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Abstract. A vertex operator construction is given for the level one repre-
sentations of the affine Kac-Moody algebras associated with non-simply-laced
finite-dimensional Lie algebras, using free boson and interacting fermion fields.
The fermion fields are constructed explicitly and a detailed discussion is given of
the theory of the cocycles necessary for this and other vertex operator
constructions. The construction is related in detail to the folding of Dynkin
diagrams and a generalisation of it yields FreudenthaΓs magic square.

1. Introduction

Since Frenkel and Kac [1] and, independently, Segal [2] constructed level one
represenations of untwisted affine Kac-Moody algebras g, associated with simple
Lie algebras g which are simply-laced, using the vertex operators of string theory, a
corresponding construction for the non-simply-laced case has been sought. The
cases where g is simply laced, i.e. all roots have a common length, are g = su (r + 1),
so(2r), E6, E7, and E8, and the non-simply laced cases are g= so(2r + 1), sp(r),
each if r ̂  2, G2 and F4. (For a review of terminology and results on Kac-Moody
and Virasoro algebras, developed in relation to their applications in quantum
physics; see [3].) In this paper we provide a vertex operator construction for the
non-simply laced case.

There are a number of reasons for wanting such a construction. For example, it
gives us a more uniform approach to the most basic representations of all the
untwisted algebras g. It involves the introduction of fermion operators associated
with the short roots. The Frenkel-Kac-Segal (FKS) construction enables one to
build non-abelian internal symmetries into string theories in an intrinsic way by
compactifying some of the dimensions in which the string moves to form the
maximal torus of a simply-laced group [4]. This has been exploited to construct
potentially realistic unified string theories of particle interactions [5]. These theories
involve fermions and the present generalisation of the FKS construction by the
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introduction of fermions produces a greater resemblance with string theories of
physical interest. It may lead to new physical possibilities and it may be relevant to
understanding further the structure of existing theories.

If g has totally antisymmetric structure constants fabc, the corresponding
untwisted affine Kac-Moody algebra g is defined by the commutation relations

[T°, Tn

b] = if»< T<m + n + kmδ°"δm, _„, (1.1)

where m,neZ, the set of integers, and α, b, c run over the values 1 to dimg; k is a
central term taking a numerical value in any irreducible unitary representation of g.
In such a representation x — 2k/ψ2, where ψ is the long root of g, is a positive integer
called the level of the representation. Information about possible vertex operator
representations of g can be obtained by considering the Virasoro algebra

Ί o """" ^"^ *)OM, — N' \*"^)

associated with g, given by the Sugawara construction,

&? V"1 Y"1 x Ύ<a '-ra x

β m a

where the sum is over meZ, 1 ̂ 05^ dimg, β = 2k+Q, Q being the value of
quadratic Casimir operator for g in the adjoint representation, and the crosses
denote normal ordering with respect to the T° (see e.g. [3] for further details).

In (1.2) c takes the value
*dimg

Cg " x + %)'

where K(g) = Q/ψ2 is the dual Coxeter number. This can be written in the form

(1.5)

where r is the rank of g and nL, ns are the number of long roots (length L) and short
roots (length S) of g, respectively. Thus, since dimg = nL + ns + r,

< . .

If we have a vertex operator representation of g in a Fock space generated by nB

(independent) boson fields and nF (independent) fermi fields, we have a Virasoro
algebra LN satisfying (1.2) with c equal to

c' = nB + $nF. (1.7)

Further [6], since

(1.8)
KM = LM — <£M defines a Virasoro algebra, commuting with J2?M, with c = c' — cg.
It can be shown that this must not be negative. Hence

C'^CQ. (1.9)



Vertex Operators 181

The FKS construction provides a level 1 representation of a simply-laced g with
r — rank g boson fields. It follows from (1.6) and (1.9) that if either x > 1 or g is
not simply laced, so that S2/L2 < 1, we need more boson or fermion fields.

A non-simply laced algebra g contains a simply laced subalgebra gL, of the same
rank r, generated by the Cartan subalgebra of g together with step operators
corresponding to the long roots of g. The level 1 representation of g splits up into
level 1 representations of gL, which can be constructed, using the KFS construction,
with r independent boson fields. If we wish to extend this representation of gL, by
the addition of nF independent fermion fields we shall need

where n=l for so (2r + 1), n = r + 1), n = r — 1 for sp(r), n = 2 for F4. (n is the
number of short simple roots of g.) To get an irreducible (or finitely reducible)
representation in the whole Fock space generated by r boson fields and nF fermion
fields we would need (1.10) to be an equality; but typically (1.11) is not an integer,
the exceptions being n= 1, 3 and 9. This shows that vertex operators for a non-
simply laced g cannot in general be constructed from independent fermions, or
rather, that, if this can be done, there must be some parts of the fields which are not
used.

In our construction we shall find that we need ^n(n + l ) real fermion fields, but
that these are fermions which interact with each other in some sense. We construct
them using n independent boson fields, but the fermion fields operate in a subspace
of the corresponding bosonic Hubert space. We can construct a Virasoro algebra,
Lζf, out of these fermions and this has c given by n(n + !)/(« + 3). The Virasoro
algebra, L^, for all the bosons out of which the fermions are made, has c = n and
so the difference, J4fN = Lχ — Lχ, which commutes with the fermion fields, has
c = 2n/(n + 3). The subspace in which the fermions act can be defined by conditions

jfN |Φ> = o, N>Q; jtr0\φy = λ\φy. (1.12)
For n = 1, 2, we have c < 1 and so, using the results of Friedan, Qiu and Shenker

(FQS) [7], and an argument in [6], in these cases there are only finitely many states
satisfying (1.12). It follows that the whole representation space is finitely-reducible
under the action of the Kac-Moody algebra and the Virasoro algebra, JΓN.

Our construction is described in the next five sections of this paper whose plan is
as follows. In Sect. 2 we review the vertex operator construction for simply-laced
groups, partly for the purpose of establishing notation. In Sect. 3 we review
properties of the fermionic operators associated with points of unit length and we
show how, with one extra fermion field, we can extend the FKS construction for
so(2r) to obtain a vertex operator construction for so(2r+ 1). Next, in Sect. 4,
restricting our attention to algebras for which L2/S2 = 2, we consider the general
structure of the extra fermion fields that we need to introduce to multiply the vertex
operators associated with short roots, taken to have unit length. We find we need a
different real fermion for each orbit of the short roots of g under the Weyl group of



182 P. Goddard, W. Nahm, D. Olive, and A. Schwimmer

gL. Having established the general requirements for these new fermi fields, it is
necessary to consider more carefully the functions of momentum (cocycles) needed
to correct for the anomalous signs in commutators; Secttion 5 is devoted to an
account of the theory of their construction [1]. Our construction involves in an
essential way cocycles taking the values ± / as well as ± 1, and, for convenience,
other roots of unity. In Sect. 6, we explain how to construct the interacting
fermions, showing that the necessary cocycles can be found consistently.

The remaining sections of the paper deal with other aspects of the construction
and its generalisations. A non-simply laced g can be embedded in a larger simply
laced g0 in such a way that the common root length of g0 is that of the long roots of
g. This implies that we can obtain a level one representation of g from a level one of
representation of g0. We show how our construction can be obtained from this
embedding in Sect. 7. In Sect. 8, we show how the construction works for the special
case of G2. We generalise the construction in Sect. 9 in a way that leads to the magic
square of Freudenthal. The main guide in our discussion was the Sugawara
construction of the Virasoro algebra, and this is considered further in Sect. 10,
where we show that we do indeed obtain the appropriate onumbers. In Sect. 11 we
conclude with speculations on the connection of this work with fermionic string
theory and a comment on the bosonic realisation of the discrete series of unitary
representations of the Virasoro algebra.

2. Vertex Operator Construction for Simply-Laced Algebras

In this section we shall review briefly the construction of the vertex operator
representation for simply-laced algebras.

The root system of a compact Lie algebra g of rank r consists of a set Φ of real
r-dimensional vectors with the properties:

(i) if αeΦ, then λaeΦ if and only if λ= ± 1; (2.la)

(ii) if α, β e Φ, then 2 α β/a2 e TL (2.1 b)

(iii) if α,/?eΦ, then σa(β) = β-(2oc β/a2)oceΦ. (2.1c)

The linear transformation σα is called a Weyl transformation and the σα, αeΦ,
generate a finite group, W(g\ the Weyl group of g. The root lattice of g, ΛR(g), is
the lattice generated by the αeΦ; and the weight lattice

Λw(g) = {μ:2<x, μ/<x,2eZ for all αeΦ}. (2.2)

Clearly Λw(g) ^ΛR(g). If g is simply-laced, i.e. α2 is the same for all αeΦ, we can
choose the normalisation of our scalar product so that α2 = 2 for each α. In this case
Aw(g) = ΛR(g)*9 the lattice reciprocal to ΛR(g).

The vertex operator representation of a simply-laced g is defined in a Hubert
space Jf, generated by operators al

n, n eZ, 1 ̂  i ̂  r, satisfying the commutation
relations

KX] = m<^m ?_n, (2.3)

1 rg /, 7 ̂  r, m, n E£, and the hermiticity conditions

«£ = «'-», (2.4)



Vertex Operators 183

from states μ>, λeΛ, obeying

pi\λy = λi\λy, (2.5 a)

o4μ> = 0, w>0, (2.5b)

<λ'μ> = <$„,, (2.5c)

wherepμ = αg. Here /I is an r-dimensional lattice with Λw(g) ^Λ ^>ΛR(g). In this
context, we cannot define a position operator ql, but we can define eiλ'q for λ G yl by

'>, (2.6)

together with the condition it commutes with the α j, n Φ 0. The whole of J f is
generated from the vacuum vector |0> by αj;, 1 ̂  /^ r, n eZ and ea'^, λeΛ.

