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Abstract. In this paper we examine the nonlinear and linear stability of various
rotating vortex patches. These patches include the Kirchhoff ellipse, the Kelvin
waves, and the co-rotating uniform m vortices. These are achieved by using
relative variational methods and spectral analysis. Thus, we extend ArnoΓd's
idea for stability problems in [1965, 1969] to a non-smooth symmetric setting
and also relate that to the usual linear stability analysis.

1. Introduction

Consider the motion of an incompressible flow with unit density in .R2 in the absence
of external forces. At any instant, the velocity field («, v) = (φp — φ^) for some
stream function φ on R2 = {x = (x, j/)}. The vorticity ω = v^ — Uy =
— ψ__ — φ__= —Δφ. We like to use the vorticity ω as the independent variable.
Given ω, let us choose a stream function φ = \Gω = (l/2π) jR2ω(x/)In(1/|x' — x\)dx\
so that the velocity field is zero at infinity. The vorticity evolves according to the
vorticity equation: ωt + uω^ + vω^ = 0. Denote by Φt(ω) the vorticity at time ί, with
initial vorticity ω.

The energy E, the circulation C, the centre {xo,yo\ a n d the angular
momentum J are preserved under the motion Φt. Recall that for a given
vorticity ω, E = ^<ω, φ) = ^R2ω(x)φ(x)dx, C = jR2ω(x)dx, x 0 = jR2χω(x)dx,
y0 = \R2yω{x)dx, and J = \R2\x\2ω(x)dx. A vortex patch ω is a vorticity in the form
χA, where χA stands for the characteristic function for a bound (measurable) set A in
R2. χAj is called a component of χA, if Aj is a component of A. Vortex patches and
their components are all preserved under the motion Φt.

A vortex patch χA is said to be stationary if Φt{χA) = χA for all t ̂  0. A vortex
patch is said to be rotating if Φt(χA) = χR A for all t ̂  0, where Rθ stands for a
rotation through angle θ. The Kirchhoff vortices χE (see Sect. 4) in which E is an
ellipse, are our model for rotating vortex patches. Two families of rotating vortex
patches have been found recently. They are (a) the m-fold symmetric "Kelvin" waves
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X m (see Deem and Zabusky [8], Burbea and Landau [7], Wu, Overman and
Zabusky [33], etc.), (b) the co-rotating uniform m vortices (see Dritschel [9].) Denote
by Ψ* the space of all vortex patches with a L1-topology induced from the ίΛnorm
on vorticities. Throughout this paper, our stationary or rotating patches will have
C 1 boundaries.

Our basic problem in this paper is to examine the stability of rotating vortex
patches from various viewpoints. More precisely, we aim to carry out theoretical
investigations and concrete computations of the following topics:
(a) the L1-stability via an energy method,
(b) the neutral stability (for a definition, see Sect. 3) through a spectral analysis,
(c) the relationship between the energy method and the spectral analysis.

Let us mention briefly (some of) of the literature which is closely related to our
studies. Some general references are Lamb [17], Aref [2] and Zabusky [34]. In 1880,
Kelvin ([17] p. 230) established the neutral stability of the circular patch in the
plane. In 1887, Kelvin [15] proposed a variational principle for steady vortex
motions. In particular, a steady vortex motion is stable if the energy reaches a
maximum or minimum within a given vorticity and given moment of momentum at
that vortex motion. ArnoΓd [3,4] presented a method for proving a nonlinear
version of the classical Rayleigh criterion for neutral stability of 2-dim shear flows. It
involves a combination of a relative variational principle and convexity arguments.

Benjamin [5,6], Turkington [27, 28] and others, established variational
principles for steady vortex patches. Marsden and Weinstein [20] exploited
ArnoΓd's idea and put inviscid flows in a geometric setting through Poisson
structures. Through this setting, Wan and Pulvirenti [30] established the in-
stability of circular patches via either energy estimates or angular momentum
estimates. See also Marchioro and Pulvirenti [19] for nonlinear stability of
stationary vortex distributions.

