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Abstract. In the theory of circle maps with golden ratio rotation number
formulated by Feigenbaum, Kadanoff, and Shenker [FKS], and by Ostlund,
Rand, Sethna, and Siggia [ORSS], a central role is played by fixed points of a
certain composition operator in map space. We define a common setting for
the problem of proving the existence of these fixed points and of those
occurring in the theory of maps of the interval. We give a proof of the existence
of the fixed points for a wide range of the parameters on which they depend.

1. Introduction

Fixed points for composition operators are now known to exist in a multitude of
situations: maps of the interval, dissipative maps of IR", area preserving maps of the
plane and circle maps all possess fixed points. In this paper, we try to connect the
cases of interval maps and circle maps (with golden rotation number) by giving an
interpolation between the two. In fact, there is a two parameter family of problems,
namely to find solutions of the equations

(1.1)
A \Λ /

with

and / analytic on [0,1]. Here, the two parameters are r and v. The case v = l
corresponds to maps of the interval, while the case v = 2 corresponds to circle
maps. The value r = 2 is of main interest for the physics corresponding to the case
v = 1, and r = 3 is of interest when v = 2. For the possible occurrence of different r in
dynamical systems, see [ACT]. [A more precise statement of the problem is
embodied in Eqs. (1.19), (1.20) below.]

Consider the region D given by
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1 2

Fig. 1. The domain D is above the lower curve. The obtained domain is above the upper curve

We conjecture that for every (A, v) e D, Eq. (1.1) has a solution which is analytic in λ
and v in the interior of D. Our results go some way towards proving this conjecture,
but fail to exhaust D and to provide the conjectured analyticity. Figure 1 shows the
expected and the obtained domains of existence of φ.

The proof given here extends that in [E]. The main observation (see [EL]) is
that the inverse function of the function / has the (anti-)Herglotz property, i.e.,
— f~l=—U maps the upper half plane into itself. Therefore it has an integral
representation with positive weight, from which simple, but useful inequalities can
be derived. These then serve to prove the existence of solutions by an application of
the Schauder-Tikhonov theorem. For technical reasons, we are forced to fix λ and
v in our construction, instead of the more desirable r and v, and because we use the
Schauder-Tikhonov theorem, we are not able to obtain the continuity of r(λ, v).

1.0. Notations

Let J be an open, possibly empty interval in R. We denote

C(J) = {ze<C:ImzφO or zεJ}.

In particular, <C(0) = (C + u(C_, where

F(J) is the real Frechet space of functions /, holomorphic on (C(J), with /(z*)*
= /(z), equipped with the topology of uniform convergence on compact subsets of
C(J).

P(J) is the subset of F(J) consisting of the functions / such that /(C +) CΪC + , and
/(<C_)C<C_. These functions are often called Herglotz or Pick functions.

P0(J) is the subset of P(J) consisting of the functions / such that |/(z)/z|
z-κx) in non-real directions.

»0 as
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Note that if h belongs to P(J) and is not constant and real in (C + u(C_, then
/ι((C+)cC + . If, moreover, J is not empty, then on J, h' is strictly positive, and
Sh = h'"lhf — (3/2) (h"/hf)2, the Schwarzian derivative of h, is positive. Recall that, if a
smooth function h has a non- vanishing derivative and S/z^O, then its inverse
function has negative Schwarzian and conversely.

In this paper the function log is defined in (C((0, + oo)) so that it is real on IR+,
and zs =

1.1. The Circle Case

We now formulate the problem for the case v = 2, i.e. for circle maps with golden
rotation number [FKS, ORSS, JR, N, LL, M, LI, L2]. The natural v-dependence
will reappear in Eq. (1.19). We follow the exposition of Lanford [LI, L2] and use
the notations of [L2]. We consider the problem of finding solutions (ξ, η) of the
equations:

η(x)=-^η(ξ(-λx)), (1.2)

ξ(x)=-~η(-λx), (1.3)

ξ(0) = l , (1.4)

which satisfy the constraints C1-C3 discussed below. [In this case the function φ is
given by φ(x) = ξ(-x).']

