Schrodinger operators with a quasiperiodic
potential (see [18, 19, 26-28, 33] and references therein). These operators have
numerous physical applications. For example, they describe the electron spectrum
of periodic crystals in a magnetic field [15], and the electron and phonon spectrum
of the recently discovered quasi-crystals [3]. They also arise in the linear stability
of motions in classical mechanics [1]. Operators with quasi periodic potential also
pose very interesting questions for the functional analyst [33]. They are in some
sense intermediate between operators with periodic potential and operators with
random potential. Periodic potentials are well known to lead to absolutely
continuous "band spectra" and extended eigenstates [31], whereas random
potentials lead to pure point spectra and localized eigenstates, in one dimension
[20]. In the quasiperiodic case the general belief is that the spectra are Cantor sets.
At present, the only theorems in this direction are for a generic set of potentials,
which are very well approximated by periodic potentials [2]. In this case, the
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underlying irrational number generating the quasiperiodicity is a Liouville
number. Such numbers form a set of measure zero, thus the result is not as general
as it might seem.

The theory of operators with a quasiperiodic potential has a fundamental
connection with the small-divisor problems of classical mechanics. Indeed it can be
shown using ideas of KAM theory that for sufficiently weak analytic quasiperiodic
potentials, most of the spectrum is absolutely continuous [12]. On the other hand,
it can also be shown that in certain situations, if the quasiperiodic potential is
strong enough, the spectrum has no absolutely continuous component [4,14].
Thus in a one-parameter family of quasiperiodic potentials, one expects a so-called
metal-insulator transition at a certain critical strength of the potential. At the
critical value, numerical observations reveal that the spectra of the periodic
operators which optimally approximate the quasiperiodic operator have beautiful
scaling properties [15]. In the case where the quasiperiodicity is generated by the
golden mean, this behavior has to some extent been explained by considering a
fixed point of a non-linear renormalization map on a function space, though the
theory is not yet rigorous [28].

In this paper, following [10,17-19,21,26,27], we study a discrete Schrόdinger
operator with specially chosen discontinuous quasiperiodic potential, dependent
on a real parameter V. The number generating the quasiperiodicity is taken to be
the golden mean, which has typical diophantine properties. Physically, the
operator describes the propagation of phonons in a one-dimensional quasi-crystal
[21]. The behavior of the operator is somewhat pathological. Numerical results
reveal that its states are neither extended nor localized in the conventional sense
[18,19,27], and in fact it is known rigorously not to have localized states [10]. It is
thus a simple example of a one-parameter family of operators which always lies at
criticality. The advantage of studying this operator is that its renormalization map
reduces to a non-linear map on a two dimensional space. This fact makes it
relatively easy to numerically establish connections between scaling properties of
the spectrum and eigenvalues of the linearization of the map at its fixed points [18,
19, 27]. It is the purpose of this paper to make these ideas rigorous, and indicate
how they can be extended, by giving a global analysis of the dynamics of the
renormalization map.

In the first half of the paper we use geometric methods developed in [11,25,34]
to show that the renormalization map has a hyperbolic non-wandering set, on
which it is conjugate to a subshift on precisely six symbols. The result is restricted
to the range F^ 8. However, we explain why we believe the result to be true for all
V> 0. We also explain the occurrence of the six symbols by displaying them in the
dynamics of the "exactly solvable" case, when V= 0. In the second half of the paper
we use our results on the dynamics of the renormalization map to deduce
properties of the spectrum of the operator. Finite symbol sequences are used to
label the band spectra of the optimally approximating periodic operators with
period given by the Fibonacci numbers. The scaling properties of these band
spectra are naturally described in terms of the symbol sequences. In order to use
our results on the renormalization map to deduce properties of the quasiperiodic
operator itself, we define a set which we call the "pseudospectrum" of the operator.
Hopefully the pseudospectrum coincides with the spectrum, but we have not been
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able to prove this. However, we show that the pseudospectrum is a Cantor set of
measure zero. We then apply results from the ergodic theory of axiom-A
diffeomorphisms to deduce the existence of new exponents governing global
scaling properties and "ergodic" scaling properties of the periodic operators. We
also obtain bounds on the Hausdorff dimension of the pseudospectrum of the
quasiperiodic operator in terms of these exponents. Finally we obtain a
relationship between symbol sequences and rotation numbers, which have also
been used to characterize the spectra of Schrόdinger operators [9, 14, 16, 27, 33].

From the point of view of functional analysis, our results are somewhat limited.
The approach we use does not enable us to investigate the spectrum of the
quasiperiodic operator directly. However, we believe it gives a useful insight into
how Cantor set spectra can arise from the complicated dynamics of an underlying
renormalization map. From the point of view of dynamical systems, the map we
study is a simple example of a renormalization map with a non-trivial dynamical
behavior. A renormalization map can usually be guessed to have non-trivial
dynamics by an observation of the data it is designed to explain. This has lead to
other, more ambitious, attempts at global renormalization schemes [13,23].
However, we remark that from an observation of numerically obtained band
spectra, it would be difficult to infer that our renormalization map requires
precisely six symbols to describe it. Thus the renormalization map we have studied
serves as a completely solved example, exhibiting non-trivial combinatorics, that
may be relevant to the other global renormalization schemes.

In Sect. 1 we define the quasiperiodic operator to be studied, and review the
renormalization technique used to analyze it. In Sect. 2 we collect our results on
the symbolic dynamics of the renormalization map. In Sect. 3 we use these results
to provide a symbol sequence labeling for the spectra of the optimally approx-
imating periodic operators, and for the pseudospectrum of the quasiperiodic
operator, which we deduce is a Cantor set of measure zero. In Sect. 4 we obtain a
global scaling law for the spectra of the optimally approximating periodic
operators. We also introduce the concept of an ergodic scaling law, and obtain
bounds on the Hausdorff dimension of the pseudospectrum of the quasiperiodic
operator. In Sect. 5 we relate our rigorous results to numerical work of others [27],
by obtaining a relationship between symbol sequences and rotation numbers.

1. The Renormalization Technique

The discrete Schrόdinger operator acting on 12(Z) is defined by (1.1),

n)ψ(n), (1.1)

where v(n) e JR. denotes the potential at site n e TL, and ψ(n) e C denotes the wave
function at site n e TL. Let S1 denote the unit circle. The operator H is said to be
quasiperiodic if v(n) is of the form v(rc)=/(g"(#0)), where ^eS1, g is a
homeomorphism of S1 with irrational rotation number, and / is a real valued
function on S1.

Restrict attention to the special case where Θ0 = 0, g = Ra (the rigid rotation
through angle α), and / is discontinuous of the form (1.2)
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where σ = ( — 1 + j/5)/2 is the golden mean, and V ^0. The quasiperiodic operator,
Q, to be analyzed is defined by taking α = σ. The periodic operators, Pn9 defined
by taking α = FΛ_1/FΪI, the optimal approximants to σ, will play a key role in
what follows (Fn are the Fibonacci numbers: Fn+ί=Fn + Fn-l9 F1 =F0 = 1).
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Fig. 1. The bold lines represent the band spectra of Pn for n = 1,..., 5. The case V= 1.5 is shown.
The bands have been labeled using the symbol sequence scheme of Sect. 3.1. The dotted line 17
illustrates the bifurcation of Sect. 3.1

As is well known [31], the spectrum, £„, of the operator Tn is given by (1.3)

5n = {EelR||traceM(n)|ίg2}, (1.3)

where M(n) = S(Fn — 1)... 5(1)5(0) is the product of so-called transfer matrices

1 0'-[W]-
The identity (1.3) provides a simple criterion for computing Bn numerically. In this
way one obtains the sequence of band spectra illustrated in Fig. 1. It was the
remarkable self-similarity of this picture which provided the impetus for much of
our research. Unfortunately there is no known identity analogous to (1.3) in the
quasiperiodic case. However, much numerical work has been done using criteria
similar to (1.3) [18,19,27]. This motivates us to define the "pseudospectrum" of the
operator Q as follows.