In 1876, Kirchhoff [17,18] found his elliptic vortex. It was proved by Love [18]
that Kirchhoff vortex χκ is neutrally stable iff its eccentricity ^2^/2/3. The In-
stability for the same range, has just been established in Tang [26]. The rotating
motion of two equal uniform vortices was studied by Saffman and Szeto [25]. The
neutral stability of Kelvin waves and co-rotating uniform m vortices have been
analyzed by numerical methods in [7,10] respectively.

Now, let us outline the general lines of our approach. It is rewarding to put the
motion of incompressible inviscid flows in R2 in a Hamiltonian setting. The
sympletic leaf M through a vortex patch ω 0 is an isovortical surface, consisting of all
isovortical variations of ω 0 (cf. [20].) The nature action of rigid motions in R2 leaves
the leaf M (a symplectic manifold), and the energy E (a Hamiltonian) invariant. The
angular momentum, centre of vorticities are the corresponding conserved
quantities.

A rotating vortex patch will be regarded as a relative equilibrium with centre zero
(x0 = y0 = 0) and the isotropy group = the circle group S1. For a non-stationary
rotating patch χA9 the S1 action is free near χA and the subspace M o = {ωeM\ J(ω)
= J{χA\ xo(ω) — yo{ω) = 0} is a S1 invariant manifold. We expect that χA is a critical
point of the energy function on M o . Furthermore, we can verify the nonlinear
stability of this rotating patch χA by establishing that the energy E has a non-
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degenerate ^-invariant local maximum at χA on Mo. The usual difficulty
concerning the non-smoothness of the function E in our setting can be overcome by
techniques used for circular patches in [30] or elliptical patches in [26].

The commonly studied linearized equation possesses a Hamiltonian structure
with the quadratic term of E = E + \ΩJ as a Hamiltonian. The existence of such a
structure is suggested in Holm, etc. [14] Appendix A, and Abraham and Marsden
[1] p. 252. From this fact, we are able to obtain our understanding of the linearized
equation in a systematic way. In particular, they provide us, in both the theory and
concrete examples, the direct connection between energy calculations for the
nonlinear stability and the spectral analysis for the neutral stability. The separation
lemma in Sect. 3 enables us to reduce this problem from an infinite dimensional into
a finite dimensional one. The general idea of reduction for a linear Hamiltonian
system has been used in Williamson [32] as a first step toward obtaining normal
form for quadratic Hamiltonians. The relationship between stability and spectrum
for a linear Hamiltonian system with periodic coefficients can be found in Krein
[16].

Basic theorems about a relative variational principle, and a L1-stability result for
rotating patches are stated in Sect. 2. We omit their proofs as they are basically a
suitable abstraction of the argument in [30, 26]. We derive the linearized equation
in Sect. 3, and prove fundamental facts about this equation. It is shown that if the
function E has an odd index, then the vortex patch must be unstable. To illustrate
these basic results in Sects. 2 and 3, we apply them to the studies of Kirchhoff vortex
patches in Sect. 4. The finite Kelvin waves JΓm may be regarded as bifurcating from
the circular patches. From this observation, the results and methods in Sects. 2 and
3 are applied to get information about nonlinear stability and neutral stability of
these Kelvin waves near the circular ones in Sect. 5. The uniform m vortices ?Γm are
the desingularization of Thomson's m vortices. After scaling, they can be regarded as
a continuation of Thomson's m vortices in a suitable sense. Again, using theorems
and methods in Sects. 2 and 3, we obtain L1-stability for a vortex pair (m = 2) in
Sect. 6, and information about nonlinear stability and neutral stability for those
uniform m vortices ?Γm with small supports in Sect. 7. In order to make a smooth
presentation, we put several technical propositions in the Appendices (A) through

P)
Finally, let us remark that our methods can also be applied to other relative

equilibria, say with the real line R as the isotropy group. The translating vortex pair
[24], Hill spherical vortex [17], and Norbury's spherical-like vortex [23] belong to
this category. For further information, please consult Wan [29].