Cl. η is a strictly increasing continuous function on an interval [0, L], where it
vanishes at a certain x0 e (0, 1), and η(0) = —λ, with λ e (0, 1). The function ξ defined
by (1.3) has corresponding properties. For all x in [0, L], ξ( — λx) is also in [0, L]
and (1.2) holds. In particular 1 ̂

C2. There exists a real r > 1 , and a function G, holomorphic without critical points
on a complex neighborhood of [0, If], (in particular G'(0) φ OJ , such that, on [0, L],

η(x) = G(xr). (1.5)

Correspondingly, there exists a function F, holomorphic on a complex neighborhood
of [-(L//Γr,0], such that, for all xe[-L//l,0],

(1.6)

and, for α» ίe [-(L/l)r,0],

F(t)=--λG(-τt), τ = λr. (1.7)

The consequences of Cl and C2 are discussed in the papers of Nauenberg and
Lanford [N, LI, L2]. Here we need the following facts:

1. The unique solution xό in (05^oM2) of the equation ξ( — λx/

0) = x/

0 satisfies
xόe(0, 1) and, by (1.2), ^(XQ) = O, hence it coincides with x0 and

ξ(-λx0) = x0. (1.8)
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2. By using (1.2-1.4), η can be extended to a strictly increasing function on
[0, x0A

2] and

η(x0/λ2) = ί , η'(χ0/λ2) = Q. (1.9)

Near this point,

η(x) ~ 1 - const(x0//l2 - x)r .

3. Note that

η(x0/λ2) = 1 > λ2 , hence x0//l2 > 1 .

4. Since, for some ε>0, G(ί) is analytic and real in ( — ε,Lr], the functional
equation

(1.11)

an immediate consequence of (1.2), (1.3), and (1.5) for t e [0, (xoA2)1"], can be used
to continue G (respectively F) on the negative (respectively positive) real axis as a
strictly increasing, analytic function, with G(i)<—λ for ί<0. There are two
possibilities:

a) for some t = -τ2t2 <0, (the extension of) G(i) takes the value -x0//L Then
G can be extended to [ — ί2>0]> with G( — ί2) = —I/A. Correspondingly, F can be
extended as a strictly increasing, continuous function on [ — (x0/λ3} ί1", ίj, with
ίi>0, and

F is analytic inside this interval and has critical points at its ends.
b) The extension of G never reaches the value —x0/λ. In this case the right-

hand side of (1.1 1) is always defined and can be used to define G(f) for all t < 0. As
ί-> — oo, G(t) decreases and tends to a limit G( — oo) e [ — x0/A, 0), which must be a
fixed point oΐ —λ~1η°( — λ~1). Thus case b) is ruled out by the condition that this
function have no other fixed point, in its interval of definition [ — x0/λ, 0], than — λ
(see (1.10)), or, equivalently by the condition

PI. The function Φ = λ~2η has no other fixed point than 1 in [0, x0A~2].

Case b) will be ruled out by our condition C3 below. It is interesting, however,
to note that the condition PI is implied by the weaker assumption that η, and
hence Φ have negative Schwarzian. If so, denoting w = Φ~1, then w has positive
Schwarzian, i.e. on ( — A" 1, λ ~2), w is analytic, strictly increasing, and

w'" 3/VΛ 2 /w"Y
5w=ίL-^ UL ^o, hence ^Uo. (1.12)

w 2 \ w / \w /

Moreover w is continuous on [ — λ'1, A~2], with w( — /l~ 1) = 0, w(l~2)^x0/l~2,
wx( — A~ 1 ) = w /(A~2)= +00, and w(0) = x0. Since x0λ~2<λ~2, the fixed points
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-λ'1 0 X T x2 λ'2