Definition. We define the pseudospectrum, B^, of the operator Q by (1.4)

BQO = {£eR|[traceM(n)| is bounded as rc-»oo}. (1.4)

In this paper we give a comprehensive description of the structure of the
pseudospectrum of the operator Q. We are optimistic that the pseudospectrum of
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Q coincides with the spectrum of g, however this is not clear. Firstly, M(n) gives
some information on the wavefunction on a subset of sites only. Secondly, it is not
clear that for all E in the spectrum, the wavefunctions must be bounded. The usual
result is that for almost all E, with respect to the spectral measure class, one of the
wavefunctions is polynomially bounded.

A renormalization theory, developed in [26-29], allows us to determine the
structure of the sets Bn and B^ using methods of dynamical systems theory. This
theory shows that the matrix M(ή) is given by a matrix product of the form
BAABA..., generated by n iterations of the "renormalization map" R(A,B)

= (BA, A), with the initial conditions A=( ~ \ B = ( ~ ~ j. The

map .R, which acts on the six-dimensional space of pairs of unimodular matrices,
has been studied numerically in [27]. However, to determine properties of the
spectrum, it suffices to study a simpler map.

It was observed in [19] that the quantity xn=^ traceM(n), satisfies the "trace
identity" (1.5),

Xn + 1 — ̂ XnXn - 1 ~~ Xn - 2 (l M

E+V E—V
with initial conditions x 1 = —-—, x0 = —-—, x _! = 1. Thus the map T: R3 ->R3

defined by (1.6)
z9x9y) (1.6)

determines Bn via (1.7),

where Lv: R->R3 is the linear map defined by (1.8),

(1.8)

and nv is the projection in the x direction. It is the renormalization map T which
will be studied in Sect. 2. The map T also determines the pseudospectrum B^, of
the operator Q, by (1.9).

B00 = {EelR\π1T
n(Lv(E)) is bounded as n->oo}. (1.9)

2. Symbolic Dynamics of the Renormalization Map

In this section we introduce some concepts from symbolic dynamics, and give our
results on the renormalization map T. The results will be used in subsequent
sections to derive detailed information on the sets Bn and B^. We make use of the
following simple properties of the map T [17].

(1) T is a volume preserving diffeomorphism of R3 and T"1 =ρ~z

1 ° Toρxz,
where ρxz is the reflection in the x = z plane.

(2) T preserves the family of cubic surfaces {SF|FeR+} defined by (2.1).

i + V2}. (2.1)

The restriction of the map T to the surface Sv is denoted by Tv.
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(3) A necessary condition for abi-infinite sequence . . . ,x_ 2 ,x_ι ,Xo> ; x : ι> : x : 2? •••
generated by (1.5) to remain bounded is that it has property P: no two consecutive
terms of the sequence have modulus greater than unity.

Our objective is to prove that for F^ 8, the non-wandering set, Ωv, of Tv is a
Cantor set with a hyperbolic structure. In fact, we believe this to be true for all
F>0, as conjectured in [17], for reasons we give at the end of this section. The
technique we use is well known, and has been reviewed in [25]. For an application
to the Henon map, see [11]; for convenience we summarize the main ideas here.
Property (3) above is used to find a compact set Rv such that the orbit under Tv of
any point lying outside Rv is unbounded. It follows that Ωv is contained in the set

00

A = Π Ty(Rv). It turns out that the set Rv consists of a finite number of disjoint
n =• — oo

closed regions R l 5 ...,KN, whose images under the map Tv intersect the regions
Rί9 ...,RN in a manner similar to Smale's horseshoe construction [34]. Careful
estimates on the size and shape of the regions R l 5 . . ., RN and their images enable us
to deduce that the set A is a hyperbolic set each point of which may be uniquely
coded by a bi-infinite sequence of symbols chosen from the set (1,..., N} according
to which of the sets Rly...,RN contain its successive backward and forward
iterates. It follows that the points of Λ may be put into correspondence with a
Cantor set, and that the action of the map Tv on the set Λ is described by a
"symbolic dynamics." It is then easy to construct a dense orbit for this symbolic
dynamics, to deduce that Ωv = A, so that Ωv is a Cantor set. We now make these
ideas more precise.

Fig.2. The xz projections of R l 9 . . ., Rί0 for V=2. Note that R2 lies vertically below R1 on the
surface Sv. Also illustrated is the line LF(R), relevant to the operators Pn and Q
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The set Rv is defined by (2.2),

RV = {(x, y, z) e SF|w(x, y, z) has property P},

301

(2.2)

where w(x, y, z) = 2yz — x, x, y, z, 2xy — z. We remark on this special choice of Rv at
the end of this section. Note that w(x, y, z) is a subsequence of the bi-infinite
sequence ... x _ 2, x -1, x 0> x i > X2? generated by the recurrence relation (1.4) using
initial condition x _ 1? x0, x x = x, y, z. Thus it follows immediately from property (3)
above that if (x, y, z) £ RVί then the orbit of (x, y, z) is unbounded, so that Ωv e .RF.
The set Rv is illustrated in Fig. 2 it consists of 10 disj oint regions R 1,..., R x 0 which
are defined as follows. Let the symbols L~,s,L+,* denote the intervals
(-00,1],[ — 1,!],[!, oo), (-00,00) respectively. The sets jR1 ? ...,JR1 0 are defined
according to which of the intervals L~, 5, L+, * the coordinates of w(x, y, z) lie in,
by Table 2.1.

Table 2.1

5 = sL+ssL~ , 6 = sL~ssL+

Ί = sL+sL+s,

Fig. 3. The xz projections of the regions TίRJ,..., T(R5), T(RΊ), T(R8) for V=2. The regions
T(R6), T(R9), T(R10) lie in the region R2, and have not been shaded



302 M. Casdagli

Fig. 4. The directed graph G, defining the subshift σA on 10 symbols

The images of the regions Rl9....9R10 under the map Tv are illustrated in Fig. 3.
It may be verified by an inspection of Fig. 3 that the regions Rl9 ...,#10 satisfy
T(Ri)nRj Φ 0 whenever there is a connection i-+j in the directed graph G of Fig. 4.
This motivates us to define a 10 x 10 matrix A by Atj = 1 if there is a connection f->j
in the graph G, and Atj = 0 otherwise. The next lemma establishes some of the
above observations.

Lemma 2.1. For V>2 the regions jR1 ? ...,^ι0 are closed and disjoint, their union
forms the whole of Rv, and ̂  = 0 implies T(Ri)r^Rj = ̂ .