2. A Variational Principle and the Nonlinear Stability

Following tradition, we also use an orthonormal frame ex9 ey which rotates around
the origin with a fixed angular velocity Ω so that the coordinates are related by

x\ fcosΩt -smΩt\fx\/ _ tm r

_ = . ^ _ ](x = x, y = v at t = 0). In this frame, the relative
y) \smΩt cosΩtJ\yJκ y y }

velocity field (u, v) = (ιj/y, - φ j ( ΞΞ ψyex - φxey) with φ = φ + \Ω(x2 + y2) the relative
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stream function. It is well known that a vortex patch ω = χA is rotating with an
angular velocity Ω iff φ = constant (locally) on the boundary dA of A.

Now, take a non-stationary rotating patch χ^, and notice its centre must be at
the origin. This S1 orbit χR A possesses a cross-section πα = {ωeir\ Jαω = 0} at χA in
the sense (4/dθ)$<xχRA φ 0 at θ = 0 for some smooth function α = α(x, j/). Let M be the
"manifold" in tV defined by M = {ωeir\ω has a fixed number of components with
constant circulations}. Denote by M o the "submanifold" in M defined by
constraints J = constant, x 0 = y0 = 0. A rotating vortex is simply an extremum of
E = E + \ΩJ on M or on M o . In order to obtain stability from variational
principles, one needs to establish on a priori estimate on Monπa near χA.

Fix a coordinate system (ξ, η) in the (x, y) plane, so that the above rotating patch
χA is described by ξ = ξo(η) for some smooth function ξ0. Let Cί,..., Ch ( « circles) be
the connected components of <L4. Thus τ/eft copies of S1. Set β = {qeL2{n)\\Clqdη
= '"=ίchqdη = 0}. Set ^ = {qeΆ\\xqdη = \yqdη = \{x2+ y2)qdη = \xqdη = 0}.
The linear spaces £1, Jί can be regarded as the "tangent space" of M, and Mor\πa,
respectively. Computations show that the "second order" term E2 of E = E -f \Ω- J
is given by E2 =W$ldξ)/l)q\η)dη + \\G{η,η')qiη)q{η')dηdη'l Here, df/dξ,
I = d(x9y)/d(ξ,η)9 G are regarded as functions of fj (̂  and η') by restricting to dA.

Now, we are ready to state our main results in this section.

Theorem 1. (A priori estimate) Suppose a non-stationary rotating vortex patch χA

with an angular velocity Ω satisfies the following two conditions (1) 0 < Ω < 1, and
φ\dA > φ\δD for some domain D containing A. (2) the quadratic form E2 is negative
definite on Hilbert space Jί. Then, there exists a constant c > 0, such that
E(χA) - E(χB)(=E(χA) - E(χB)) ^ c\χA - χB\

2

Ll provided χ β e M o n π α , \χA - χB\Lί

small, and B^D.

Remark 1. The condition (1) insures that the values of φ inside A are larger than the
values of φ on D\A. Thus, one can carry out the reduction process as that in [30,26],
for the non-stationary rotating vortex patch χA.

Remark 2. It seems to the author the hypothesis in Theorem 1 are essentially
necessary in order to reach the desired a priori estimate.

We shall say that a rotating vortex patch χA is L1-stable relative to a disk D
centered at the origin (containing A) if given any ε > 0, there exists δ > 0 such that, to
each ί ^ 0, IΦt{χB)- Φt{χA)\^ < ε for some t! provided \χB - χA\Li < δ, support of
Φt(χB)^D for all f , 0 ^ ί ^ ί .

Using the established a priori estimate as that in [30,26], we have

Theorem 2. Let χA be a non-stationary rotating vortex patch which fulfills conditions
(1) and (2) in Theorem 1, with D a disk centered at the origin. Then χA is ^-stable
relative to the disk D.