We introduce vertex operators, defined by

t/(α, z) = z*2/2: exp {zα β (z)} : , (2.7)

where

ρ;>) = ?' -ιyiogz + ίΣ ^z-w, (2.8)
« Φ G n

and the colons denote normal ordering with respect to the α£; that is α^, w > 0, is
moved to the right of α^, m < 0, and ;?J to the right of q\ Thus

C/(α, z) = exp {/α β < (z)} exp {/α - β0 (̂ } exp {/α - β > (z)} , (2.9)

where

Ql (z) = / X ^ z-», βi (Z) = / Σ - ^-" (2-10)
«>0 n n<0 n

and

Qί>(z) = qs-ipjlogz, (2.11)

so that

- p
(2.12)

The vertex operator C/(α,z) is a single-valued function of z if αeΦ
Thus we can define

(2.13)

where the integration contour encircles the origin once positively. To attempt to
calculate the algebra of the AΛ we use

α ρ>(z)} if | ζ |< |z | , (2.14)

which follows from

[Ql> (z), Q*< (01 = δ«log(l - C/z). (2.15)
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This enables us to normal order

U(ot,z)U(β,ζ) = (z-ζyβ: U ( a 9 z ) U ( β 9 ζ ) : 9 for | C | < | z | ,

= UΛtβ(z9ζ). (2.16)

In the case we are considering, α2 = β2 = 2. The right-hand side of Eq. (2.16) is a
regular function of z, ζ except for z = 0, ζ = 0 and z = ζ. If we calculate the product
in the other order we obtain the same expression as a function of z and ζ, apart from
a factor of (- l)α' β

9 which could be either +1 or -1, this time valid if | ζ | > | z |.
Thus what we can easily evaluate is

, dζ « dz , dζ « (

ICI<|z| £ z lίl>M £

$^-$ — Uaβ(z9ζ)9 (2.17)
(2π/)2 S ί ? z ~« ̂ '*"

where the z contour encircles ζ positively once and the ζ contour encircles the origin
positively once.

If α,βeΦ, the possible values of a- β are ±2, ±1, 0, since α βeZ and
α2 = β2 = 2. If α β ̂  0, the right-hand side of (2.17) vanishes because in this case
UΛt β (z, ζ) is regular at z = £. If α /? = — 1, α + /? is a root and this is the only case in
which this happens. Then ί/α> β (z, Q has a simple pole at z = ζ and we obtain ^4α + β.
If α β = —2, then α = — β and we have a double pole at z = ζ; in this case we
obtain α •/?. Thus we have obtained the following results:

AaAβ-(-iyβAβAΰ[ = 0 if α β^O, (2.18a)

= AΛ+β if α 0 = - l , (2.18b)

= a p if α = - j 8 . (2.18c)

Additionally we have that

[ p i

9 A a ] = uίAu. (2.19)

To remove the annoying factor of (— l) α ' β , and obtain a representation of g, we
introduce, following Frenkel and Kac [1], a function ca of the momentum operator
p for each oceAR with properties such that, if cα = eiq'α cα, then

c c =( — l)*'βc c , (2.20a)

4c-α = l, (2.20 b)

c £ =ε(a,β)c + , (2.20c)

where the cocycle ε(α, β) takes the values ± 1. Our problem is then solved because

satisfy the algebra g. The construction of ca and ε(α, j8) is considered in detail in
Sect. 5.
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To get the corresponding untwisted affine Kac-Moody algebra g we take the
Laurent coefficients of

E/(α,z)cα =££«*-» (2.22)

and

P J(z)=χα;z-», (2.23)

writing HJ

n = aj

n for this purpose. These then satisfy

(2.24a)

(2.24b)

:ζ, if a + βeΦ, (2.24c)

= aΉm+n + mδm+tlί0, if α=-j8, (2.24d)

= 0, otherwise. (2.24 e)

This provides a level one of representation of g.

3. Vertex Operators Associated with Points of Unit Length

If we consider a simple Lie algebra g with roots of two different lengths, the ratio of
their squares being 2, we can normalise these so that the long roots ΦL have squared
length 2 and the short roots Φs have unit length. (We shall discuss G2 in Sect. 8.) It is
easy to check that the long roots form the root system of a simply-laced Lie algebra
gL G g, and we can represent gL, and gL, by vertex operators as described in Sect. 2.
Constructing a vertex operator associated with points λ e Φs is not so straightfor-
ward and in this section we review results on vertex operators for points of squared
length 1.

Consider again the space ffl defined in Sect. 2, built up from momentum states
|1>, λeA, where now, as well as a set of points ΦL of squared length 2, A contains a
set of points Φs of squared length 1. If we associate to points eeΦs operators Ae

defined by (2.13), and use (2.16) to try to calculate the algebra of such operators,
we have

U(e9 z} U(f9 0 = exp {ie β< (z) + if- Q< (ζ)}
. (Z_ζγ'fzll2ζl/2ei(e + f ) qze pζf>p

• exp {ie Q> (z) + if- Q> (Q) for |ζ | < |z|

= Uetf(z9ζ). (3.1)

To be able to proceed as before we need this to be single valued about z = ζ. Since
\e-f\^l, as e2 =f2 = 1, this forces either /= ± e or e f= 0. Further we need

to be single-valued. Clearly this cannot be true for the whole of the lattice A,
because it fails for λ = 0, so we restrict our attention for the moment to momenta λ
in some subset Me A for which this is true.
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With these assumptions on single-valuedness we find

A2

e=09 (3.3a)

[ A e 9 A f ] = 09 e f=0, (3.3b)

{Ae,A_e} = l. (3.3c)

These equations, especially (3.3a) and (3.3c), imply that Ae is fermionic in
character. If we require e-f^TL for all e,/eΦs, we are effectively restricted to
so (2n -f 1). If we also assume e α e Z if e e Φs, α e ΦL we can also show, by a similar
calculation, that

AeAΛ-(-iγ'eAaAe = Q9 a e = 0 or 1, (3.4a)

. (3.4b)

[Since |α e\ ̂  ]/2, this exhausts all the possibilities given that e α e£.] If v4α,
α € ΦL, is bosonic and ^4e, e e Φs, is fermionic, we need to correct some signs again to
obtain the standard set of commutation or anticommutation relations. This can be
done by introducing functions cx of the momentum for xeΛ.κ(g), the lattice
generated by ΦL and Φs, such that cx = eίq'xcx has the properties (2.20b) and
(2.20c) but with (2.20d) generalised to

which is different only when x2 and y2 are both odd integers. Then, defining
Ψe = Aece,E

a = Aacα, we correct for these signs. We can define an affmisation of
this algebra by

C7(α,z)cα= £ Elz'n (3.6a)
neΊL

and

U(e9z)ce= £ Ψe

nz~\ (3.6b)

and then Eqs. (2.24) are supplemented by

= 0, otherwise. (3.6b)

{Ψm,Ψ;[} = δmί_n9 if e=-f, (3.8a)

= 0, otherwise. (3.8b)

Since the vectors e,fe Φ satisfy e = ±/or e f= 0, they generate a cubic lattice
TLr and we might as well take Φs to be the set of points of unit length on this lattice
and ΦL to be the points of squared length 2. Then Φ = Φs \j ΦL is the root system of
g = so(2r+ 1) and, if

Λ0 = &i...,i), (3.10)
AR (g) = TLY and M = Έr + λ0. The weight lattice Aw (g) = TLY u M.
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The operators Ψ^ are only defined on states with momentum in M, whilst the E^
are defined on all states with momentum in Aw(g). We can define operators
associated with vectors eeΦs, acting on states with momentum in ΛR (g) = Zr by
using the fact that U(e,z)ce has an expansion in half-integral powers of z when
acting on such states. Thus we write

Ψ*(z)^U(e,z)ce= £ Ψe

sz~s (3.11)

on states with momentum in ΛR(g). Then

{Ψe

s,Ψt

f} = δSt.t, if *=-/, (3.12a)

= 0, otherwise. (3.12b)

The Ψ^, Ψe

s are like Ramond and Neveu-Schwarz oscillators, respectively. To
make this clearer, let et e Φs, 1 fg / ̂  r, be an orthonormal basis for TLr, and define

Ψj(z} = 2~112 [Ψej(z)+ψ-e>(z)]9 1 ̂ 7^r, (3.13a)

Ψr+j(z) = 2-ίl2i[Ψe>(z')-ψ-e>(z)l 1 ̂ j^r. (3.1 3b)

Then expanding

ΣdJnz~n> 1^7^2r, (3.14)
seZ + ί/2

depending on whether it is acting on states with momentum in TLr or M, we have

{*ϊ,ft/} = ̂ A f_ t, (3.15)

{<&,<%} = δVδm%-n9 (3.16)

b? = bLs and ^ = </Lm. (3.17)

The operators E%, α e ΦL, ̂ , 1 ̂  ί rg r, provide a level 1 representation of the
(untwisted) affine version of gL = so(2r). This cannot be extended to a level 1
representation of the affine algebra associated with g = so(2r + l) because the
central term for the Sugawara construction of the Virasoro algebra for this
representation of g is r + ̂  indicating that we need at least r bosons and one fermion
field, independent of one another; thus, since we already have r boson fields, we
need an extra fermion. We can see how to introcuce this if we consider the way we
can rewrite our representation of so (2 r) in terms of bilinears in fermions :