Proof. We first show that the union of the regions Rί9..., Λ10 forms the whole of
Rv. This amounts to establishing that Table 2.1 exhausts all the combinations of
the symbols L± and s allowed as labels of Rv. By property P, the symbols L± must
be both preceded and followed by an s if they are to label a point of Rv. Also, it can
be verified that the combinations L+ssL+ and L~ssL~ are disallowed by taking
L±

9s9s as initial conditions in the recurrence relation (1.5). Finally, the combi-
nation sss is disallowed when V>2, because a point (x9y9z)eSv with
( x 9 y 9 z ) e ( s 9 s 9 s ) cannot satisfy x2-t-y2-t-z2 — 2xyz = ί + V2. Thus Table 2.1 ex-
hausts all the possible combinations.

To show that the regions jR l 9 . . . , .R10 are disjoint, we first observe that they are
labeled by distinct sequences of the symbols L±, s. However, the intervals L+ and
L~ just overlap with the interval s. We must show that this does not cause the
regions Rί9 ...,Λ10 to overlap when V>2. It suffices to show that if the point
(x, y9 z) is contained in Rv and w(x, y9 z) has a coordinate w{ e L±, then |w f | ̂  | V— 11,
since it then follows that L±

9s could have been chosen to be the disjoint closed
intervals (— oo, — V+1], [ — 1,1], [V— 1, oo) without altering the definition of Rv.
To show that wieL± implies |w f |^|F—1|, we observe from Table 2.1 that wf is
necessarily a coordinate of a 3-vector (x, y9 z), whose other two coordinates are
represented by the symbol s. Without loss of generality, suppose wf = y. Then since
(x,y,z)eSV9 we have y = xz±(V2 + (1 -x2)(l -z2))1/2. Hence |j/|^|F-l|, as
required.
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Finally, we show that Atj = 0 implies RίnT(Rj)-0. From Table 2.1 it can be
verified that a necessary condition for Rtr^ T(Rj) to be non-empty is that there is a
connection i->j in the graph G, so that Atj = ί. Thus if Atj = 09 we must have
£tn T(Rj) = 0 as required. Π

Remark. In proving Theorem 2.1 below, we show that the regions R l 5 ..., Λ1 0 are
non-empty and that 4ί7 =l implies RjΠT(K7 )φ0.

We now introduce some definitions from symbolic dynamics [25]. Given an
"alphabet" {1, . . ., m} of m symbols, define the set Σm of two-sided symbol sequence

00

by Σm= Π {1, ..., wι} When {1, ...,m} is endowed with the discrete topology,
n= — oo

and Σm with the product topology, Σm is called a shift space, and it is
homeomorphic to a Cantor set. Define the shift σ : Σm-+Σm by σ(s)n = sn+ί, where sn

is the nth symbol is s. Let A be the 10 x 10 matrix defined above. Then define Σ(A)
by (2.3),

\ASιSι + l = l for all ieZ}, (2.3)

and define the subshift σA to be σ\Σ(A}. Now consider the map Tv acting on Rv. Our
objective is to conjugate the map σA to Tv; that is we must construct a map
x : Σ(A)-+RV such that χoσA = Tv°x.

We define the map x:Σ(A)->Rv by labeling points of Rv using symbol
sequences, as follows. For each seΣ(A), define the sets Vs+ and Hs- by

P.+ = Π FSoSl...Sn and Hu-= Π tfsos-i. .s-,,,
«e7V neN

where

and

Then the map x:Σ(A)-+Rv is defined by x(s)= Fs+n#s-. It is an immediate
consequence of this construction that if x(s) Φ 0 then TMx(s) e #Sn for all n e Z, so
that x(s) has its past and future history coded by the symbol sequence s. Thus, by
construction of the map x, we are guaranteed that Tv o x = x o σA. The main
problem is now to show that the map x is well defined [i.e. that x(s) consists of a
single point in Ry], and is continuous. In order to do this, we obtain bounds on the
sizes of the sets VSo _Sn and HSQ s_n. To state our results precisely, we introduce
some geometrical concepts [25].

Let I2 = [α, b~] x [α, i>] be a square in R2. Given μ e (0, 1), we call a curve in I2 a
μ-horizontal curve if it is the graph, gr(u), of a continuous function «:/->•/

satisfying \u(xί) — u(x2)\^μ\Xι —*2\ f°r a^ ^ι> X2 in ^ If 0Kwι) and ^(^2) are two

such curves with M1(x)<w2(x) for all x in /, then we call the set H defined by

a μ-horizontal strip, with diameter d(H) = max \u2(x) — uί(x)\. μ- vertical strips are
xe/

defined similarly. In the following we will refer to these concepts in the x,z
coordinate system. We are now in a position to state our main result.
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Theorem 2.1. For F^ 8 and s0 e {1,2}, there exists μ e (0,1) and v e (0,1) swc/i ί/iαί
^o-.sn (respectively ί/So SJ is α μ-vertical (respectively μ-horizontal) strip of
diameter ^vn, whenever si... sn satisfies As.s. + 1 = 1 /or allO^i^n — 1. Moreover if
A^sf + i —0 /or some O^ί^n—1, ί/ien ^0_Sn and HSQ Sn are empty.

The importance of Theorem 2.1 is that it allows us to apply the ideas of [25],
outlined earlier in this section, to deduce the following corollary.

Corollary 2.2. For F^8, the map x:Σ(A)-+Rv is well defined, satisfies Tvoχ
= x°σA, and is a homeomorphίsm onto Ωv. Moreover, Ωv is a hyperbolic set,
homeomorphic to a Cantor set.

Remark. It may be shown that the matrix A has 6 non-zero eigenvalues (1 + σ, σ,

— ω, — ώ, — 1, 1 where ω = ( — l + i]/3)/2), and that the symbolic dynamics for T
must therefore use at least 6 symbols [6]. Also A is irreducible (by inspection of G),
and A is mixing (there is a k such that Ak

ij>0 for all zj), since it has a unique
eigenvalue of largest modulus. These facts will be used later. An inspection of the
graph G reveals that the subshift σA is conjugate to a subshift σ'A obtained from a
graph G\ defined by identifying the symbols 7 and 8 with 5, and 9 and 10 with 6
in the graph G. Thus the map Tv is conjugate to a subshift on precisely six
symbols.

Before embarking on the proof of Theorem 2.1, we make some remarks on the
choice of the set Rv of (2.2) and the restriction to F^ 8. In fact the restriction of
Corollary 2.2 to the range F^ 8 is related to the artificial choice of the region Rv.
We chose this region so that we could apply the techniques of [25]. The particular
choice in (2.2) leads to the simplest application of these techniques. However, there
is a natural choice for Rv, which applies for all F>0, and which gives a good
insight into how the graph G arises. In fact, the dynamics of the graph G is subtly
embedded in the dynamics of the map Tv for V= 0, as we now describe.

Fig. 5. The partition of Sv for T when F=0. Note that ab~dc and ad~bc
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It was shown in [17] that when 7=0, the map Tv is conjugate to the map
S2->S2, where

is a sphere, and A is the Anosov-like map A(θ, φ) = (θ + φ, θ). Figure 5 illustrates a
Markov partition for A which glues together under ~ in a well-defined fashion,
and has the symbolic dynamics of G', where Gf is the graph with 6 symbols,
equivalent to G. When V= 0, paths in G' do not uniquely label points in S2, and
indeed Ω0 is not a Cantor set. However, as V is increased infinitesimally from 0,
there is a bifurcation. The fixed point 0 bifurcates to a period 2 cycle 0±, and the
period 3 cycle ABC bifurcates to a period 6 cycle A±B±C± [17]. It may then be
verified that a partition of regions with boundaries made up of the local stable and
unstable manifolds of 0±

9A
±

9B
±

9C
± has the same symbolic dynamics as the

partition of S2, but that the members of the partition no longer overlap. Moreover
numerical experiments reveal that the partition now has a hyperbolic structure
and that all orbits falling outside the partition become unbounded, so that Ωv

becomes a Cantor set for all F>0. However we have been unable to make these
ideas rigorous, as we do not have good enough bounds on the stable and unstable
manifolds oΐO±,A±

9B
±,C±. We therefore implicitly assume V ̂  8 in subsequent

sections.