3. Linearization and Neutral Stability

As before, we fix a coordinate system (ξ, η) in the (x, y) plane around a rotating vortex
patch χA, so that the boundary dA of A can be described as ξ = ξo(η) for some C 1

function ξ0. Denote by ξ = ξ(η, t) the evolution of the boundaries of vortex patches



Stability of Rotating Vortex Patches 5

χBt near χA with C(χB) = C(χA), as long as they remain radial. The normal component
I(Bξ/dt) of the velocity at the boundary dBt must be equal to the normal component
dιj//δη of the fluid velocity at the boundary. Thus, we obtain the evolution equation:
I(dξ/dή = (d\!//dξ)(dξ/dη) + (dιI//dη);$ξ

ξoIdξdη = 0. The linearized equation in q
= Ioδξ (Io = I(ξo(η),η)) becomes

§ with J?q = (^llX + $Gq'dη\ qeQ.

The linear space Q has a weak symplectic structure ω(fη9 gη) = §fgηdη. (One can
verify that this is the same weak symplectic structure as defined in [17] with φί=f9

φ2 — Q> See Corollary 1 of Appendix (A).) Notice d£2(q)(q) = (J£q,qy. Thus,

Theorem 3. (Linearization) The linearized equation dq/dt = {^q)η on Q is a
Hamiltonian system with Hamiltonian system with Hamiltonian E2 —\iΆ >^°ί> t n e

quadratic term of E, and the weak symplectic structure ω(fη,gη) = \fgηdη.
We shall say that the rotating vortex patch χA is neutrally stable if the linear

transformation (^q)η on Q has only purely imaginary eigenvalues. Thus, χA is
neutrally unstable (or instable) iff (if q)η on Q has an eigenvalue with positive real
part. One expects neutral instability implies the L1 -instability.

The induced transformation of (3fq)η on Jί can be put in the form (Jfq)η with
C/Cq = $£q + (<Sfq,aηy{x2 + y2). One verifies that q = {Jfq)η on Jί is again a
Hamiltonian system with the Hamiltonian E2\Jί and the restricted symplectic
structure from (λ By Propositions 1 and 2 in Appendix (A), we know that both
(S£ q)nX<£ q)n have discrete spectra and {eigenvalues of («£?g)J = {0,0,
± iΩ} u {eigenvalues of Jfη on Jί}. An operator is said to have discrete spectrum if
its spectrum consists of isolated eigenvalues with finite multiplicities. From this fact,
one can readily derive relationship between nonlinear stability and neutral stability.
Immediately, one sees that if E2 has a non-degenerate local maximum then the
system must be neutrally stable (by using E2 as a Lyapunov function).

Let us enclose a portion Σ' of the spectrum oϊ(yfq)η on Jί by a simple curve Γ9

symmetric with respective to x-axis and y-axis. The projection associated to Σ' is
defined by PΣ. = ( - l/2πθjΛdC/Jf, - C)

Lemma 1. (a separation lemma) (a) Jί = PΣ>{J^) ®{I — iVH ΛO is a decomposition
into symplectic subspaces, skew-orthogonal to each other.

(b) E2{v, + υ2) = E2{υx) + E2(υ2) for (υu

Proof. To see (a), it suffices to observe ω(Jfηu, v) = ω(u, Xηυ).
To see (b), it suffices to notice (Jfv1, v2 > = ω((Jf t^),,, v2). To each λeΣ(Jfη) the

spectrum of Jfη, set N[λ] = P[λ] with [A] = {λ91, - λ9 - X} (by Lemma 1, (a), I, - A,
— λeΣ(Jfη)). We know that these symplectic sub-spaces are linearly independent
and their linear combinations from a dense subspace of Jί.

The index of — E2\Jί is equal to the dimension of maximal linear subspace on
which - E2 is negative definite. The index of - E2 \ Jί is always finite. If - E2 \ Jί has
an even index, the system can either be neutrally stable or not. (Such examples are
given in Sects. 5 and 7. See Remarks 3 and 5.) However, for - E2 \Jί being odd index
we must have instability.
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Theorem 4. (Instability) Suppose — E2\Jf is non-degenerate and has an odd index.
Then the linear transformation (£?q)η has an odd number of pairs of eigenvalues in the

form ±A,A>0.