E« + *>(z)=Ψ«(z)Ψe>(z), z Φ Λ (3.18)

ejΉ(z) = lΨ^(z)Ψ'^(z)l9 (3.19)

where the open dots denote normal ordering with respect to the fermionic
oscillators bl

s or d^ . [This is not necessary in (3. 18) because Ψ\ *F%anticommutefor
/ Φ/] The Ψ€i (z) are Ramond fields (R) acting on states with momentum in M and
Neveu-Schwarz fields (NS) acting on states with momentum in 7ίr. The product is
always of fields of the same, R or NS, type, agreeing with the fact that it has an
expansion in integral powers of z. Equivalently we can write the generators in terms
of

Eij(z)= -Ejί(z)=Ψί(z)Ψj(z), l ^ / Φ 7 ^ 2 r . (3.20)
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If we consider so (2r + 2), instead of so (2r), we see we can obtain the so (2r + 1)
subalgebra by using Ψ j (z), 1 ̂  i^ 2 r + 1 . So we need to add to our construction of
so(2r), one real fermi field Ψ(z) = Ψ2r + 1(z), ana to work in an enlarged space
generated by the αj,, n e TL eίλ ' q, λ e A and the one fermi field. More precisely, if J f 0

is the subspace of 3tf with momentum in TLr and^f ί the subspace with momentum in
M, we work in a space

R) Θ (Xi ® ̂ NS) , (3.21)

where Jf R is the space generated by a single Ramond field

Σdnz~\ in^R, (3.22)

and Jf NS by a single Neveu-Schwarz field

Ψ(z)= Σ 6 sz~ s in ΛV (3.21)

The field f is real in that

bl = b-, and ^t = ί /_ m . (3.22)

Then we can define a representation of sό(2r + 1) by adjoining to ££, αefL; and
/£, l ^ i g r ,

£e (z) = Pe (z) IP (z) = Σ El z- " , (3.23)
neZ

eeΦs. Then

[ffi,£;] = ̂ £ί + l l, (3.24)

[E«n,E*n] = 8(α,e)E«m

+

+

e

n, α + ^eΦ s, (3.25a)

= 0, otherwise, (3.25b)

[EZ,En'] = B(e,f)EZti, e+fεΦL, (3. 26 a)

= e ^m + π +m^_ π , *=-/; (3.26b)

= 0, otherwise. (3.26c)

This construction has been known for some years [8].
We have seen that the requirement that the calculation progress without too

much modification of the methods of Sect. 2 implies that Φs consists of orthogonal
unit vectors, so restricting us to so(2r + 1). The other simple non-simply laced
algebras have short roots which are not either parallel or orthogonal. So to consider
sp(w) or .F4, we must consider the possibility that e f= ±^. In this case the
fermionic operators corresponding to e e Φs will not be independent, and nor will
the additional ones we introduce,

4. General Structure of the Vertex Representation for Non- Simply-Laced Algebras

In this section we shall discuss an algebra g, with root system Φ, involving roots of
two lengths, the long roots ΦL being of squared length 2 and the short roots Φs being
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of squared length 1, thus excluding G2 , which will be considered in Sect. 8. Consider
the consequences of the conditions (2.1) for the root system Φ.

(i) If α, β e ΦL, then α /? eZ and |α β \ ^ 2. If α β ̂  0 then α + j8 φ Φ, whereas
if α j8 = -1, α + /? = σ α ( β ) e Φ L a n d i f α β- -2, α= -j8. This shows that ΦL is
the root of a simply-laced algebra gL c: g of the same rank.

(ii) If αeΦ L andeeΦ s, then α eeZ and |α e\ ̂  1. If α <?^0 then α + <?φΦ,
whereas if α e = — 1 , &Jre = σa(e)eΦs. This shows that the step operators
corresponding to roots eeΦs form a representation of gL.

(iii) If eje Φs, then 2e feZ and k «/| ̂  1. If e -/> 0 then e +/φ Φ; if e •/= 0
either e+/eΦL or e+/φΦ; if e /= -£, e+f=σe(f)eΦs; if e /= -1 then

*=-/
The algebra g has a basis consisting of HJ

m, E^, E^, l^j^r, αeΦ L , βeΦ s ?

m e Z and, for a level one representation, the algebra is given by Eqs. (2.24) for HJ

m ,
EM, oteΦL, together with, for αeΦ L , e,feΦs,

[&„,£*„] = <?EZ + n, (4.1)

[E;,E;] = ε(*,e)EZ+

+

e

n, a + eeΦs, (4.2a)

= 0, otherwise. (4.2b)

(4.3 a)

(4.3b)

= e Hm + n + mδm + nίQ, if g= -/, (4.3c)

= 0, otherwise. (4.3d)

In these commutation relations each ε (λ, //), A, μ e Φ, is ± 1 . The factor I/ ]/2 is due
to the fact that we are using a Cartan-Weyl basis rather than a Chevalley basis. In
the latter basis Ea would be replaced by F« = (2/α2)1/2£α and the structure
constants would all be integral.

For the simply-laced algebra gL we can use the usual vertex operator
representation of Sect. 2,

~n> (4 4)

and

"" (4 5)

Following Sect. 3, we assume that the Ee (z), e E Φs, are given by an expression of
the form

Ee(z) = U(e,z)ceΨΩ(z}, (4.6)

where ce is a function of momentum and ΨΩ (z) is a real fermion field commuting
with oίj

n and eα ?. It is clear from Sect. 3 that we do not need a different fermion field
for each e e Φs there we only needed one real fermion altogether.

The fermionic nature of ΨΩ (z) is recognised from the property

Ψ Ω ( z ) Ψ Ω ( ζ ) = lΨΩ(z)ΨΩ(ζ)l -Δ(z,ζ), | z | > | ζ | , (4.7)
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where A (z9 ζ) = ]/zζ/(z — Q or (z + Q/2(z — Q, according as ΨΩ is of NS or R type.
Thus the Laurent coefficients of ΨΩ satisfy (3.15) or (3.16) as appropriate, with the
reality property (3.17). Equation (4.3c) can then be verified in the same way as Eq.
(3.25b), provided that

£e£.e = t-eέe = l. (4.8)

Considering the calculation of [E^9E^]9 we see that (4.6) will produce Eqs. (4.2)
provided that

4cy = ε(α,y)cβ + y = (-ir*cycβ, (4.9)

α e ΛR (gL), yeAR (g), so that α y e Z, and we use the same fermion field ΨΩ for e
and σa(e) = α + e if α e = —\. This implies that we should use the same fermion
field for short roots e eΦs related by the Weyl reflections σα, α eΦL. These Weyl
reflections generate W(gL\ the Weyl group of gL.

We use the Weyl group W(gL) to divide Φs into disjoint orbits Ω and we
introduce distinct fermion fields ΨΩ (z) for each orbit. These fields will not all be
independent, in the sense of anticommutating with each other for distinct Ω. If g is
simple these orbits are all isomorphic, that is they contain the same number of roots
and different orbits are related by othogonal transformations. To see this note that,
because

σσΛσ^ = σσ(Λ) (4.10)

for any α e Φ and orthogonal transformation σ, and so in particular for α e ΦL and

for σeW(g)9 (4.11)

i.e. W(gL) is a normal subgroup of W(g). If g is simple, any two e,feΦs can be
related by a σ e W(g)9

f= σ (e) for some σ e W(g) . (4.12)

From (4.11) it follows that, if e,/ belong to orbits Ωe, Ωf, of Φs under W(gL),
respectively,

0/ = σ(0β). (4.13)

The elements of a given orbit Ω of Φs under W(gL) differ by vectors in AR (gL).
The converse is also true provided that ΦL spans the root space, which is the case
in particular if g is simple : if e, /e Φs differ by an element of AR (gL) then they are
in the same orbit of Φs under W(gL). The proof of this is a little more involved.
If e-feAR(gL)9 (e-f)2e2Z. So e f= ±1,0, i.e. either e=±foτ e f=Q. If
e - f— Q,a = e —/is a point oΐAR (gL) of squared length 2 and so is a long root. But
then σΛ(e) =/. Thus it remains to show that — e is on the same orbit as e. If ΦL

spans the root space, we can find β e ΦL with β e φ 0. Then β e= ±1 and we may
reverse the sign of β if necessary to obtain β - e = + 1 . We now construct short roots
in the same orbit as e by a sequence of reflections, ending up with — e. Firstly,

has δ - β = - 1 and δ e = 0. Then
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and if we reflect δ using the corresponding oe+δ

establishing the desired result.
So, at least when g is simple, we can identify an orbit Ω of Φs under W(g^) with

the points of unit length in a coset Λa of AR (g)/ΛR (gL). Not all such cosets will have
points of unit length, in particular A0 = ΛR (g) has none. To exemplify this, let us
enumerate the various cases for g simple. These are so (2r -f 1), r ̂  2; sp (r), r ̂  2;
and F4. For g= so(2r+ 1).

ΛR(g) = Zr', (4.14a)

Λ 0 ^(/ι 1 , . . . ,Ai r ):/ι i eZ,Σ> i e2Z}. (4.14b)

Thus there are two cosets AQ and Λl7 only the latter having points of unit
length. This corresponds to the single real fermi field we introduced in Sect. 3. For
g = sp 00,

(4.15a)

(4.1 5 b)

Thus there are 2r~ 1 cosets of /10 in ΛR (sp (r)) and \r(r — 1) of them have points of
unit length. For g = F4.