L V ( R )

Fig. 6. An illustration of the vertical and horizontal strips on which the map φ acts. Also illustrated
is the line LF(R) and the bifurcation lines Σf of Sect. 4.1

Proof of Theorem 2.1. The second part of the theorem is an immediate
consequence of Lemma 2.1. The bulk of the proof amounts to a careful
manipulation of inequalities on the map Tv. We consider a map φ which embodies
the dynamics of the map Tv in more manageable form (see Fig. 6). The map φ is
defined on (J Fs, where S = {17,110,28,29,136,245} as follows:

seS

Φ(X) =
29

x e F 1 3 u F 2

(2.4)



306 M. Casdagli

The advantage of studying the map φ is that all of its dynamics is concentrated in
the regions R1 and R2, where the notions of strips being vertical and horizontal in
the x — z coordinate system works well. Note that all of the dynamics of the map Tv

is embedded in the dynamics of the map φ. For example, if a vertical strip t^0...Sn,
with sθ9 sn e {1,2}, is to be non-empty, then by Lemma 2.1 we must have ASιSι +1 = 1
for all i. By an inspection of the graph G, this implies that the symbol sequence
s0...sn can be split up into a sequence of symbols drawn from S, so that the set
KQ...SH is given by an intersection of the form Vtonφ~l Vtln... nφ~mVtm, where tt e S.
Define B to be the matrix (2.5) with respect to the basis S,

B =

1 0 0 0 1 1

1 0 0 0 1 1

1 0 0 0 1 1

0 1 1 1 0 0

0 1 1 1 0 0

. 0 1 1 1 0 0

(2.5)

and let s0, ...,sπeS. Theorem 2.1 is thus equivalent to showing that there exists
μe(05l) and ve(0, 1) such that t^0...Sn (respectively HSo...Sn) is a μ- vertical
(respectively //-horizontal) strip of diameter rgv" whenever BSiS. + 1 = ί for all Orgί
<Ξn-l. For 7^8, we claim that this is true for μ = l/3 and v = μ(l -μΓ^l/2.
Simple generalizations of theorems in [25] allow us to reduce the proof to checking
4 conditions for the map φ. Fixing 7^8, μ = l/3, and referring to the x9z
coordinate system, the conditions are as follows:

(1) For all seS, Vs (respectively Hs) are non-empty disjoint μ-vertical
(respectively horizontal) strips satisfying φ(Vs) = Hs.

(2) For all 5 e S, φ maps vertical (respectively horizontal) boundaries of Vs to
vertical (respectively horizontal) boundaries of Hs.

(3) For s,teS, #sn Vt Φ 0 if and only if Bst = 1 .
(4) The cone field S+ ={(ξ,η)\\η\^μ\ξ\} defined over the region X= f(J Vs\

\ses I
n f IJ Hλ is mapped into itself by dφx for all x e X, in such a way that if (ξθ9 η0)eS+

\seS j

and (ξι,ηι) = dφx(ξ0,η0), then l^l^μ I\ξ0\. Also the cone field
S~ = {(ξ, ή)\ \η\ ̂  μ~ 1\ξ\} defined over X is mapped into itself by dφ~ 1 for all x e X,

in such a way that if (ξQ,η0}eS~ and (^iH^^o^o)* then \nι\^μ~l\1o\
Using the symmetry T~1=ρ~ z

1 o T°ρxz, it suffices to check the above
conditions on the vertical strips and on S + .

(1) We check this for F17, the other calculations being similar. From Table 2.1
it can be seen that VίΊ = Rίr\T~2Rί. The region R ί is represented by the symbols
*sL +s*, and a simple calculation reveals that the right-hand vertical boundary of
Rl is given by the line Lι = {(l,V+t9f)\tε[-l9l']}. The right-hand vertical
boundary of VIΊ is given by l^nC, where C=T~2L^ is the curve defined by
C = {(x(ί), y(0, z(ί))|ί e [ - 1 , 1]}, where

(x(ί), y(t\ z(t)) = (ί, 2ί(ί + V) - 1 , 4ί3 + 4Fί2 - 3ί - F) . (2.6)

The curve C intersects jR t in a non-empty curve C', since z(l/2+ 1/(2F))> 1 and
y(t)>V—ί if ίe[l/2, l/2 + l/(2F)]. Also C" is a μ-vertical curve, since
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dz(ί)/dx(t)>4Vtite [1/2, 1/2 + 1/(2F)]. Similarly, the left-hand vertical boundary
of F17 is a μ- vertical curve. It may be verified that there are no other intersections of
the boundary of T~2R1 with jR1 ? and thus that VIΊ is a non-empty //-vertical strip.
It follows that the horizontal boundaries of F17 are given by pieces of the
horizontal boundaries of Ri. The Vs are disjoint because the Rt are disjoint.

(2) The vertical boundaries of the Vs are given by pre-images of the vertical
boundaries dvRt of the Rt, z e {1,2}, and hence will be mapped by φ to dvRt. A
calculation similar to (1) above shows that the dvRt define the vertical boundaries
of the HS9 and the result follows.

(3) If Bst = 0 then HsnF, = 0, since the Rt are disjoint, by Lemma 2.1. If Bst = 1,
then calculations for the boundaries of Hs and Vt as in (1), will reveal that

(4) The set X is covered by [ V s \ s ε S } 9 and we perform the necessary
computations on the cone field S+ over F17, the other cases being similar. The
tangent plane to Rl at ( x 9 y 9 z ) is given by {(£,(, f?)|(£,j?)e]R2}, where ζ = ζ(ξ,η)
satisfies (2.7),

(x - yz)ξ + (y- xz)ζ + (z- xy)η = 0 , (2.7)

and y = y ( x 9 z ) is given by (2.8),

Xx,z) = xz + (F2 + (l-x2)(l-z2))1/2. (2.8)

The Jacobian matrix M(x9 y9 z) of dT at (x, y9 z) is given by (2.9),

I2y 2x -1\

M(x9y9z)=l 1 0 0 . (2.9)

\ 0 1 0 /

We must show that whenever (x, y, z) e F17 and ξθ9 η0 is such that |f/ 0 | ̂  \ξ0\β9 then
|»7ιl^ |ξι l/3 and I ^ I ^ S j ξ o l j where ξ1 and ηί are given by (2.10),

(ξl9 ζl9ηj = M(T(x9 y9 z))M(x, y9 z) (£0, ζ0, ίo) . (2.10)

By linearity we may assume that ξ0 = 1 and ^0 e [ — 1/3, 1/3]. In performing the
calculation for (1), it was established that if (x9y9z)εV1Ί9 then XEX
= [l/2-l/(2F),l/2 + l/(2F)] and zeί = [-l,l]. Thus, using the formalism of
interval arithmetic [24], it suffices to show that the vector of intervals v given by
(2.11),

(2.11)

satisfies i3/!;1C[-l/3, 1/3] and ό1n(-3,3) = 0, where y,ζ are the intervals
obtained by substituting x, z for x, z in Eqs. (2.7), (2.8), and
M2 = M(Γ(x, y,z))M(x, y,z) is a matrix of intervals. After some computation we
arrive at K[7-l/2-l/(2F), F+l/2 + l/(2F)], fc[-4,4] (using F^5), and
(2.12).