Proof. Set Σ* = {λeΣ(Jfη)\ — E2 can assume negative values on N[λ] (defined
after Lemma 1)}. The number of elements in Σ*, must be bounded by 4 index
( — E2\Jr)< oo. For λφΣ*,λ must be purely imaginary. Consider the invariant
decomposition Jf = PΣ*{Jf)®{I - PΣ*)\^) = {(vί9 v2)}. For E2(v2) ^ 0,by Lemma
1, (b), and the observation after that, index of - E2 \ PΣ*{Jf) = the index of - E21 Jί.
By choosing a symplectic basis on the finite 2m-dimensional subspace PΣ*{Jf\ we
have

q = RSq, where qeR2m R =

1

1

0

1

- 1

0

- 1 '

Let λί9...,λ2m be the eigenvalues of RS and s l J . . . s 2

symmetric matrix S.
the eigenvalues of the

= detKS = λ1 λ 2 m # O (detR = l).

For eigenvalues of RS occur in quadruple {A, — A, A, — A), the oddness of the index
of — E21PΣ*(JV)9 implies that si s2m has a negative sign. Therefore, there must be
odd number of pairs of eigenvalues in the form + A, A > 0. This completes the proof
of Theorem 4.

4 Kirchhoff Elliptic Vortex

Our basic example in which our basic theorems in Sects 2 and 3 can be applied is that
of the Kirchhoff elliptic vortex χκ, where K = {(x9 y)|(x2/α2) + (y2/b2) ^ 1} (a > b).
This vortex χκ rotates with angular velocity Ω = (ab/(a + b)2)( < | ) . In this section,
we only outline the processes and state the results. For detailed computations
consult [26]. Let us introduce elliptic coordinates (ξ,η) via x + yi = ccosh(ξ + iη),

c = Ja1 — b2. The ellipse dK is described by ξ = ξ0 a constant function, with
c cosh ξ0 = α, c sinh ξ0 = b.

By matching solutions of — A φ = χκ inside and outside of K along dK as a C 1

function, we have

2U2a2b

2(a2 + b2)\a
inside

- — ξ—-re 2ξcos2»7 + — c2[cos2/jξ + sin2/ίξ + cos2^] +

outside K.

Choose a cross-section πα by taking α = xy, so yΓ = orthogonal complement of
cos η, sin η, cos 2τ/, sin 2fy. It is not difficult to verify for m = 1,2,...
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(0 ?G(ξ0-

(ϋ) )πG(ξ0- iη

coshm^o
-~ memξΰ

 c o s m > ? '

sinh mξ0 .
• -,— sin mη .

Hence, the linear operator 5£q = — (ab/(a + 6)2)g +

eigenfunctions

cosmη

with eigenvalues

ab

has

cosh/

me
mξo

ab sinh mξ0'

On JΛ the largest eigenvalue of S£q is given by -{ab/{a + b)2) + (cosh 3ξ0/
^0) = (α2(α - 3b)/3(a + b)3). Therefore, E2 = ^<^, if^> is negative definite if and

only if a < 3b. One can verify that φ~ ι(\j/\δA)\dΛ is a simple closed curve, and it can
enclose a disk D (centered at the origin) which contains properly the ellipse K. Now,
we can apply Theorems 1, 2 and 4 to Kirchhoff vortex χκ and conclude:

Theorem 5. (a) When a<3b,E has a non-degenerate local maximum at χκ on
Mor\πan{χB\B<^D}. (b) When a < 3b, χκ is ^-stable relative to D. (c) When a/b is
slightly larger than 3, —E2\Jί has index 1. Hence, χκ is not neutrally stable.

Write q = ]Γ (Λm cos mη 4- Bm sin mη\ the linearized equation

q = (ifq) becomes:

ab

ab

b)2

sinh mξ0

coshm^o

(a + ^)2

m = 1,2,...,

which is the same as that in Love [18]. On the invariant subspace [cos mη, sin mη],
(&q)η has eigenvalues ±iλm, λ2

m = ±[((2ab/(a + b)2)m- I) 2 ~((a- b)/(a + b))2™\
For λ\ — (a2b2/(a + b)3)(3a — b)(3b — a), we obtain that χκ is not neutrally stable if
a>3b.