ΛR (g) = {(nι ,n2,n3, n4) : either nt e TL, 1 <£ z ̂  4,

or H f e Z + i l ^ / g 4 } , (4.16a)

Λ O ^ {(^ι ?^2 ?^3 ?^4) :^e^ ? Σ«ie2Z}. (4.16b)

In this case, there are 4 cosets of AQ in ΛLΛ and 3 of them, all except AQ , have points of
unit length.

Note that it follows from the facts that if feΩ then —feΩ and that if e,
/e Ω, e Φ ±/then β •/= 0 and e±feAR (gL), that an orbit Ω consists of points ±fi9

l ^ z ^ d i m Ω , where ̂ -^=5^, and with ±fi±fjeAR(gL) if / Φ / If ξi9 1^/^r,
is an orthogonal basis for r-dimensional space, the single orbit for so(2r+l)
consists of the 2r vectors {± ξ t : 1 ̂  z ̂  r}; the ^r(r — 1) orbits for sp(r) can be

labelled by integers ij, \^i<j^r and consist of the 4 vectors (± ξί ± ξj)/ ]/2; the
3 orbits for F4 each consist of 8 vectors and are

^4: even number of + signs},

{±Kι± 1^2+1^3 ± 2 ^ 4 - odd number of + signs}.

We see that in each case, the orbits can be labelled by Ωtj = Ωβ , 1 rg / <y ̂  « + 1 ,
where w = 1 for so (2r + 1), n = r — 1 for sp (r) and n = 2 for F4, i.e. the number of
short simple roots. Since 2y €AR(gL) if 7 e/LK(g), we have that

ΛR(g)/ΛR(gl) = (Z2r, (4.17)

and the orbits Ωtj correspond to the ^n(n + \) of these cosets with points of unit
length. Further, if e e Ωtj and/e Ωkl and Ωtj Φ Ωkl, either {/j} and (A:, /} have no
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common value, in which case

e f=0 and ±e±f$ΛR(gL), (4.1 8a)

or they have one common value, i — k, say, in which case

k /|=i and e+feΩfl, (4.18b)

the sign depending on whether e f= ±\.
Having analysed the structure of these orbits Ω we are in a position to consider

what properties the fermi fields ΨΩ (z) should have in order that Eqs. (4.3) will hold.
Take e,fe Φs in orbits Ω1 , Ω2 , respectively. If e •/§: 0, Ee and Ef should commute.
Which of the other possibilities obtains depends on the relationship of the orbits
Ώ 1 ? Ω2 Since α ee% if α e/l0, whether e */eZ or TL + \ depends only on the
relation of Ωl to Ω2; in the former case we shall write Ω^ - Ω2 £% and in the latter
case Ωί - Ω2 E% -f^ . In this latter case \e f\=% ana either e±f<=Φs, and so in
some third orbit Ω3 , whilst in the former case ±e±feΨLif and only if Ωl = Ω2 .
Because the coset of AR(g)/Λ0 which e±fis in depends only on the cosests
of ±e, ±/, and so on Ω l 5 Ω2, the coset Ω3 depends only on the Ω l 5 Ω2 with
Ω1 - Ω2 £% + i, and not on the points <?,/chosen in them, and is given by the coset
multiplication rule (4.17).

Looking at Eq. (3.1), we see that we need the following form for the operator
product of two fermi fields in order to stand any chance of getting the desired
commutation relations:

z ι

regular at z = ζ, if Ωx Ω2 6 TL, Ql Φ Ω2 ,

where Σ takes the values ± 1

*a(*) ̂ (0 = ̂ (̂ ,0, I C I < \z\, (4.20)

where RΩ (z, 0 is an antisymmetric function of z, ζ, having a simple pole of residue z
at C [see Eq. (4.7)];

ΨΩl(z)ΨθΛ(ζ) = (z-ζΓll2{n+(Ωl9Ω2)RίltΩ2(z9ζ)

+ (z-ζ)η-(Ω1,Ω2)R^Q2(z9ζ)}9 | C | < | z | , if 0 1 -0 2 eZ + i (4.21)

where jRβ1)Ω2(z, ζ) are symmetric under the simultaneous interchange of Ω! with Ω2

and z with ζ, and
z1/2

Λ0ι,θ2(z,z) = -^?PΩ3(z). (4.22)

The c-number functions Σ, η± must have appropriate symmetry properties to
ensure that we actually get commutation relations. To see what these should be,
suppose that

cycδ = ε0(γ9δ)c7 + 6. (4.23)

for 7, δ 6 ΛR (g). Notice that, comparing with what we have said before in Eqs. (4.8)
and (4.9), ε0(y, δ) must coincide with ε(y, δ) when both gamma and delta are in
ΛQ \jAα, where Λα is one of the 2" — 1 cosets in (4.17) distinct from ΛQ, but may, as
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we shall see, differ if y and δ are in cosets Λa and Ab, respectively, distinct from each
other and Λ0 . Then we need

3Q(eί,e2)η±(Ω1,Ω2) = (-iγι ^^ε0(e2,el)η±(Ω2,Ω1) (4.24)

if e{ e Ωi9 with Ωί Ω2 eZ + 1, and

εo(e1,e2) = (-We*sQ(e2,eι)Σ(Ωl,Ω2)9 if Ω! - Ω2 = 0, (4.25)

e0(*ι,*2)= -(-I)e i 'e 'fio(e2,*i), if Ω^Ωj. (4.26)

If conditions (4.17) to (4.23) hold we obtain the algebra (4.1)-(4.3) with

Φi, 72) = £0(71,72), if either 7i o r y 2 e Φ L , (4.27 a)

(Ω1,Ω2\ if 7 ι ' 72=-i (

where cf e Ω ί? and ε(y, y) = 1. To complete the construction we need to find fermi
fields ΨΩ (z) with the correct properties, and suitable cocycle functions ε0 , η + , η _ ,
and Σ. The former depends on the latter, so we discuss this first in Sect. 5,
constructing the fermi fields in Sect. 6.

5. Construction of Cocycles

In order to construct the cocycles needed for Sect. 4 we have to consider the theory
of such objects in some detail; much of what we say is based on ref. [1 ]. We consider
operators cx, defined on momentum states |j> for y εΛ, a certain lattice, by

where ε(x,y)e(C. Such an ε will satisfy

cxcy = ε(x,y)cx + y, (5.2)

provided that

ε (x, y + z) ε (y, z) = ε (x, y) s (x -f jμ, z) . (5.3)

Usually ε(x,y) = ± 1, but we shall need to consider the more general case where
s (x, y)) e Z, some finite subgroup of the group of complex numbers of unit
modulus. Given any set of operators cx,xEΛ, satisfying (5.2) we obtain a function ε
satisfying (5.3) and, conversely, given an ε satisfying (5.3), we can use (5.1) to define
operators satisfying (5.2).

The purpose of introducing the cx and ε (x, y) is to obtain a certain specified
symmetry factor S(x,y) by the interchange of certain operators, defined by

ε ( x 9 y ) = S(x9y)ε(y9x), (5.4)

or

cxcy = S ( x , y ) C y C x . (5.5)

For example, in the case of the simply-laced algebras of Sect. 2, A = ΛR(g)
and S(x9y) = (—l)x'y, whilst in the case of the cubic lattice A = Zr in Sect. 3,
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S(x,y) = ( — l)x y + χ2y\ Again, we shall be looking at more general cases where
S(x, y) eZc C. The symmetry factor, as a result of (5.4), also satisfies (5.3),

S(x,y + z)S(y,z) = S(x,y)S(x + y,z). (5.6)

However, by commuting cz through (5.2), we see that it has the more restrictive
additivity property

,z)=S(x,z)S(y,z), (5.7a)

which implies (5.6). Further, (5.5) implies

S(x,y)S(y9x) = l, (5.7b)

and S(x,x) = l. (5.1 c)

Properties (5.7) are the definitive ones for a symmetry factor. If ef , 1 g / <Ξ r, is a
basis for /t, properties (5.7) mean that S(x, y) is determined in terms of

Sy = S(βί,ej), (5.8)

where

Sy = V and Sί( = l, (5.9)

by

S(x,y) = l [ S f ι * (5.10)
ϊ'j

where χ = ̂ χieί and y — ̂ y^j Conversely given StjeZ, satisfying (5.9), Eq.
(5.10) defines a symmetry factor satisfying conditions (5.7).

Given an ε (x, y) satisfying (5.3) and (5.4) for a given symmetry factor S (x, y), we
can obtain another one satisfying these equations with the same symmetry factor by
the "gauge transformation"

where u(x) eZ for x e/L This transformation corresponds to changing from cx to

cx. = u(x)cx. (5.12)

A central result is that S (x, y) determines ε (x, y) up to gauge transformations of this
type, and, for any S(x,y) satisfying conditions (5.7) [or equivalently any set of Stj

satisfying (5.9)], we can construct an ε(x,y) satisfying (5.3) and (5.4).
To prove the existence of an ε(x,y) for given Sij9 we introduce operators yt

satisfying

h^SM- (5 13)

This can be done with matrices of finite dimension. We can then introduce

y* = yί ιy!a fr (5 14)
It follows from (5.13) that
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with εQ(x9y)eZ9 and then εQ(x9y) automatically satisfies (5.3), and (5.4) with
S(x,y) satisfying (5.8), which determines it uniquely. To show that this ε0(x9y) is
unique up to gauge transformation, suppose ε(x,y) satisfies (5.3) and (5.4) and
define cx by (5.1). Then y f = cβ( satisfies (5.13) and the operators γx9 defined by
(5.14), must satisfy

cx = u(x)yx, (5.16)

for some u(x) eZ. Then it follows that

<*»-^*<*»
as required.