Fig. 2. Solid line: graph of w as it must be. Dotted line: impossible situation

must be in (0, λ 2). If x x < x2

 are two distinct fixed points, w' must take the value 1
in [xl5 x2]. Moreover, v/must take values < 1 in ( — /I"1, x j (since otherwise w(z)
^z + A" 1 in this interval), and because w'( — λ~i)= +00, w' must go through 1
there. For the same reasons it must also take the value 1 in (x2,1). But logwx is
convex by (1.12), and can vanish at most twice in ( — λ~1,λ~2). Hence there is
exactly one fixed point of w in [ —λ"1, λ~2] (see Fig. 2).

C3. We require the inverse function —U of F to be a Herglotz function:

Since the identity ξ(x) = F( — ( — x)1*) extends to ( — x0//l3,0), denoting — u the
inverse function of ξ restricted to this interval (i.e. u is the inverse function of φ\ we
get: φ) = [l/(z)r. (1.14)

This holds in (— ί/λ, 1), and extends by analytic continuation to (C + u(C_, so that

Comment on C3. The requirement C3 is imposed by analogy with the case of maps
of the interval. A further justification is that it is implied by the other
(hyperbolicity) conjectures usually made [FKS, ORSS, N, LI, L2] and, in certain
cases, proved [JR, M], about the solutions of (1.2), (1.3) (and which, in fact, make
these solutions interesting for dynamical systems theory). If the standard picture
holds then the "shift operator" T,

--η(-λx)

has a one-dimensional unstable manifold going through the fixed point (at fixed r).
Under repeated action of T, this manifold attracts neighboring curves [i.e. one-
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parameter families of pairs (ξ, η}~\ in function space. Among such families, many
will consist of pairs whose inverse functions have the Herglotz property as implied
by C3. This property is stable under T. Vitali's theorem then implies that the
convergence of these functions on the reals also holds in the complex cut plane.
Hence, at least near the fixed point, all the maps forming the unstable manifold
have Herglotz inverse functions. This holds true along the unstable manifold as far
as it can be extended by repeated application of T. The same argument shows that
these inverse functions have univalent restrictions to (C+, since this property is also
stable under T, and stable under limits by Hurwitz's theorem. In the present state of
our method, we are not able to use (or prove) this univalence because it does not
define a convex set in P(/).

To take advantage of C3, we introduce the following notations:

ψ(z)=—U(z)9 τ = Γ, 3>o = *ό, (1-16)

7(0= ιp(x C1//r) (1 17)
τ2

The functional equations (1.2-1.7) then imply:

V>(z)=7(φ(-λz)),

φ(0) = l , φ(l) = 0, 7(1) = 1,

Conversely suppose that two functions ψ and 7 satisfy

7e-P((0,α/τ2)),

7(1) = 1,

(1.19)

, τ = λ r, r > l , l < α < τ ~ v , (1.20)

with: v = 2. Then setting x0 = α~ 1/r, we obtain a solution of the original equations
satisfying C1-C3. We note that the same equations, but with v = 1, are equivalent
to the functional equation occurring in the case of maps of the interval. In
Eq. (1.19), the interpolating parameter v has reappeared. Given a solution of (1.19),
(1.20), one obtains a solution of (1.1) as follows: the inverse function of φ is given by

2. The Question of Commutativity

The theory leading to Eqs. (1.2-1.7) also requires that ξ and η commute. References
[N, LI] give this property a precise meaning and show that the property PI stated
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in Sect. 1 is a necessary and sufficient condition for it. In this section we transcribe
their arguments in our notation to show how C1-C3 directly imply commutativ-
ity. Starting from

u=-rjuv λ°u°( — λ ) , (2.2)
A

U=l~U°λouo(-λ), (2.3)
τ

we define τj 1 τr 1 12 /-> *\U= — t/°-o W o,r . (2.4)
T A

Note that (2.2) and (2.3) are identities that hold together with domains, namely (2.2)
holds in C((-λ~\ 1)), and (2.3) holds in C((-λ~\ λ~2)). It is easy to verify that
UG -V((-λ~\λ~2)), in particular U(λ~2) = -y0τ~2. Substituting in (2.3) for u
the right-hand side of (2.2) yields

1 1
U=-^U°-°uoA°uoλ2.