Since our energy function E, and the constraints both are invariant under a Z 2 -
action (rotation on R2 by 180°). One can expect a pitchfork bifurcation at a/b = 3. As
suggested by Appendix (B), computations on C 1 ^) can be carried out in smooth
setting.

Let us express a typical element in J£2{η) as X + Y+Z with X =
Y= (αo/2) + α : cosη + α2 sinη + a3 cos 2fy + α4 sin2>;, (x, α 0 , . . . , a4eR)

Ze[sin 3η, cos 4?/, sin 4η,...] (the closure of the linear span of

sin 3η, cos 4η,...).

Expand E = ±(ω,φ) in x, Y,Z with X + 7

Constraints are given as:
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Restricting E to the constraints:

£(x,Z) = ^(Z,£}Z) + x\ά,Z) + >-• +yx* + •••for some άeC\yeR.

ψ- = Z + x2ot + . . . = 0 implies Z = - x 2 ^ " 1 ! * +
oZ

Restricting £ further to (dE/dZ) = 0:

The computations of a (or /?) involve about 50 terms of integrations, some
of them are not easy. The γ involves about 30 terms. The complexity in computa-
tions discourages the author to find out the numerical value of the number
f —^<ά,<^~1ά>. From the numerical results in [11], it suggests that c =
f — \(β->y?~1ά> may be positive. If c > 0 , then for a/b slightly larger than 3,
there exists a stable elliptic-like rotating vortex χB having the same circulation,
centre, and angular momentum as that of the unstable elliptic vortex χκ,

5. Finite Kelvin Waves CfCm

Consider wave motions of the boundary of a patch χB near a circular patch χv, with
U the unit disk. Thus, we examine the linearized equation of motion in a rotating
frame with a suitable angular velocity Ω. Let (r, θ) be the polar coordinates fixed in
the rotating frame.

Following the approach in Sect. 3, ψ = φ -\-\Ωr2,

for some constant c( = φ(0) — i).

= ΨξQ + \Gq = ( - i + Ω)q + \Gq. Thus,

-—

^f (sin mη) = 1 — \ + Ω -f —- I sin mη, m ^ 1.

On the subspace spanned by cos mη, sin mη, q = Am cos mη + Bm sin m/7, one has

Hence, for Ω = Ωm = (m— l)/2m, 4 = 0 one finds an infinitesimal wave rotating with
angular velocity Ω in the shape r=l+Am cos m?/ + £?m sin mη (Am, Bm small). These
waves are called the (infinitesimal) Kelvin waves.

Kirchhoff vortex can be regarded as a finite version of Kelvin waves with m = 2.
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Recently, finite version of Kelvin waves Jfw with m > 2 has been obtained both
numerically and theoretically [7,8]. According to Burbea, Jfm can be represented in
complex coordinates as χφilωlύίy where

φ(ω) = ω[\ + εω~m + /?2ω~2m + •••],

with βn = 0(ε2) for n ^ 2

for ε > 0 and small.
These solutions are invariant under Zm-action generated by rotation z-+ze2πi/m.
Let us examine the energy function* £ near jfm for a fixed m, m > 3, through the

rest of this section. We choose α = Imz m (the imaginary part of zm) to define the
cross-section. Consider J£? εq = rεq + \Gεq with rε = (dφ/dξ)/I0. In the limit as ε \ 0,

= 0}, and cS?S cI sin mη J

Thus, —E2=—^(q,J£?0q} on JV° is non-
sinmfjj

degenerate and of even index 2(m — 2). So does — E2 on J^ ε for small ε > 0.
Therefore, E is neither a local maximum nor a local minimum on the Mor\πa, for
small ε > 0. To obtain a variational characterization, we need to restrict ourselves
further to Zm-symmetric perturbations.