We need to exploit the ability to make gauge transformations to ensure that

c! = c_ x (5.18)

and
£0 = 1. (5.19)

To do this note that if we put y — 0 in (5.3) showing that

ε(0,z) = ε(x,0) (5.20)

all have some common value, which can be set to 1 by a choice of w(0). This ensures
(5.19). Since cx is clearly unitary, provided that \ε(x9y)\ = \9 because it maps one
orthonormal unit basis into another, (5.18) will follow from

£ x c _ x = l. (5.21)

This condition is equivalent to

ε (*,-*) = !, (5.22)

which can be arranged by a gauge transformation by suitably choosing u(x)u( — x)9

fixing half the u(x) relative to the rest.
Having arranged, by gauge choice, that (5.20) and (5.22) hold, we are still free to

make further gauge transformations u(x) subject to

w(;t)w(-;r) = w(0) = l . (5.23)

However, it is not usually necessary to specify the gauge choice further.
Now let us consider the application of these results to the construction of a

suitable cocycle εθ9 as in Eq. (4.23), for the lattice AR(g) of Sect. 4. From what we
have said, ε0 is determined by specifying its symmetry factor S0. From Eqs. (4.8),
(4.9), and (4.26), we see that we need

S0(χ,y) = (-ιyy+χ2y2 (5.24)
iΐx9yEΛ0uΛa9 where A0 — AR (gL) and Aa is a coset oΐAR (g) with respect to A0. It
is not so clear what happens if x9 y e AR (gL) with x - y E TL + \. In fact we must
choose S0 (x, y)= ±ί in such cases because, since ± e are in the same orbit Ω if
eEΦs,2eeAR (gL) for each e e ΦS9 and hence 2AR (g) c= AR (gL). This implies that if
xeAR(g), 2xeAR(gL) so that

SQ(x,y)2 = SQ(2x9y) = (-ί)2x'y. (5.25)
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If x - y e # + \ this equals — 1 , showing that

SQ(χ9y)=±i if χ yeZ + ±. (5.26)

It is straightforward to construct an S0 (x, y) with these properties. Take a basis
oq , . . . , αr of simple roots for g; this provides a basis for ΛR (g). It is straightforward
to check, for g=so(2r + l), sp(r) and F49 that a basis for ΛR(gL) is provided
by βί9...,βr, where βj = α,- if α^ e ΦL and βj = 2θy if Oy e Φs . [More generally, if
Λ/ΛQ = (2 2)" and {αy} is a basis for /I, the number of basis elements α f e ΛL0 is n and
{/Jy}, defined by βj = α,- unless Oy eyl0, in which case j87- = 2α j? generates /L0, since
it generates a sublattice of Λ0 whose fundamental domain has the same volume
as ΛQ.] We define SQ(x,y) by specifying that

S0(αί,αJ.) = (-l)β' β' if α-α.-eZ, / Φ j , (5.27 a)

and

So(α i>α, )= -S0(«7 ,α ί)= ± / if α-α— -£, (5.27b)

and we are free to choose either sign in (5.27b) for each pair i <j. For example, a
particular choice would be

So («*,<*,.) = £?'*«<•«', i<j. (5.28)

It follows from (5.28) that

SQ(^βj) = S0(βj^i) = (-l^ ^ (5.29)

and this implies (5.24).
Now we consider whether the conditions (4.24) and (4.25) on the functions

Σ (Ω! , Ω2), η± (Ωl , Ω2) of Eqs. (4.19) and (4.21) are self-consistent. If we introduce
symmetry functions Σ ± for η± by

1), (5.30)

the conditions (4.24) to (4.26) are equivalent to

S0(e1,e2)Σ±(Ωί,Ω2) = (-l)^'e^1'29 if Ω^ Ω2E%+^ (5. 31 a)

S0(eί,e2)Σ(Ω1,Ω2) = ί , if ^-^ = 0, (5.31 b)

and

5o(^i^2)=-(-l)e i 'e a if el9e2eΩ. (5.31 c)

To show that these conditions are consistent we need to show that, for given Ql , Ω2 ,
So(eι>e2)(—ty~eί'e2i$ independent of the choices of et e Ωt. This follows from Eqs.
(5.24), (5.7a) and the fact that elements of Ω differ by vectors in ΛR(gL). Thus,
iff—et + βi,

So(ΛJ2) = S0(el9e2)(-^ ^ + ̂ βί + ̂ β2= SQ(el9e2)(-W'f*-ei'e*, (5.32)

establishing the desired result. [Condition (5.31c) hence holds because
S0(el9e1) = 1.] We will construct η± with these properties in Sect. 6.

Finally, note that, if we have constructed functions cX9 associated with the
points x e/L, acting on momentum states |jμ> for yeΛ9WQ can extend cx so that it
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acts on states with momentum in some larger lattice A' =>Λ, by dividing A' into
cosets Aj with respect to A and, choosing a vector Λ^ e/lj, then replacing cx by

Σe*'λ>cxe-* λ>. (5.33)
j

It is straightforward to check that this generalised cx has the property (5.2).

6. Construction of the Fermions

In Sect. 4, we saw that to construct the level 1 representation for a simple algebra g,
we need to introduce a fermion field ΨΩ (z) for each orbit Ω of Φs under the Weyl
group of gL, and that these orbits could be labelled by Ωij,l^i<j^n + l9 where
n = 1 for so (2r + 1), r — 1, for sp(r), and 2 for F4, i.e. the number of short roots
of g. To do this we use fermions associated with the points of unit length on

Λ = γ=ΛΛ(su(n + l)), (6.1)

the root lattice of su(« + 1) rescaled by a factor of l/]/2.
Taking an orthonormal basis ξ i 9 1 ̂  i^ ί ̂  n -f 1), for IRW + *, we may take An to

consist of the points

— = (m1 ξi + m2 £2 + . . . + mn + ί ξn + J, Σmj = 0. (6.2)

A basis for Λπ is provided by

ai = -^=(^-ii + i), l ^ ί ^ n (6.3)

The points of Φ^ unit length on An are

We shall write y^ > 0 if z >j and 7^ < 0 if / </ These divide into ^n(n + l ) pairs

Ωlj = { ± y i j , y j i = - y i j : i < j } , (6.5)

which correspond to different cosets of AJ2An which, like AR(g)/AR(gL), is
isomorphic to (2£2)

n. We associate to each orbit Ω one of these pairs Ωf, by
associating Ω^ to Ω f j .

To write down a fermion vertex operator for each y G Φ's we need to define
suitable functions c'x of momentum, xεAn.

These will be specified up to gauge equivalence by specifying a symmetry factor
SQ (x, y), x, y E An. We shall see that it is crucial to do this in a way correlated with
the cocycle to be used for AR (g) or, more particularly, its symmetry factor SQ . To do
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this note that, since n is the number of short simple roots of g, we may order the
basis of simple roots o^ , . . . , αr for g so that it has the following properties:

(i) ^eΦs, I g f ^ π ; α;EΦ L , n<i^r\ (6.6a)

(ii) the lattice generated by oq , . . . , αr contains points in all the orbits Ω of Φs

with respect to the Weyl group W(gL)\

(lϊi) α f a,- = a αj, 1 ̂  z, 7 ̂  w, (6.6b)

equalling -\ if | z -y| = 1, 1 if /=y and 0 otherwise. We derine SόC*,^) ^Y

50 (αj , αj) = SΌ (αf , α,-) . (6.7)

Then So has similar properties to 50; in particular

if either t or y e2Λn and, if ef

j9fj
f e Ωj,

5όσΛ/2)-^«,4)(-iX ί / a '-β i βi. (6.9)

In consequence of this and Eq. (5.32), if βj e Ωjy the orbit in ΛR(g) corresponding to
Ωj in Λn9

S ^ ( e f

l 9 e f

2 ) = SΌ(el9e2)9 (6.10)

provided that e1 - e2 — e( - e'2. We suppose that we define from this 50, c'x and £Q
using the procedures of Sect. 5.

We are now in a position to write down fermion fields Ψy (z) for y E Φ's, acting in
a bosonic Fock space Jf7, generated by annihilation and creation operators α^ from
states |ΛΓ>, xeΛn9

Ψγ(z)=U'(y,z)c'y (6.11)

[with U' defined in terms of α^, e'γ 'i',p' in an analogous way to C/in Eq. (2.7)]. From
(3.1), the product of such fields has the structure,

ΨJι(z)Ψγ2(Z) = ε'0(γί,γ2)(z-ζγ^>ΨM2(z,ζ\ \ ζ \ < \ z \ , (6.12)

where Ψyι>y2 has the properties:

Ψ^2(Z,ζ)=ΨJιΛ(ζ,z), (6.13a)

and is regular at z = ζ with

!Py,_,(z,0 = z+0(z-0 at z = ζ, (6.1 3 b)

Ψ1ιtri(z,ζ)=ιfiψ1ι+1ι(z,ζ) + 0(z-ζ), if n y 2 =-i. (6.1 3c)

This provides one complex field for each orbit because

Ψy(zγ=Ψ_y(l/z*). (6.14)

To get a single real field associated with the orbits Ω of Φs we set

¥"D(z) = -L{ψ,(z)+«P_y(z)}, (6.15)
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where y e Ωf the orbit ofAn corresponding to γ. In considering the products of such
fields, we need to consider the relationship between εό (y1 , y2)

 and εό ( ~ 7 1 > "~ ^2)- If
we set

the corresponding symmetry factor 5"(y1? y2) is given by

S f / (y ι ,y 2 ) = ̂ (y1,y2)/Si(-y1, -y2), -1 (6.17)

by (6.9). But since, by the results of Sect. 5, ε' is determined up to gauge
transformation by S', it must be gauge equivalent to unity, i.e.

e / (7ι J ?2) = v ( V ι ) v (72)^(^+72) (6.18)

for some function v(y). If we make a gauge transformation u(y) on εό, satisfying
(5.23), it induces a gauge transformation given by v(y) = u(y)2. Thus we may
arrange that

4(7ι?72) = 4(-7ι, -y2) (6.19)

by a suitable gauge choice, and henceforth we shall assume that this has been done.
[Alternatively but equivalently we could replace (6.15) by

ΨΩ(z) = ̂ {u(y)Ψy(z) + u(-γ)Ψ-y(z)}9 (6.20)

effectively fixing the relative phases of Ψy and Ψ -y.] This choice of cocycle takes
values amongst the eighth roots of unity, the powers of elΊl/4.