, 7/(3F)] [1

M2c [2F-1-1/F, 2F+1+2/F] [1 - \/V, 1 + 1/F] -1

\ 1 0 0
(2.12)
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Finally, substituting into Eq. (2.11), and using V^ 5, it may be verified that v has
the required properties. D

Remark. Some of the other computations require F^8. We could relax this
requirement by covering the set X more efficiently, with a large number of small
rectangles. A non-constant cone field could also be used, and the resulting interval
arithmetic could be performed rigorously on a computer.

3. Qualitative Properties of the Spectrum

In this section we apply the results of Sect. 2 to obtain qualitative results on the
spectrum of the periodic operators Pπ, and the pseudospectrum of the quasi-
periodic operator Q.

3.1. The Periodic Operators

We now describe how the symbolic dynamics of Sect. 2 gives rise to a labeling of
the spectra Bn of the periodic operators Pn. The identity (1.7) of Sect. 1 states that E
is in the spectrum Bn if the vector Tn ~ 1LV(E) has x-coordinate of modulus less than
one. Observe that LF(R) is a line in Sv intersecting vertical boundaries of the sets
Ri and R6 (see Fig. 2). It therefore intersects the sets ^0...Sn_1? where s0e{l,6}.
Also Tn~ 1 VSo _ S n _ ί CRSn_ 1? and the only regions RI with x-coordinates of modulus
less than one are the regions R1? R2, #3, and R4. Thus E is in the spectrum Bn if
{Lv(E)}eVSQttfSn_i9 where s0e{l,6} and s π _ 1 6{l,2,3 5 4}. This motivates us to
define a space Σ'n(A) of symbol sequences of length n by (3.1),

(3.1)

and a map b : Σ'n(A)-+Bn by (3.2),

VSo^Sn_J. (3.2)

The next lemma states that the spectrum Bn is completely described by the map b.

Lemma 3.1. The map b is an injection, and the images of distinct symbol sequences
under b are disjoint non-empty closed intervals in Bn.

Proof. By Theorem 2.1 the sets VSQt ...,Sn_ 1? such that s0 . . . sn_ j e Σ'n(A), are disjoint
non-empty vertical strips intersecting the line LF(R). Thus the images of distinct
symbol sequences under the map b are disjoint non-empty closed intervals, and b is
an injection. Also, it may be deduced from the combinatorics of the graph G that
ca.rd(Σ'n(A)) = Fw so that we have constructed Fn bands in Bn by the above method.
To show that the map b is a surjection, we must show that no other bands arise.
Define the polynomial /zπ:IR-*]R of degree Fn by hn(E) = π1T

n~1Lv(E) so that
JBn = /ι~1[ — 1,1]. The pre-image of an interval under a polynomial of degree d
consists of at most d disjoint intervals. Thus the Fn bands constructed above
exhaust the spectrum, and no other bands can arise. D
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Remark. The spectrum Bn is labeled by ten symbols rather than the optimal six
required to label Ωv. This is because in the optimal labeling, the symbols 9 and 10
are identified with 6, but the line LF(IR) only intersects R6, and not R9 or R1Q. Thus
in the application of the map T to the description of the spectrum, the choice (2.2)
for the set Rv is in some sense a natural one. Indeed the regions Rt just overlap
when V= 1.5, and this bifurcation is reflected in the "band structure" {Bn\n εΈ+}.
For example the band ί?(171) just overlaps the band £>(13) when V= 1.5 (see Fig. 1).
The above labeling of Bn by symbol sequences also explains the lack of nesting of
the band structure. This lack of nesting results because b(s0 ... sn _ 1sw) e Bn does not
imply b(s0 ...s^-^eB^i, since sMe{l,2,3,4} does not imply s l l_ 1e{l,2,3,4}.
For example s w _iS n could be the pair 62.

The above labeling is important, because in Sect. 4 the scaling properties of Bn

to be deduced from the dynamics of T are stated directly with respect to this
labeling. We have labeled Fig. 1 using an ordering property of the map b. We
define an ordering on Σ'n(A) so that if s, ί e Σ'n(A) satisfy s > ί then τι\_Vs>π^Vt. Then
from (3.2) and the definition (1.8) of LF, it follows that b(s) > b(t), so that the map b
is order preserving. The ordering on Σ'n(A) is defined as follows.

Definition. Let s = sQ...sn_i and ί = ί 0 . . . ί n _ 1 be distinct symbol sequences in
Σ'n(A), and let i be the first place in which 5 differs from t. Then define s > t if either
(a) i = 0 and (*0, ί0) = (1,6), or (b) s f _ , = ί,_, = 1 and (5,, tt) e {(7,3), (7,10), (3,10)},
or (c) s,_! = ίi-! =2 and (5,, tt)e {(8,4),(8,9), (4,9)}

Lemma 3.2. The map b is order preserving, and s>t implies π1P^>π1T^ for all
s,teΣ'n(A).

Proof. By the above remarks, it suffices to prove the second half of the lemma. The
proof splits into a number of cases, one of which is performed here. We take
s = ls 1 . . . s ί _ 2 y 1 s ί + 2 . . . s π _ 1 and t = lsi ...s£_2y2ί ί + 2 ... ί n _ l 5 where ̂  = 171 and
y2 = 1102. It suffices to show that πιϊ 'Ίs 1 . . .s I _ 2 y 1 >πιt 'Ίs 1 . . .s ί _ 2 y 2 ' Observe that
^ιSl...Sl-2y = ̂ " ( ί~2 )(^^^)?wherefί-/ί l s._2_S l land76{71,y2}. The successive
pre-images of H under either T~2 or Γ"3 will fall in R1 or R2. A straightforward
calculation reveals that for all je {2,...,/} the order of n^T~(j~2)(HnVy2) and
π1T~(j~2\Hr\Vyι) is preserved whenever T~°'~2)(#)cF171uF292 and reversed
otherwise (see Fig. 6). An inspection of the graph G then reveals that for any path
joining 1 to 1, there are an even number of occurrences of the symbols 3, 5, 8, and
10. Hence the Vy will undergo an even number of order reversals, and thus π xF s

>nίVt follows from n^Vy^π^V^ independently of sλ ...5 ί_ 2. D

3.2. The Quasiperiodic Operator

The labeling of the band structure {Bn\n e%+} extends to the pseudospectrum, B^,
of the quasiperiodic operator Q as follows. Let Σ'(A) be the space of one-sided
symbol sequences defined by (3.3),

Σ'(A)= js0 V εΠo{l,...,10}|s0e{l,6}, Λ.Λ+1 = 1 for all i£0j (3.3)

endowed with the product topology, and define a map q: Σ'(A)-^Bao by (3.4),

(3.4)
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The next theorem uses properties of the map q to obtain information on the
pseudospectrum of the operator Q.

Theorem 3.3. The map q is a homeomorphism, and B^ is a Cantor set of measure
zero.