Let Jf*m, Jίε

m, i^m be subspaces of fixed vectors in Jί° and Jfε, Ψ* under the Zm-
action respectively. For E2 is negative definite on Jf®m, E2 is negative definite on Jίε

m

for ε > 0 small. Let d% > 1 be the unique solution of the equation ^(1) = \j/(d)
or lnd = Ωε

m(d2 — 1). Denote by D a disk centered at the origin with radius dm,
\<dm<d^.By suitable modifications of the proofs of Theorems 1 and 2, we obtain:

Theorem 7. (a) For ε > 0 and small, the energy E has a non-degenerate local maximum
at Jfw on { χ 5 G M o n π α | χ β G ^ m , B^D}. (b) For ε > 0 and small, Jfm is ^-stable in
fr

m relative to D. (Notice that ir

m is invariant under the flow Φt.)
Next we consider the question of linearized stability for JΓm. The above theorem

only insures neutral stability under Zm-symmetric perturbations. In the limit ε \ 0,

^ η

n ^ 1. So that the limit system has eigenvalues ± /[(— \ + Ωm)n + ^] and is neutrally
stable. One expects that:

Theorem 8. For ε small and positive, JΓm is neutrally stable.

Proof. Consider the invariant decomposition Jίε = PΓ(Jίε)@(l — PΓ)(J^ε) into
symplectic subspaces. Here, Γε(ε ^ 0) denotes the portion of eigenvalues branching
off from ± Ϊ [ ( —i + β J n + £] for 2<,n<m. At ε = 0, E2 is negative definite on
{I-PΓo){Jί0) and positive definite on PΓQ{Jf°). Thus, for ε small and positive,
E2 is again negative definite on (I — PΓ}(JfB) and positive definite on PΓ(^Γe).
Consequently, (Jfq)η has only purely imaginary eigenvalues (near ±/[( — i +
fljw + ϋ l a n ( i ^m is neutrally stable.
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Remark 3. The Kelvin waves Jf m is an example, where —E2\Jί has an even index
and the system is neutrally stable.

Remark 4. As pointed out by a referee, the bifurcation theory of Kelvin waves
should eventually be put into the context of Hamiltonian theory with S1 symmetry
that is currently under investigation by Golubisky, Stewart, and Marsden.

6. A Co-rotating Pair

We like to study a co-rotating pair χW9W=WovWί,2Lsa. desingularization of a pair
of point vortices, (±1,0). Denote by (r0, θ0), (rι, 6̂ ) the polar coordinates centered at
(1,0), (-1,0) with polar axes in the directions (1,0), (-1,0). Write daj = rjdrjdθj,
j = 0,1, as the area elements.

Set 9l = {(r o ,r 1 ) | r j eC 1 on θp 0 < r / ^ ) < 1, j = 0,1}. To each ( ^ r ^ e S ί , let
Wj = {rj^Tj(θj)}J = 0,1, W= WQKJW^ Thus 91 can be regarded as a subclass of
vortex patches having radial boundaries via (r0, rx) -> χw uW . We put a (^-topology
on 91.

As suggested by Theorem 1, consider the following optimization problem. The
solution will be a rotating vortex patch with a nice variational characterization. Let
C° = \Woda^ C1 = \Wιdau S = \WoydaQ - ^Wιyda1 and recall x0 = Jxω, y0 = \yω.

(CP) Maximize E = i(ω,ψ) in 91, subject to C° = C1 = const-
ant, x0 = y0 = 0, and S = 0. The functions E (by Proposition 3 in Appendix (B)),
C°, C1, J, x0, y0, S are all smooth on 9ί (with the C1-topology). This is our technical
reason for restricting our attention to the class 91 for a moment, so that one can
restore or carry out the analysis in a smooth setting. The condition S = 0 is imposed
so one can eliminate the S ̂ symmetry of our problem.

Rescale the variables εR0 = r0, ε i^ = r l 5 ε > 0 one sees

J/ε2 = (2ε J Ro cos θodAo + ε2 j Λg<L40) + (2ε J Rγ cos β ^ ^ i + ε2 j tf2^)

+ j dyl0 + J ί/ !̂. (Here, ε 2d^ t = dat.)
Wo Wι

And

£ / ε

4 = i<w; ^ ε > = i( J » F £ ^ 0 + j ^ ^ J with Ψε = φ/ε2.