It is now straightforward to check that Eqs. (4.17)-(4.20) hold with

Ω2) = S i > ( γ l 9 y 2 ) 9 for y1 y2 = 0 9 (6.21)

and

η±(Ω1,Ω2) = ε r

0 ( y l 9 y 2 ) , for yί y2=±%, (6.22)

where yt GΩt. [The consistency of these equations is guaranteed by Eqs. (6.9) and
(6.19).] The necessary properties (5.31) follow from (6.10), because, if e^ - e2 = 0,

Ω2) = S0(el9e2) (6.23)

and

S0(^,e2)
2 = So(2e1,e2) = (-l)^ ^ = (-l)2^ ^ = l , (6.24)

whilst, if eί e2 —\,

Σ±(Ωl9Ω2) = S0(el9±e2)9

so that

^o (e, , e2) Σ± (Ω, , Ω2) = S0 (e, , e2 ± e2) ,

( _ l ) e i - ( e 2 ± e 2 ) = = ( _ 1 ) e 1 - e 2 ± l / 2 ? (^25)

and similarly for e1e2= —2.
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To complete the construction it remains to define more carefully the space in
which the vertex operators (4.4) to (4.6) act. It can not be simply 3tf ® 2tf ', where tf
is the bosonic Fock space defined in Sect. 2 for the vertex operator construction for
gL , and 2tf ' the space defined in this section for the fermions ΨΩ , because the vertex
operators (4.6) would not have expansions in integral powers when acting on all the
states in this space. The problem is that U(e9z), eeΦ5, acting on a state with
momentum x, behaves like a Ramond field if e, x eZ + \, and a Neveu-Schwartz
field iΐe xeZ. Similarly ΨΩ is an R field on states with momentum yifyγeZ+^,
γeΩ', whilst it is an NS field iΐ yγeZ. We correct for this by arranging the
momentum in the 3? and 3? ' factors to be correlated so that we always have a
product of R fields or a product of NS fields, thus giving an expansion in integral
powers of z.

To correlate the momenta in this way, we divide 2tf into a direct sum of
subspaces ffla, each consisting of states with momenta in a coset Aa of
ΛR(g)/AR(gL), 0^a^2n-l and similarly divide W into subspaces ̂  with
momenta in Λ'a, the cosets ofAJ2An. The labelling is to be arranged so that sending
Aa A'a defines an isomorphism

ΛR(g)IΛκ(gL) = Λn/2Λn = (Z2γ (6.26)

[that is, iΐΛa + Λb = Λc then Λ'a + Λ'b = Λ'c], and so that if an orbit Ωa<=;Λa, then the
corresponding orbit Ω'aaΛ'a. Then we use as our space of states

Φ (•*",, = *V), (6 27)
α

and this ensures that all the vertex operators are single valued.
There are other ways of assigning momenta. Suppose μί9...,μr are

fundamental weights of g corresponding to the basis of simple roots of (6.6), so that

and μ'l9...,μή correspond in a similar way to αi n, that is

(6.28)

(6.29)

Then for each 7, 1 ̂ 7 g r, we may use a space (6.27) where the momenta of jtfa are
taken from Aa + μ^ and the momenta of Jf fl' are taken from A'a -f //j .

7. Derivation of the Construction Using Diagram Foldings

Each non-simply laced algebra g occurs as the subalgebra of a simply-laced algebra
g0 in such a way that a level 1 representation of g0 provides a level 1 of
representation of g, because the root length of g0 is that of the long roots of g. We
can define g as the subalgebra of g0 left invariant by an outer automorphism of g,
which thus corresponds to a symmetry τ of its Dynkin diagram. These symmetries
are illustrated in Fig. 1 . Let us postpone the discussion of the special case of G2 until
Sect. 8. In the other cases τ2 = 1 . The number of simple roots of S0 left invariant by τ
is «, so that rank g = r + n. We have labelled them βi9 1 ̂  ί^ r, and β , 1 ̂ 7 ̂  n,
with

τ(βs) = β}9l£j^n , τ(βί) = βi,n<i^^r. (7.1)
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It follows from the fact, for each simple root, either τ (βj) = βj or τ (βj) βj = 0 that
this property holds for all the roots βeΦ(g0}, the root system of g0, i.e.

either τ(β) = β or τ(j8) j8 = 0. (7.2)

In any case it is straightforward to check this directly,
Let us now consider how τ is extended from the roots to the algebra g0 , which we

suppose is written in the form

[#',#'] = 0, (7.3 a)

[H\Eβ} = βlEβ, (7.3 b)

[E'9E''] = B(β9β')EW9 if β + β'eΦ(go), (7.3c)

= β H9 if β=-β'9 (7.3d)

= 0, otherwise. (7.3 e)

We can choose the cocycle ε so that it is invariant under τ

ε(τ(j8),τ(O = ε(j8,j8'). (7.4)

[To see this, we use the construction of (5.15) with the operators yt and f j ,
corresponding to βt and β , respectively, in (5.14) written in the order y l , y[ , . . . , yn,

y'n>yn+ 1> > ?r ] !t then follows that

τ ( E β ) = Eτ(β\ τ(x) H=x-τ(H) (7.5)

defines an automorphism of g0 . The Cartan Subalgebra of g is spanned by y H,
where y = τ (y\ and in this case

[y H,El> + Et^]=y {J )8 + \τ (β)} (E» + Eτ^) . (7.6)

This g0 has long and short roots given by

ΦL={β:β = τ(β)} (7.7a)

and

Φ5={i)8 + iτ( j8) : j8 τ(j8) = 0}. (7.7b)

1 1
These corresponding to step operators Eβ for long roots and — - Eβ -\ -- - Eτ(β] for

1/2 |/2
short roots.

We now wish to reobtain the construction of Sect. 4 and 6 from this embedding.
To do this we must be able to rewrite

E'(z) + E^\z) - U(β9 z) cβ + U(τ (β\ z) cτ(β) (7.8)

as a product of functions of %β + \τ (β) and %β - \τ (j8), if β τ(β) = 0. This is
straightforward for the vertex operators:

t/()8,z) = C/(ij8 + iτ(jS),z) C/(i)8-iτ(j8),z) (7.9)

as ^jδ + ̂ τ (jS) and ̂  — \τ (β) are orthogonal, but we must also be able to factor cβ

in this way. For this, we must extend the definition of cy from y eΛR(g0) to the
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d)

o3 r-1 r

1 2 3 r - 1 r

= so(2r+2)

= so(2r+1)

1 2 r - 1 r r-11 2' 1'

x^
1 2 r-1 r

g o =su(2r)

= sp(r)

1 2 3 4

V-E6

go=so(8)

1 4

Fig. 1. Definition of non-simply-laced algebras by symmetries of simply-laced algebras

lattice spanned by ^y ± iτ(j), y eΛR(g0). This lattice is isomorphic to the direct
sum AR (gL) Θ Λn and we can construct a cocycle for it by taking the product of the
cocycles ε0 for ΛR (gL) and εf

Q for Λn used in Sects. 4-6.

where 7^ =iy j ± iτfy). It is then the case that

), andso

--
1/2

where

~ -~

(7.10)

(7.11)

(7.12)

(7.13)
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To complete the connection with the construction of Sect. 4-6 we need to show
that Ψβ~ depends only on the orbit of ^β + \τ (β) under the Weyl group generated
by σα, whereαeΦ L . If β+ =y + , with jδ τ(j8) = y τ(y) = 0, then

so that

and thus either (i) β y = 29 jδ τ(y) — 0, in which case β = γ and β~=γ~; or
(ii) β y — 1, β τ(y} = — 1, in which case β = σa(y} for α = y — β and α e ΦL; or
(iii) β y = Q, β τ(y)= —29 in which case β = — τ(y) so that β' =y~. Now, if
αeΦ L , σα(j8) = j8-(α ]8)α so that σ a ( β ~ ) = β~, which shows that ^-(z) does
indeed only depend on its orbit under W(gL).

8. The Construction for G2

The algebra G2 is the only simple algebra with roots of squared lengths in the ratio
3:1. We take the long roots ΦL to be of g squared length 2, as usual, so that the short
roots Φs are of squared length two thirds. The root diagram of G2 is shown in Fig. 2.
We see that ΦL is the root system of gL = su(3), that

replacing (4.15), and that the elements of Φs correspond to the 3 and 3
representation of su(3). These correspond to the two orbits of Φs under W(gL) and
we shall label them Ωq and Ω^, respectively, so that Ωq = {y1 , y2 , 73 }, in the notation
of Fig. 2, and Ω.= {-y l 9 -y2, -y3}.