Proof. By Theorem 2.1 the sets FSo_Sn_, such that s0 ... sn... εΣ'(A\ are distinct
non-empty vertical curves intersecting the horizontal line LF(R) in distinct points.
Let Lv(q(s0 ...sn...)) = VSQmmtSn_nLv(R) be such an intersection point. It follows
from (1.8) that q(s0 ...sn...) consists of a unique point. By definition of ^0...Sn... we
have that πίT

nLv(q(sQ ... sn...)) is bounded as w-»oo. Then from the dynamical
equation (1.9) for B^, we have q(s0 ... sn...) εB^. Thus the map q is an injection
into B^. Let V be the union of the sets K0...Sn..., such that s0... sn... eΣ'(A). To
show that the map q is a surjection, we observe that all points of LF(IR) not
intersecting V are eventually mapped by T outside of the region Rv. Thus their
positive semi-orbits become unbounded, and they do not correspond to points in
the pseudospectrum B^. Hence the map q is a bijection, and since Σ'(A) is compact,
to show that q is a homeomorphism it suffices to show that it is continuous. Let
s, t e Σ'(A), where s — S Q S I . . . and t = t0t1.... The topology on Σ'(A) is metrizable,
and we choose a metric d defined by d(s, t) = 2 ~ \ where i is the smallest integer such
that Si φ ίf. Take ε > 0, and let v be the nesting constant of Theorem 2.1. We choose

lose
δ(ε) so that d(s, t) < δ implies s and t agree in their first n + ί places, where n > .

Then d(s, t) < δ implies \n1Lv(q(s)) — π1I^(q(t))\<d(VSo_Sι)<vn<ε. It follows from
(1.8) that |g(s) — #(t)|<2β, so that the map q is continuous. Thus B^ is
homeomorphic to Σ'(A)9 which is itself homeomorphic to a Cantor set.

To show that B^ is of Lebesgue measure zero, we use the following result [5,7]:
For a C2 axiom A diffeomorphism of a surface, the set WS(Ω) of points that
approach the non-wandering set Ω has Lebesgue measure zero. Since in our case
VC WS(QV\ it follows that V has Lebesgue measure zero. The vertical curves of Ψ
intersect LF(R) transversally at LV(B^\ and it follows that Lv(Bao) has Lebesgue
measure zero in LF(R), and hence that the Lebesgue measure of B^ is zero, as
required. Note that if Fis sufficiently large, the nesting constant v of Theorem 2.1
can be shown to satisfy v e (0, σ), and the result can be proved from first principles,
using a nesting argument. D

4. Quantitative Properties of the Spectrum

The map T was originally introduced as a renormalization map, and we now
pursue the analysis from this standpoint. This will lead to quantitative results of a
global nature for the spectra of the periodic operators Pn. First we summarize the
simpler deductions that can be made from a local analysis of the map T.

4.1. Local Scaling Laws

We have deduced in Sect. 2 that for F^8, Tv has a period-p point x(s)e.RF,
corresponding to each period-p symbol sequence s in Σ(A), and that Ωv is a
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hyperbolic set. Define the lines Σ^ for w e N by (4.1),

Σ*={(x,y,z)eSv\π1T
n-1(x,y9z)=±ί}. (4.1)

The results of Sect. 2 also allow us to conclude the following. The line LF(R),
parametrized by £, cuts the stable manifold, Ws(x(s)), of x(s) transversally with
non-zero velocity, at all the points LF(t)), such that 1 6 Σ'(A) has the same period-/?
tail as s. Also Γ acts on the lines Σ* by T(Σ *) = £*_!, and Σ* cuts the unstable
.manifold, Wu(x(sj), of x(s) transversally. Let \b(tn)\ denote the length of the nearest
interval in Bn to the point q(t) of B 00. It is determined by an intersection of Σ* with
LV(E). The above geometry allows us to conclude, as in [8], that \b(tn)\ obeys the
scaling relation (4.2),

Iim i ϊy^\=|d7?|β, (4.2)
H-oo |b(tΛ+p)|

where \dT£\e is the expanding eigenvalue of dTp at x = x(s). We say that there is a
local scaling law at points in B^ with period-/? tail, governed by a period-/? point of
T (compare [18]).

4.2. A Global Scaling Law

There is an obvious exponent, λg, that can be thought of as measuring the scaling of
the entire band structure, defined by (4.3),

Λ^lim-logmCBJ (4.3)
n->oo n

where m(Bn) denotes the (Lebesgue) measure of Bn. The next theorem shows how to
obtain the exponent λg from a knowledge of the quantities \dT£\e at the periodic
points of 7!

Theorem 4.1. The exponent λg is given by (4.4),

λβ=lim-log Σ (TOeΓ1, (4.4)
-

where Fix Tn denotes the set of fixed points of Tn.

Remark. The limit in Theorem 4.1 exists, and is equal to the topological pressure,
P(φu\ of T with respect to the function φu(x) = -log\dTx\e [32]. In fact there is
numerical evidence that the scaling of m(Bn) is geometrical [19], which is a stronger
property. Theorem 4.1 should be compared to the following "escape rate" result of
Bowen and Ruelle. For a C2-diffeomorphism, the Lebesgue measure of those
points whose orbits remain within ε of Ω from time 0 to n decays like expnP(φu) [5].

In order to prove Theorem 4.1, we will need the following two lemmas.

Lemma 4.2. Let TbeaC2 diffeomorphism of a surface with compact hyperbolic non-
wandering set Ω. Let y e Ws(x), where xeΩ. Then for all ε > 0, there exists Nε such
that n>Nε implies \Tnx-Tny\ = enξ\dT^\c\x-y\ for some £e(-ε,ε), where \dT;\c

denotes the eigenvalue of dT" in the contracting direction.

Proof. Define xn = Tnx, yn = Tny, and vn = yn — xn. The strategy of the proof is to first
map y into the "linear region," and then dominate subsequent contractions by the
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linear part of T. By Taylor's theorem, \vm + ί — dTXnym\^K\vm\2, where
K = sup \d2Tz\. Therefore

vm+ι=dTXrntm + dTxJvm-tJ + em, (4.5)

where tm is a tangent vector to Ws(xm) at xm of length \vm\, and \em\^K\vm\2. By
hypothesis yeWs(x), hence |t>m|->0 and \vm — tm\/\vm\-+Q as m->oo. Thus there
exists an Mε so that \vm\ < Cε/4K and \vm — tm\/\vm\ < Cε/4E whenever m > Mε, where

C= inf |dTz|c and £ = sup |dΓz|e. Then from (4.5) it follows that for m>Mε,
zeΩ zeQ

\vm+1\ί\dTXm\c\vm\ + \dTXm\e\υm-ίJ + K\υm\2g(1 + e/2)|dTJ>J . (4.6)

There is a similar inequality in the other direction, thus m>Mε implies \vm+ ι\/\vm\
= eξ\dTXm\c for some ξ e (— ε/2, ε/2). Multiplying such equations together for the
values m = m, m +1,..., m + n, and using the chain rule, it follows that for m > Mε

and any neN, |ϋm+n|/|ι?w| = e"«|dl?jc for some ξ e (- ε/2, ε/2). Thus |pm+M|
= Kme"ξ|di;" + m |cKI> where KmHym|/|dTΛ|ι;0|. We now choose n so large that
Km = enξ' for some ξ' e (- ε/2, ε/2), and the result follows. D

Lemma 4.3. Let T satisfy the hypotheses of Lemma 4.2, and in addition suppose
there is a point x e Ω with one-dimensional stable and unstable manifolds Ws(x) and
Wu(x). Let Σbea curve that intersects Wu(x) transversally at a point y, and let Lbea
curve having non-empty transverse intersection with Ws(T~n(x)) for all n e N. Then
for all ε>0, there exists Nε, such that n>Nε implies \an — bn\ = enξ\dTx~

n\c\x — y\ for
some ξ e (ε, — ε), where an e Ln Ws(T~n(x)), and bn is the closest point in Lr\T~nΣ to
an.