τ λ

Substituting this for U in (2.4) and regrouping terms gives:

U=-2Uoλ°u°(-λ), (2.5)

i.e. an equation for U identical to that satisfied by t7, (2.3). In particular, U and U
must both vanish at any fixed point of λ ° w° (— λ). Since U is strictly decreasing in
( — λ'1, λ~\ its unique zero, namely 1, is the only such fixed point, and

#(1) = 0 ^> \u(λ2) = l. (2.6)
A

As conjugating functions of the holomorphic function λ°u°( — λ)9 U and 17 can
differ only by a constant factor, which is determined by

U'(l)=--U'(ί)λu'(λ2). (2.7)

Now differentiating (2.2) at 1 gives
τ2

F, (2.8)

and differentiating (2.2) at — λ gives, using (2.6),

u'(-λ)=-u'(λ2)2 => U'(λ2}=-- (2.9)
A

This fixes the factor to be 1, hence U=U and hence, by (2.4)

υ=-\u.\.u.r. (2.io)

In particular t1 = — U(λ~2) = y0τ'2.
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Fig. 3. Graph of U restricted to the reals

λ'2

This "second functional equation" gives rise to the commutativity of ξ and η in
the following sense [LI]: we denote

ι(x) for xe[0, x0l~
2]

j( — ( — x)r) for xe[ — Xo/lrM

1 ., Λλx) for x €

or, equivalently,

and ξ = ( — u)~l. Then for all xe [ —Xg/l" 1 , ;

3,x0/l x],

(2.11)

(2.12)

(2.13)

(A)

(B)

Thus ξ and ή commute. As shown in [LI], they can be further extended by using
(B).

Figure 3 summarizes the properties of U implied (on R) by C1-C3.

3. The Map Mλ

From now on, λ e (0,1) and v e [1,2] are fixed. Let

(3.1)
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Let ψ0 6 E0(/l). The function ψ = MλιpQ is, when it exists, also an element of E0(A)
obtained as follows. A function V is first defined by

1/r), (3-2)

where the constants τ, oc, and r must be determined so that

7(1) = 1, Πl)=- τ = Γ, (3.3)

and must satisfy

r > l , Kα<^. (3.4)

Then ψ is the solution of

ψ(z)=V(ψ(-λz)), φ(0) = l, φ(l) = 0. (3.5)

We now examine when Mλψ0 can actually be defined. This discussion closely
follows [E], and omits some details given there.

4. Determination of the Constants

Equation (3.2) and the conditions (3.3) imply that zl =α~ 1 / r must satisfy

and since r = (logτ)/(logλ),

q(z,) = Q9

where q is defined by

Here ^4 = l/(λlog(l/A))^β, and we also denote £ = (1— Λ,2)^4, a decreasing
function of λ with JJ(1) = 2.

We recall the "tautological bounds" which follow at once from the integral
representation implied by the Herglotz property:

(«)= 1-z = 1-ΛV

valid for 0:gz</lΓ2, reversed for — /Γ

Ψo(z)
(4.4)
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valid for ~λ~l <z<l, reversed for 1 <z<λ~2,

valid for -λ~1<z<λ'2. AszjO, g(z)->γ>ό(0)(l - A/v)>0 since A/v^e/2. As

This shows that q has at least one zero z t in (0, 1). To show that it is unique, we
compute

Ψo Ψo
V

r,_Ψo (ΨΌY Ψ ' ί > . ( ψ f 2

Lr — I - j h

V^o,

Since G(z) tends to — oo when zjO, and to + oo when z|l, it vanishes only once in
(0, 1). Hence (zq(z))' also vanishes only once in (0, 1), starts by being positive and
ends up negative; zq(z) increases from 0 to a unique maximum, then decreases to
— oo. Hence it has only one zero in (0, 1), denoted z x. We define successively τ, then
r, then α by:

0, α = z Γ Γ > l . (4.6)

5. Lower Bounds on l/τv and zl

We use, as in [E], the representation

where σeL0 0 has support in R — ( — A~ 1 , 1), andO^σ^l, σ(ί) = l for l<t<λ~2.
Hence

holds for z eC(( — A" 1, 1)). Let z e (0, 1). Then the contribution to the integral in
(5.2) from the negative values of t is positive. For ί ̂  1 , the integrand has the sign of

^(ί-z)-ί. (5.3)

This is positive, and strictly positive if £>1, when z^l~v/A. Hence

> A v . (5.4)
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The last inequality follows from the fact that l+vλ log/I — λv vanishes at λ = 1 and
its derivative in λ is

and is negative in (0, 1).
From (5.4) we can derive crude lower bounds on l/τv and r by using (4.1), (4.3),

and (4.4):

(5.6)

(5.7)

(i-^(i-A2 + v) = i - A 4 '
To improve on these bounds, we observe that the integrand of (5.2) is positive if

= yL-(-λ"1

9λ~2)9 since for £^/Γ2,

For φ0 e E0(/l), let σ, ,̂ z1? τ, f, be the objects obtained from ιp0 in the same way as
σ, g, z l 5 τ, r, from ιp0. Suppose that σ^σ. Then, for 0<z<l, φ0(z)^φ0(z), and
moreover, since σ(t) = σ(t) = 1 on (1 , λ ~ 2), q(z) ^ q(z). Thus g(zt) ̂  0, hence z1^z1

and

(5.10)

In particular, let σ2 be the characteristic function of [l,/l~2], and σ3 that of
R —( —A"1,1). For 7 = 2, 3, define logψj and q^ by substituting σ7 for σ in (5.1)
and (5.2), z7 the zero of qj in (0,1), and

τ} - ψj(Zj), r,. Ξ r/λ) - log τ/og λ.

Then

1-z 1-z
2 1—/I2z' 3 1-h/lz'

To study in more detail q2,

ω=-io Λ~^2ή l~λ2

2 vz \ l - z j (1— z)(l— λ2z)'

it is convenient to use the variable ξ = l/ι/;2(^)5 i.e.
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This gives:

ξ, (5.15)

~. (5.16)

The function χ is increasing and concave on (0, oo), and χ(ξ ) — ξ vanishes at ξ = 1
and at a unique ξ = l/y?2(

z2) > 1 - In particular a sufficient condition for r > 1 is that
r2(A)>l, i.e. ξ>λ~\ i.e. χ(/Γv)-^~v>0. This gives

(5.17)

This condition is satisfied for all λ e (0, 1), when v = 1, but for v > 1, it is only satisfied
for λ>λ0(v)>Q9 where λ0(v) is the unique zero < 1 of the function of λ in (5.17).
This function is plotted in Fig. 1 (upper curve). In particular, for v = 2, the
condition (5.17) is equivalent to

Λ + /14-1>0, (5.18)

i.e. λ >A0(2)~ 0.72449....
On the other hand we expect (see in particular [JR]) solutions of the functional

equations to exist as soon as

λv + λv~i-ί>0. (5.19)

This is obtained by trying to find a trivial solution with r = l, i.e. to set:

φ(z) = l-z, 7(0=^(l-ί/«). (5.20)

Then 7(1) = 1, F(l)= -I/A require

-=ί-X> = λ*-ι.
α

If /lv + λv ~ ί — 1 = 0, the functions appearing in (5.20) satisfy (3.5). The discrepancy
between (5.19) and (5.17), which cannot be improved in E0(A), shows that a
narrower domain must be sought for Mλ. Here, however, we shall only consider,
from now on, values λ > λQ(v). In this case there is a lower bound r2(λ) = r2(λ, v) > 1
for r. Moreover the crude bound (5.8) shows that r2(Λ.,v)-» + oo as λ-+ί.