The algebra ό2 has a basis consisting of HJ

m, E^, E^j— 1,2, α G Φ L , yeΦ s ,
m eZ; and, for a level 1 representation, the algebra is given by Eqs. (2.24) together
with

[H^El] = γEl + n, (8.1)

α + 7 G Φ s (8.2a)

= 0, otherwise, (8.2b)

y + ξ£ΦL (8.3a)

7 + ̂ Φs (8.3b)

-e //m + π-(5w + λ j ) 0 ? y=-ξ (8.3c)

= 0, otherwise. (8.3d)

Here again each c (/I, μ), λ, μ e Φ, is ± 1 . [In a Chevalley basis related to this Cartan-
Weyl basis by Fy = (2/y2)112 EΊ , the structure constants would be integral.]

As in Eqs. (4.4) and (4.5), we use the usual vertex operator construction for Hl

n,
EΆ,i=i,2, αeΦ L ? nεZ, and for the short roots we introduce

) c y Ψ q ( z ) , (8.4a)

, z ) c y Ψ 9 ( z ) 9 (8.4b)
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Fig. 2. The root of diagram for G2

for γεΩq so that — yeΩq. We further need, to obtain the correct hermiticity
properties,

Ψq(zγ=Ψ9(ί/z*). (8.5)

This time the definition of the cocycle is easier because,

(8.6)

if either α or β e ΦL and the latter expression has values ± 1 on the whole of Λk (GL).
Thus, following the general construction of Sect. 5, we introduce a cocycle cγ,
defined on this root lattice with symmetry factor S(a,β) given by (8.6). The
properties we demand of the fields Ψq(z), Ψq(z\ which are not really fermions, are
consequently simpler than Eqs. (4.17)-(4.19). In view of Eq. (3.1), fore2 =f2 = 2/3,
we need

(8.7b)\ ζ \ < \ z \

with analogous equations for Kqq, and

2
Kqq(z, Q = -| z2β Ψq(z) {1 + 0(z - O2},

Kqg(z, 0 = Kqq(ζ, z) = z4/3 {ί + 0(z- O2},

(8.8a)

(8.8b)

(8.8 c)

To construct Ψq(z\ Ψg(z), we use vertex operators acting in a Fock space ' ,
generated by annihilation and creation operators oc'^ from states |x), xeΛ'

= τ/2ΛR(G2). We define

)+ t/(τ/2y3,z)}, (8.9)

and Ψq(z) is defined by Eq. (8.5) or, equivalently, by changing γt to — yi in Eq. (8.9).
It is then straightforward to check that Eqs. (8.8) hold.

It remains to place restrictions on the momenta so that Ey (z), as defined by Eqs.
(8.4), have expansions in terms of integral powers of z. We divide the space 2tf, in
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which the H[

n act, into cosets Jf0, Jfg, and J^-. With a similar division of Jtf ' into
Jf0', Jfy, and JfJ, the space we should use is

o') © (=^®^;) θ C^®^'). (8.10)

We can obtain this construction from the embedding of G2 in Z>4 = so (8)
illustrated in Fig. 1 (iv). We denote the simple roots of g0 = D4 by

αι = £ ι - £ 2 > α 2-^3 + ̂ 3? α3 = £3-£4, α4 = £ 2-£ 3, (8.11)

where ξ ί 9 l ^ z ^ 4 , is an orthonormal basis for IR4, and define an outer
automorphism τ of D4 of order 3 by

τ(αι) = α2, τ(α2) = α3, τ(α3) = α 1 ? τ(α4) = α4. (8.12)

Note that τ has the property that

9 (8.13)

for β = ai9 1 ̂  z ̂  4, and so for any
The root system of g — G2 is obtained from that of g0 = D4 by taking the vectors

ά = iα + iτ(α) + iτ2(α), αeΦfe 0 ). (8.14)

It can be again shown that, for each α 6 Φ (g0), either α = τ (α) or α τ (α) = 0, and the
vectors α have squared lengths 2 or 2/3, respectively. Then, for α, βGΛR(g0),

τ2 (/?)} = α jJ, mod 2, (8.15)

because, by (8.13), τ(/?) + τ2(β) E2Λw(gQ). The importance of this is that, since

(_l)3« ^ = (_i)« ^ (8.16)

we can construct a suitable cocycle for D4 by using a function c^ of α, invariant
under τ, because τ (α) = α. Then, with this cocycle,

τ(Ea) = Eτ(«\ τ~l(x)Ή=χ τ(H) (8.17)

defines an automorphism of D4 and this extends to D4 with τ mapping

£*(z) = t/(α,z)Ci-»t/(τ(α),z)Cs. (8.18)

(?2 is obtained as the subalgebra left invariant by τ. We take as basis the components
of

α //(z); £α(z), α = τ(α), (8.19a)

and

4= {£""(2) + £ τ(α)(z) + ̂ (z)}, α τ(α) = 0, (8.19b)
1/3

where α eΦ(g0). The latter operator can be rewritten as

U(ά,z)cdΨ(z), (8.20)

where

Ψ(z)=Ψq(z) or «P?(z), (8.21)
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with

ψ (z) = — {U(λl,z) + U(λ29z) + U(λs9z)}, (8.22)
1/3

_ 2 / £ £ /£ Λ 2 T (1 \ 1 τ-2 / i \ /o oo\
1 — 3 \ τ > 1 ^2 ^ > 3 / ? ^2 — V I / ' 3 — ^ \ 1)' ^O.Z,J)y

and ψξ similarly defined replacing λi by —λt. Thus we have regained our previous
construction.

9. Generalisations of the Construction, Triality, and the Magic Square

In this section we generalise the construction of Sects. 4-6 and make a remarkable
connection with FreudenthaΓs magic square. In Sect. 4 we saw that if A = AR (g)
and A0 = AR (gL)9 for g = so (2r + 1), sp (r) or F49 then

(a) A0 is an even integral lattice;

(b) Λ/AQ = {Aα: 0 g α ̂  2" - 1} ̂ (Z2)";

(c) /L0 u/Lα is an integral lattice;

n being 1, r — 1 and 2 respectively, that is the number of short simple roots of g. It
follows from these properties that 2AαA0c:A and Λ0c:A*, (the lattice dual to A).

Hence ]/2A is an integral lattice. Conversely given lattices A0czA with these
properties (a), (b), and (c), it can easily be checked that A(Q} \jA(l} satisfies (2.1) and
hence constitutes the root system for a Lie algebra gΛ, where Γ(m) denotes the set of
points of squared length m on the lattice Γ. Another example of such a system,

satisfying (a), (b), and (c), is provided by A = l/]/2 AR(su(n + 1)) and A0 = 2 A,
though in this case /L(

0

2) is empty so that gΛ = su (n + 1) is simply-laced but with the

root lengths set equal to 1 rather than ]/2.
These four examples have another common feature; they can be understood in

terms of the folding procedure of Sect. 7, Let A' be an even integral lattice with an
automorphism τ of order 2, so that τ(Λ') — A', τ2 = 1, and define

9 (9.1 a)

τ(x) = x}. (9.1 b)

Then properties (a) and (b) follow for some value of n, while (c) is an extra property,
which is valid if Λ'= ΛR(g') or if Λ' = ΛΛ(su(« + l))ΘΛ R (su(w + l)) and τ
interchanges the two pieces.

The cosets Aα have a property of being either even or odd, that is, if x e Aα, x
2 is

either an even or an odd integer, irrespective of the choice of x. It is this property
which determines whether x - y e TL or TL + \\ if x e Λα, y e Ab, x y is an integer if and
only if either none or two of Aα, Ab, Λα + Ab are odd, and otherwise x y G Z + \.

We say that two systems satisfying (a), (b), and (c) match if they have the same
value of n (though possibly different dimensions) and we can establish an
isomorphism between the (22)

n groups which preserves the oddness and evenness
properties.
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We now define a way of combining two matching systems A and A, satisfying
(a), (b), and (c), to obtain an even integral lattice, which we denote by Λ - A, whose
dimension is the sum of that of its components.

Λ Λ=\jΛa@Άtt. (9.2)
α

Since it is even and integral, (A - A)(2} constitutes the root system of a simply-laced
Lie algebra gΛ.^. We shall now present the corresponding multiplication rules for

the lattices AR(Br), AR(Cr), AR(F4), AR(Ar)/]/29 which match when n does. The
values n—l and 2 are special. It is easy to check that ifn — 1 the only possibilities are

AR(Br) [noting that AR(B^ = A R ( A ί ) / } / 2 ] and that

ΛR(B,) ΛR(Bs) = ΛR(Dr+s). (9.3)

If n = 2 the multiplication table giving gΛ. λ is

~=,ΛR(A2) AR(C3) ΛR(F4)

1
7—- **-R \ ^*-2J **~2 ^y ^2 "S -^fi

1/2

For n — N — 1 ̂  3, we have

—

~ ΛR (AN _ !) su (N) ® su (N) su (2 N)
1/2

AR(CN) su(2ΛΓ) so (4 TV)

The table for n = 2 bears a striking resemblence to FreudenthaΓs magic square and
this will be enhanced when we consider the relation to our vertex operator
construction.