Proof. By Lemma 4.2, it is sufficient to show that \an — bn\ = enξ\xn — yn\ for
sufficiently large n, where xn = T~nx and yn = T~ny. Let r = n — m. By the A-lemma
[30], there exists M£ so that T'rΣ is ε/2- C1 close to Ws(xr} and TmL is ε/2- C1

close to Wu(xr) whenever r, m ̂  Mε. Fix m = Mε, and take n ̂  2Mε. Then the points
xr9 yr, Of, br lie at the corners of a curvilinear region which is ε/2 — C1 close to a small
parallelogram touching Wu(xr) and Ws(xr) at the point xr Thus \ar — br\/\xr — yr\ is
ε/2-close to 1. Also \an — bn\/\xn-~yJ[ = Km\ar — br\/\xr--yr\ for some constant Km

independent of n. By choosing n sufficiently large, we can ensure that Km = enξ for
some ξε( — ε/2, ε/2), and the result follows. Π

Proof of Theorem 4.1. For ease of notation, we identify b(s0 ... sw) and q(s) with
their images under the parametrization map £~>LK(£). We apply Lemma 4.3 to
the renormalization map T, taking x = x(σ"s), L = LV(E), an = q(s0 ...sw...), and
Σ = Σ f . Let 50 ... sπ_! e Σ'n(A). Then [π^, π^^] = fo(50 ... 5Λ_ J, where ft* are the
point sin T ~ nΣ*nLv(E) nearest to ^(50 ... sn^ί...). We conclude that for all ε > 0,
there exists Nε such that n>Nε implies (4.7),

|6(s0...sI1-ι)| = ell<(|d7;jβ)-
1 (4.7)

for some ξ e (— ε/2, ε/2), where xn = T~wx = x(s). Since ΩF is compact, Nε may be
chosen independently of s0 ...sn-l9 and we can sum (4.7) over all s0 ... sn_ 1 E Σ'n(A),
to deduce (4.8),

m(Bn)= Σ e^ddT^Γ1, (4.8)
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where ξ ( x ) ε ( — ε/2, ε/2) for all xeSπ, and Sn is any subset of Ωv containing
precisely one point in each vertical strip VSQ^tSn_ί such that s0 ... sn^1 εΣ'n(A). It
remains to show that for sufficiently large n, m(Bn) = enξβn for some ξ e ( — ε, ε),
where fl, = Σ d^ϋ'1.

xeFίxΓ"

Our strategy is now to compare m(£M) to βn+m for fixed m, and use the mixing
property of the matrix A. Since {|d7^m|e|x e Ω} is bounded, there exists Nε(m) e N
such that n>Nε(m) implies |dTΛ

n|e-^/w, where ξ'(x)e(-ε/2,ε/2) for all xeΩ.
Thus from (4.8) we deduce (4.9),

m(Bn) = enξ Σ (kΠT^Γ1. (4-9)
xeS*

Since ,4 is mixing, there exists m e N such that it is possible to take SπcFixΓπ + m,
and therefore m(Bn) ̂  enξβn+m. If we can show that βn+m ̂  e3nεm(Bn)9 the proof will
be complete.

From the mixing property of A, there exists Mε e N such that if m = Mε, and n is
sufficiently large, then Card (Fix Tn + mnVs) = enξ(s\ where £(s)e(-ε,ε) for all
S = SQ ... 5 n _ t eI"X4). It follows that e"ξ(s) terms in the sum defining βn+m can be
grouped together, and bounded by the product of enξ with a term in the sum (4.9)
for m(Bn). All the x(s) e Fix Tn + m with s0 e {1, 6} can be dealt with in this fashion.
Thus βn+m^Kenεe~nξm(Bn), where K is a constant factor for bounding the
contributions from the other terms of βn+m. This inequality is evidently of the
required form if n is sufficiently large. D

4.3. Ergodίc Scaling

The concept of ergodic scaling was introduced in [29]. The idea is that if μ is an
ergodic measure for T, then the Liapunov exponent of T with respect to μ will
determine an "ergodic" scaling law at the points of intersection of WU(X) with the
family of interest, for a set X of full μ-measure. In our situation there are many
ergodic measures for T on Ωv, for example all Markov measures on Σ(A),
characterized by a pair μ = (p, P\ where p e R10 is a probability vector, and P is a
10 x 10 irreducible stochastic matrix with PIJ = ̂  whenever Aij = Q (see [35], note
that a measure on Σ(A) automatically defines a measure on Ωv).

We say that there is an ergodic scaling law at <?(s0 . . . sn_ !...), with exponent λ&

if the following limit exists

.Sn-ι) l , (4.10)

where b(s0 ... 5 M _ X ) is the band in Bn closest to q(s0 ... sn^ί ...). Given a Markov
measure μ on Σ(A), the next theorem states that there is an ergodic scaling law at
q(s0 . . . sn . . .) for μ'-almost all s0 . . . sn . . . e Σ'(A), where μ' is the measure induced by
μ on Σ'(A).

Theorem 4.4. The limit (4.10) exists for μ' -almost all s0 ... sn_ί ... eΣ'(A), and is
given by (4.11)

λe= lim -ί\oS(\dΊ^\eΓ
ldμ(x). (4.11)-
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Proof. It follows from Eq. (4.7) that

lim -loglKso . V-ι)l = lim -logO^T^Γ1 , (4.12)
n-»oo H n->oo H

where teΣ(A) has the same tail as s0 ... sn,1 ... . By the multiplicative ergodic
theorem [35], the limit (4.12) exists for μ-almost all t e Σ(A\ and is given by (4.1 1).
The result follows from the definition of the induced measure μ' on Σ\A). D

Example. A natural example to take for the ergodic measure μ is the distribution
on periodic points defined by μ = lim (Nn) ~

i Σ °& where Nn = Card (Fix T").
M-+OO xeFixT"

It can be shown that μ is a Markov measure with certain transition probabilities,
obtainable from the left and right eigenvectors of A [35]. The exponent λe is given
by (4.1 3),

λe=\im(NnΓ
1 Σ legate)-1. (4.13)

n->oo xeFixTn

The probabilistic interpretation oϊλe is that if we step from a band in Bt to a band in
Bi+1 using these transition probabilities, we would expect to obtain a band of
length of order Qxpnλe at stage n for sufficiently large n.

4.4. Hausdorff Dimension of B^

We know from Sect. 3.2 that B^ is a Cantor set of measure zero. The following
theorem further characterizes B^.

Theorem 4.5. The Hausdorff dimension (HD) of B^ satisfies (4.14),

λβ), (4.14)

where λg and λe are given by (4.4) and (4.13) respectively, and λA = log(l + σ) is the
logarithm of the largest eigenvalue of the matrix A.