Lower Bound on α. We note that, as a consequence of (4.6) and (5.4),

. (5.21)

A lower bound for α, strictly greater than 1, and uniform as λ-+l can be obtained
from (5.7) and (5.4):

•^r\λ+-
A
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hence, denoting temporarily m = λ + ί/λ,

and

, < 1 -- — r ^exp -- —- , (5.22)1~ rm + 1 - F

For r > 1 we also get

hence λ

z\ \ rmj m

(5.24)

6. Definition of V and

We can now define V by (3.2) and, since r > 1 , — F is a Herglotz function. We define
W= V o F, and jy(ζ) - 1 - W(\ - Q Both VF and W^ are Herglotz functions and

Fe-P((0,ατ-2)),

/

= 0 ,

Note that l/τv is in the real interval of analyticity (0, ατ ~ 2) of V because of (5.21),
and, for the same reason, F(l/τv) < 0, i.e. W(\) > 1 . A better lower bound for 1 (̂1)
is needed, and will be derived in the next section.

7. Lower Bound for W(ζ) in (0, 1)

We use the following identities, where we denote z = (ζ/u)ilr:

(7.1)

+ (l-r-2). (7.3)

Inserting into (7.2) the first inequality in (4.5) gives

F'ΎΠ
^l for 0<C<ατ- 1 , (7.4)
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in particular

-*!*'•
and hence

λ v(v= λ • { }

For 0 < ζ < ατ 2, (7.3) gives

1-r-2

2ζ2 '

hence, for 1—α<ζ<l,

(7.7)

"C)-2(T^o7 (7'8)

This implies, for ζ e [0,1),

dζW^)~2(l^r 2)'

and, using (7.6),

W(ζ) \λ ^ (^9)

For O^C< 1 and λ> 1/e, the bracket in (7.9) is positive, so that

, fl=(l-r~2). (7.10)

On the other hand, using W e P((l - α, 1 )) and T^(0) = 0, W"(0) = 1 ~ 2, we find, for

>

where the last inequality uses the bound (5.24). This easily implies that (7.10) also
holds for λ^l/e, i.e. for all λ>λQ(v).

8. Definition of \p

The unique function ψ satisfying

φ6E0(λ), ψ(z)=V(ψ(-λzy)9 (8.1)

can now be constructed by the same arguments as in [E].
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9. Definition of H and H$

We now define the functions

Ho(w) = l-Ho(w) = Vo(^w), β = l°Z\>

H(w) = l-H(w) = ψ(eβw).

Each of these functions is holomorphic in <C minus the cuts

{w:e / ϊ w-λ- 2eR+}u{w:e / ϊ w + λ" 1 eR_},

and in particular in the domain

we<C:|Imwi<π/log-and w £ 2 + R + > . (9.2)
λ J

In this subdomain, Imw>0 => Im#(w)<0, and similarly for H0. For the same
reasons as in [E], H and H0 are decreasing on ( — oo, 2), vanish at 0, tend to 1 at
— oo, and are concave on ( — 00, 1). These functions satisfy

#O) - W(H(w - 2)) , #(w) = W(H(w - 2)) , (9.3)

H(0) - H0(0) - 0 , H(0) - H0(0) - 1 , (9.4)

and

(9.5)
Ί \1 U&WW

We denote

Then

*0(-W = τ , |g|U_llogi, (9.7)

and the concavity of H0 implies

1 1 < 1

i.e., by (9.6),

logα^Λ, a^eλ. (9.8)

The same arguments as in [E] show that, for all w e R _ ,

H'(w)^yH(w)3, (9.9)

-α'wΓ1/2, (9.10)
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where

10. Lower Bound on τ

This follows the same line as in [E] : we denote

and note that letting z tend to 1 in the inequalities (4.3) gives (1 -f I)"1 :g — φΌ(l),
hence