Associated with any one of the systems A0 c A, satisfying (a), (b), and (c), we
can define bosonic fields Hl (z), l<zi<^n;E* (z), α e A(2\ and fermionic fields Ψy (z),

y e A(1\ acting in a space 3tf — 0 2tfa. We shall denote by <CΠ + x the system given by
α

g = su (n + 1), by Mn +1 the system given by g = sp (n + 1), by Θ 3 the system given
by g = F4, and henceforth omit from consideration g = Br which is only relevant for
n = 1. Corresponding to the combination of lattices (9.2), we can define a bosonic
combination of these fields, given two matching systems Λ and A, which will yield a
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level 1 representation of the affinised version of the simply-laced algebra gΛ.^
defined by (9.2). This representation is generated by the bose fields:

Hl (z), 1 g / g dim A\ Hj (z), 1 gy ̂  dim A\

E\z\ E«'(z\ αe42), α'eΛ^; (9.4)

Ψ*(z)Ψ*'(z), yeΩψ f eQψ l^

The main construction of this paper resembles this but consists instead of
multiplying the system associated with A by yet another system that we shall denote
lRn, say, consisting of \n(n + 1) real fermi fields, to obtain

Hl(z), 1 ^ / ^ d i m Λ ; E\z\

Ψy(z)Ψ0u(z)9 yeΩ ί j ? ί£i<j£n + ί.

Reinterpreting the tables in terms of (9.4), we can augment them by an extra row
and column to take account of (9.5). The resultant tables are:

so (TV) su(N) sp(TV)

su (TV) su (TV) Θ su (TV) su (2 TV)

sp(yV) su(2TV) so (4 TV)

where, as before, TV = n + 1 ̂  4. In the special case of n = 2, in which we can also use
(D3, we now obtain precisely the magic square of Freudenthal:

<D3

(D3 jF4 E6 EΊ Es

All of the corresponding representations of Kac-Moody algebras are at level 1
except for the su (TV) obtained from IRjy x <CN and so (N) obtained from IR^ x IRN,
which are level 2. The Es entry in this last table was already constructed in this
fashion in [9] and the other entries in these tables constitute the promised
generalisation of that work.

The notation IR, C, IH, © that we have used is of course suggestive of the real,
complex, quaternionic and octonionic division algebras, respectively, and is
justified because the real dimensions of these algebras, 1, 2, 4, and 8, respectively,
coincide with the number of fermi fields associated with each coset A/A0 in the
corresponding system. These fermi fields can be used to define the appropriate
multiplication law [10].
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10. The Virasoro Algebra

In this section we verify directly that the Sugawara construction of the Virasoro
algebra yields the anticipated values (1.6) of c in (1.2). This argument generalises
one due to Frenkel [10]; see [3] for a review. We shall calculate

• (̂z) = §Σ x Ta(z)T"(z) *, (10.1)
P a

using the vertex operator representation of Sects. 4-6, where

s] (10.2)
r

with r = rank g. The part of the sum corresponding to the Cartan subalgebra of g.

Σ ϊ Γ"(z)Γβ(z) * = t:p;(z)2:, (10.3)
α = 1 j = 1

where Pj (z) is defined by Eq. (2.23). The corresponding contribution from the long
roots of g is

Σ ϊ £«(z)£-«(z) * = iΣ {α ^00}2 > (10 4)

where the sums are over α eΦL, by the same argument as in the simply-laced case
(see e.g. [3]). The contribution of the short roots is

l i mΣ Σ

:exp(/r [β(z)-β(Q]): [°0 ΨΩ(z)ΨΩ(ζ) ° + A(z9ζ)]--±-±l, (10.5)

where /—.-

J(z,C) = f4 or ^"^Ύ (10 6)

in the Neveu-Schwarz (NS) or Ramond case (R), respectively. We can rearrange
(10.5) as z tends to ζ of

Σ Σ :exp(ι r[β(z)-β(0]): <FΩ (z) <FΩ (Q 0°

1). (10.7)
V ^ ~ S ; γθφL

Now
1 dΨKγv, ° ψ (7\ψ (r\ ° _ ° Q_ ψ™r^c° ^«(z)^(ζ) ° - ° -^-^

so that (10.7) yields

o ?

γeΦs
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where | Ω \ denotes the number of points in an orbit Ω, and ε is 0 in the NS case and γg
in the R case. If we write

1 dΨτ ^ ~ ° "' ° +ε, (10.10)
2 ° dz Ω

each LΩ(z) satisfies the Virasoro algebra with c~\, but they do not commute for
different Ω. Thus

Σ * Γβ(z)Γβ(z) ϊ -:P(z)2: +1 Σ: [α P(z)]2: +2|Ω| Σ^(^) (10.11)
α α e Φ Ω

To simplify this, we use

Σ ααr=χ/ r, (10.12)
α e Φ

from which it follows that

rχ = 2nL + 2% (S/L)2 , (10.13)

and so

1+iχ^iβ. (10.14)

This means that we can rewrite

v 2 . i ' I X"1 r /_Λ / Ί A Ί c\
z)= Σ :

β

where we have also used (1.5).
Evaluating case by case, we find that the factor

_,
n+3'

(10.16)v ;

where 77 is again the number of short simple roots of g. Thus, for so (2r + 1), which
has n = 1 , this is unity and we have the Virasoro algebra corresponding to a single
real fermion, which has onumber ^ as required. In general the onumber associated
with

ΪTϊl^W 00.17)

L4iί»<"+'>^
as only the diagonal terms contribute and there are ^n(n + 1) of these. This agrees
with (1.6) and (1.11). We can verify directly that (10.17) stisfies the Virasoro
algebra, by using

M*) = i : {yP&}2 : +i ε/'(2y,z)c;2 +it/'(-2y, z)c'_2

y, (10.19)

where y eΩ' and the notation is as in Sect. 6.
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11. Conclusion

In this section we want to mention our reasons for thinking that the nature of the
construction we have found is relevant to a better understanding of the fermionic
string theory or possibly, superstring theory.

The Kac-Frenkel-Segal construction using tachyon vertex operators furnished
level 1 representations of affinisations of simply-laced Lie algebras. It was pointed
out by Goddard and Olive [4] and by Frenkel [12] that a covariant version of this
construction could be applied to "Lorentzian algebras" corresponding to even
integral lattices in twenty six dimensions or less. The even self-dual lattice in twenty
six dimensions, II25'1 related, it was conjectured, to the 26-dimensional theory of
open bosonic strings.

There is a corresponding algebra II9'1 for a ten-dimensional even self-dual
lattice and its Dynkin diagram isE1Q, the natural extension of those for the E series
of Lie algebras that have been proposed as the symmetry of 11-dimensional
supergravity theory when compactified to one dimension [13]. However, EίQ would
seem to be an inappropriate Dynkin diagram for the fermionic string theory in 10
dimensions for two related reasons. First, the algebra II9'1 can be represented by
bosonic tachyonic vertex operators the critical dimension of whose Virasoro
algebra is 26, not 10. Second, the fermionic string theory possesses two tachyon
states with mass squared — 2 and — 1 respectively, rather as if it corresponded to a
non-simply laced algebra. The first tachyon actually decouples but its Regge
recurrences are physical. The second tachyon corresponding to the "short roots"
has an emission vertex proportional to : exp (ik - Q): with k2 — 1, times a fermionic
field, the Neveu-Schwarz field. This therefore resembles the construction of our
paper when the ratio of the squared length of the roots to the short roots is 2. We
therefore want a non-simply laced Dynkin diagram with 10 points, which can
presumably be obtained by our folding procedure from a simply-laced diagram. An
example of what we mean, though we are uncertain that it is the correct example, is
provided by the Dynkin diagram of the Lorentzian algebra corresponding to the
18-dimensional even self-dual lattice HIΊΛ. Its diagram has 19 points and just one
TL2 symmetry:

Folding the diagram, identifying points related by the symmetry, leads to a non-
simply laced diagram with 10 points as described:

Our suspicion is that this or a similar diagram, perhaps with the arrow reversed, is
relevant to the fermionic string theory. To substantiate this we must repeat our
analysis in the Lorentzian situation. This is why we tried to couch our arguments in
as general a form as possible.

If we could generalize our procedure in this way we would have understood how
the fermionic string theory could be obtained from a bosonic string theory in a
higher number of dimensions. It would be more statisfactory if the higher number
of dimensions were 26 rather than 18, but the II25'1 Dynkin diagram possesses an
infinite number of points so that an infinite order symmetry would be needed.
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Another point of potential relevance to super or heterotic string theory that we
should like to point out occurs in Sect. 9 where we reveal a connection between
octonions, F4, and E8, and hence with (F4)L = D4.

Finally let us mention that the representations obtained for the sp (77) algebra
allow a realization of the FQS [7] discrete series of the Virasoro algebra in terms of
bosonic variables.

Goddard, Kent and Olive [14] gave a construction of the FQS series using the
Sugawara construction for the sp (n)/sρ (n — 1) x sp (1) coset. Using formulae (4.4)
and (4.6) for the sp(n) generators in the expressions of [14] the contributions
coming from the simply-laced part cancel out leaving only the contributions
originating in the ΨΩ fields. Using the explicit expressions for ΨΩ, (6.11) and (6.15),
it is possible to write the Yirasoro generators for c < 1 purely in terms of bosonic
fields.
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Note added in proof. In the course of the preparation of this paper, we became aware of other work
on non-simply-laced algebras. A paper by A. Bais, F. Englert, A. Taormina, and P. Zizzi [15]
deals with representations with level higher than 1, such that the Virasoro c-number is an integer,
and does not involve the use of fermion fields. Thus it does not appear to be directly related to our
present work. On the other hand, work to appear by D. Bernard and J. Thierry-Mieg has a
considerable overlap with that presented here, and we are grateful to them for comparisons
between our approaches.