Proof. We use Corollary 3 of [22]: Let A be a basic set for a C1 axiom-A
diffeomorphism /:M2-»M2 with (1,1) splitting TΛM = ES®EU. Then
δ = ΐίD(Wu(x)πA) is independent of xeA, and satisfies (4.15),

- /ίtop/m(r ) ̂  δ rg /ztop/(/ιtop - P(φu}} , (4. 1 5)

where /ιtop is the topological entropy of/, φu : PF"(/L)->R is the function defined by
φu(x)= — log\dTx\e, m(φu) is the integral of φu with respect to the measure of
maximal entropy, and P(φu) is the topological pressure of T with respect to the
function φu.

The renormalization map Tv satisfies the above hypotheses, with A = Ωv. Thus
we can substitute the following into Eq. (4.14). fetop is given by λA the logarithm
of the largest eigenvalue of the matrix A [35]. m(φu) is given by λe, since the
measure of maximal entropy of a subshift is the measure on periodic points [35].
P(φu) is given by λg, as remarked in Sect. 4.2. Finally, it can be shown that there is
a Lipshitz map between Ar\Lv(E) and Ar\W"oc(x), and since HD is preserved
under Lipshitz maps, we have δ = HD(B00). D
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5. Rotation Numbers

In theoretical studies of Schrόdinger operators with quasiperiodic potentials, one
of the basic tools is the rotation number ρ(E) [9, 14, 16, 33]. Roughly speaking, it
measures the average rate of rotation of the phase of an eigenstate over the lattice.
The rotation number yields a labelling of the gaps of the spectrum, due to the
following result [9]: 2ρ(E) lies in the frequency module of the quasiperiodic
potential whenever E lies outside the spectrum. The numerical scaling results of
[27, 28] are also stated in the language of rotation number. In this section, we
attempt to translate our labeling of the pseudospectrum B^ of the operator Q by
symbol sequences, to a labeling by rotation number. In order to calculate the
rotation number, we use the well known relationship between the integrated
density of states, fc(£), and the rotation number, namely k(E) = 2ρ(E). We calculate
k(E) by using the periodic operators Pn to approximate the operator Q. This
procedure is convergent, and we believe that the resulting expression for k(E) is
correct, though this remains to be proven. Finally, restating the scaling results of
Sect. 4 in terms of rotation numbers, we recover the numerical results of [27],
together with some extensions of their results.

We now recall the definitions of the rotation number and integrated density of
states for discrete Schrόdinger operators [9]. Let H be the operator given by (1.1),
and let tp(0), φ(l), . . ., ψ(ri), ... be a solution of the equation Hψ = Eip for n ̂  0 with
initial condition φ(0) = cos0, φ(l) = sinθ.

Definition. The rotation number of H is the map ρ : R-»R defined by (5.1),

ρ(£)= lim l_NL(J2,β), (5.1)
L-»oo ZJL

where NL(E, θ) is the number of changes of sign in ψ(ri) for 1 ̂  n ̂  L.
It is shown in [9] that the limit exists and is independent of θ. Now consider

the restriction HL of the operator H to the set {1, . . ., L} with boundary condition
) = cotan(0).

Definition. The integrated density of states of H is the map k : R->R defined by
(5.2),

fc(E)=lim -rML(E,θ), (5.2)
L-> oo JLί

where ML(£, θ) is the number of eigenvalues of the operator HL less than or equal
to E.

It is shown in [9] that k(E) = 2ρ(E). Taking H to be the operator Q, it may be
verified that E is an eigenstate of the operator HFn for θ = 0 whenever E satisfies
(M(w))11=0, where M(n) is the product of ^-dependent transfer matrices
described in Sect. 1. Thus we expect a close relationship between the spectrum of
HFn and the spectrum of the periodic operators Pn. This leads us to the fol-
lowing conjecture.

Conjecture. Let Pn(E) be the number of bands in the spectrum of the operator Pn

bounded above by E. Then the integrated density of states is given by (5.3).

]ΐmrPH(E). (5.3)
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Assuming the truth of the above conjecture, we have the following corollaries.

Corollary 5.1. The rotation number ρ(q(s0 ... sn...)) of a point q(s0 ... sn...) e B^,
with s0 = l satisfies (5.4),

2ρ(q(sQ...sn...)) = σ2+Σdίσ\ (5.4)
i = l

where the d{ are obtained by decomposing s0 ... sn... into blocks of length 2 or 3 and
according to Table 5.1.

Table 5.1

sj 17 136 110 28 245 29

di + 1 01 001 00 01 001 00

Remark. A similar result holds for s0 = 6.

Proof. We will use the ordering property of the map b stated in Lemma 3.1. Let
E = q(s0 ... sn...) e B^. Given any Ne N, it is possible to find an n>N such that
£„_! e {1,2,3,4}, so that q(sQ ... sn ...)eb(s0 ... 5w_1)e5π. We use Lemma 3.2 to
calculate the quantity Pn(E), as follows. It can be shown by induction that there are
Fn_ 2 bands b(tQ ... tn _ j), with ί0 = 6, lying below b(s0 ... sn_ j). Similarly, it can be
shown that there are F n _ ί _ 3 bands in Bn having labeling starting with
s0 ... S f- i l lO, and F l l _ ί _ 4 bands in Eπ having labeling starting with SQ ... si^ί!36.
Hence if sf = l and the block 17 occurs, F r t _ ί _ 4 + F π _ ί _ 3 — F n _ f _ 2 symbols will
necessarily have been "climbed over" at stage /. Using similar calculations for the
other possibilities, by the definition of the di9 we have deduced that E lies in the mth

n

highest band of Bn, where m = Fn _ 2 + Σ dtFn _ f. Thus by definition, Pπ(£) = m — 1,
i = l

and using the above conjecture we have 2ρ(£)= lim (m —l)/Fn, and the result
follows. D

Corollary 5.2. Let E = q(s0 ...sn...} be a point in B^- Then
(1) If E is a gap edge of B^ there is a local scaling law at E, governed by a

perίod-2 point of T.
(2) // ρ(£) has an "irrational expansion" (5.4) with a periodic tail, then there is a

local scaling law at E governed by a periodic point of T.
(3) There is asetXc [0,1/2], of full Lebesgue measure, such that ifEeρ~ l(X\

there is an ergodic scaling law at E with exponent λe given by (4.13).

Proof. (1) By definition, a gap edge of Bm is a point EeB^ for which there exists
δ > 0 such that either B^ n(£, E + δ) - 0 or B^ n(£ - δ, E) = 0. Consider the former
case. It follows that if E = q(s0 ... sn...) is at a gap edge, then there exists N such that
q(s0...sNsN+i...)>q(s0...sNtN+1...) whenever tN+1 ...Φ% + 1.... Using the
ordering property of Lemma 3.2, it follows that sN+l... has tail 1717 .... Thus by
the remarks of Sect. 4.1, there is a local scaling law at E governed by a period-2
point of T. Similarly, in the other case, the gap edge is represented by q(sQ ...sn...)
where s0...sn... has a period-2 tail 2929 ....
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(2) If ρ(E) has an irrational expansion (5.4) with a periodic tail, then
E = q(sQ...sn...) where S O . . . S M . . . has a periodic tail. Thus, by the remarks of
Sect. 4.1, there is a local scaling law at E governed by a periodic point of T.

(3) Let μ' be the measure on B^ induced by the measure on periodic points, as
defined in Sect. 4.3. Then it can be shown, using the relationship k = 2ρ, and (5.3),
that for all λ e [0, 1/2], μ'(ρ~1[Q9λ]) = λ9 so that Lebesgue measure is induced on

byμ'. D
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