(10.2).
1 — /I 1 — Λ

Denoting q = qι+q2, [see (5.3)] we write

with

(10.4)
ί-z

It has already been noted that, for 0<z<l, and tεΣ, the bracket in (10.4) is
positive. Moreover

1 _>7 Γ Λ / Ί t—\ 7
-r-τττ-^2^0. (10.5)

For ί-»±oo, I(t,z)-+A/v — l. Hence, for teΣ, /(ί,z) reaches its maximum at
t = — ί/λ, so that

Λ i 0 Γ λ \ ~1 λ

(10.6)
V ί / = l + λ z L v

and
A

q^z^k — Cl+λ), O^z^ l . (10.7)
v

It follows that, with ξ as in (5.14),

(10.8)

In view of (10.2), it follows that there exists an upper bound ξmax for ξ1 which
depends only on λ. (Later, by imposing further restrictions on φ0, we shall obtain a
έmax bounded as A->1.) The bound

- <IO 9)



Fixed Points for Circle Maps 229

gives

~~'τ 1 — A

i.e. an upper bound for τ" v depending only on λ.

11. Upper Bound on W(l)

Recall

Using the bound (4.3) on φ0? we find:

Recall that

^ ζmax -*•

hence

(11.2)

12. Uniform Lower Bounds on τ as Λ,->1

The preceding sections have shown that: for all λ > λ0(v), there exists a C^/l) < oo
such that

), (12.1)

where E^(λ) is the compact convex subset of E0(/l) defined by

(2zlogλ)ιp'0(z)^all-ιp0(z)γ for ze [0,1]}. (12.2)

Here α'is the quantity defined in (9.11). It depends on λ but tends to 1/15 as λ-*\.
If we now assume that ψ0 eE^λ), then (9.9) and (9.11) hold with H and H'

replaced by H0 and H'0, so that

-
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where k is as in (10.1). Together with (10.2), this shows that there is a constant K,
independent of λ, such that (for λ > λ0(v))

(1 — λ2)zq(z) ^—logξ + K — ξ. (12.4)

Hence there is a ξmax independent of λ > λ0(v) such that ξl ^ £max. The bound (10.10)
holds, of course, with this new ξmax, but is worthless when /!-»!. With (i as in (9.6),
we find

^ά1^1- ;̂'S V ! 7 (12.5)

Moreover

τv = ff0(-ίι)^l-(l+*τιΓ1/2, (12.6)

hence

2

 (127)
V /V = ^ ' fΫ = ^ ' / 1 / Ί i 1\ 'τv 2 αd 2 α/l(l+/l)

Combining this with the results of the preceding sections, we obtain

Lemma. There exists a continuous function λ-+C(λ) on (A0(v), 1] such that, for all

(12.8)

compact convex subset of E^λ) defined by

[0, 1]} . (12.9)

13. Existence of Fixed Points

The continuity of Mλ is verified exactly as in [E], and the Schauder-Tikhonov
theorem proves the existence of fixed points of Mλ in E(λ) for all λ > /I0(v), and thus
of solutions of (1.1-1.3) satisfying C1-C3. The same arguments as in [E] show the
existence of the Eckmann-Wittwer functions for λ = 1 for all v, in particular for the
case of circle maps. The solutions for λ < 1 have analyticity properties which can be
studied by the method of [EL]. The above results do not include a proof of the
existence of solutions for the case of main interest, i.e. v = 2 and r = 3, although the
value of λ obtained in the proofs of Lanford and de la Llave [LL], and Mestel
[M], namely 0.7760513... is among the values for which our method works. If we
admit, for this reason or for the reason given in Sect. 1, in view of the hyperbolicity
results of Mestel, that the solution of [LL] and [M] satisfies C1-C3, as well as the
injecti vity of φ, then the method of [EL] can be applied in a straightforward way to
study its analyticity properties.
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