Take ε \ 0 by dropping some unimportant constant depending on ε. One is led

to:
(CP°) Maximize Eo=%(W,Ψoy, subject to J dA0 = j dA1 = constant,

j RocosθodAo+ J RιcosθίdAί=0,

j Ro cos 0o^4o ~ J ^ i c o s Q\&Aγ = 0,

J Ko sin θod/lo — \ Rλ sin 0 ^ ^ ! = 0,
Wo Wi

j Ro sin θoί/^o + j Rx sin β^Aj = 0,
Wo Wx
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with

(Here, c is a suitable constant.)
Hence, the problem (CP°) becomes decoupled. Namely, forj = 0,1, we maximize

E^=^{WpΨ^)9 subject to $WjdAj = constant, \RjcosθjdAj = ^RjsinθjdAj = 09

with Ψj = (l/2π)l]n(l/\R/eJ-R'je0j\)dA'j + c. Observe, Rj=l (i.e. a circular
vortex) is a solution of the above problem. Indeed, E®=^(q,£f°q}, q = (ro,γ1\

and ^ ί C ° S W ' 7 4 = (-H(l/2m))jC O S W f /4. ; = 0,l,m>2.3 [sinm^ j (sinm^.J ~~

Thus, E2 is negative definite on J^°. By continuity, this problem has a solution for
small ε > 0.

Theorem 9. Ήzere exists α Z2-symmetric co-rotating vortex pair 3Γ 2Jor ε > 0 smα//,
in the form r} = ε 4- o(ε), j = 0,1. Furthermore, they are L1-stable in any fixed large disk
D centered at the origin.

Proof. We use Theorem 2 to get the second part of this theorem. Now it is only
necessary to check the condition (2) in that theorem. Computations show φ\dw =
0(ε2), ψ\dD ^ -ε2(ln(l/ε) + 0(1)), and Ω = 0(ε2). Thus φ\dW- φ\dD^- ε2

(In (1/ε) + 0(1)) > 0, as ε > 0 and small, and the condition (2) in Theorem 2 is verified.
Our solution can be continued and when ε get large, the vortex pair will lose its

neutral stability. Numerical computations are found in [25,11]. It seems that 0
remains to be a double eigenvalue before the vortex pair loses its neutral stability at
ε = ε1. Thus, E2\J^ is non-degenerate for all ε, 0 ^ ε < ε^ For E2\Jί is negative
definite at ε = 0, E2\Jί remains to be negative definite for all ε, 0 < ε < ε ! .
Consequently, we obtain a nonlinear stability in a L1-sense, for any ε, 0 < ε < εx.

7. Co-Rotating rn Uniform Vortices (m ^ 3)

Finally, let us examine co-rotating m uniform vortices as a desingularization of
Thomson's m point vortices. There is a natural action of Z m on JR2, generated by
rotating through angle 2π/m. We find it is convenient to use complex notation in the
plane: z = x + yi. Let τ = eί2π/m. Thomson's m point vortices consists of m points
1, τ, τ 2 , . . . ,τ m ~ x on the unit circle which are invariant under the natural Zm-action
on R2(^C). Denote by (r^θ^ the polar coordinates around each τ\ i.e. Zj =
τj(l + r/% for j = 0,1,..., m - 1.

As suggested by Theorem 1, let us examine an Optimization problem for a Zm-
invariant vortex patch under Zm-invariant perturbations. Set tyί = {reCι(θ)\0<γ(θ)
< sin(π/m)}. To each re2ϊ. Wj = Wfj) = {zj = τj(l + r/^r^ r(0)}, and W= W(r)
= W0U'~vWm-ί. Thus χWo is the portion of χw in the sector {z||argumentz|
< (π/m)}. (CN) Maximize E(χw) on lί subject to ]Woda = constant, J(χWo) = const-
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ant, S(χWo) = \WQyda = 0. (da = rodrodθo). The condition S = 0 is used to eliminate
the ^-symmetry of this problem.

Rescale the variables εR = r, ε > 0. Notice that,

j/ε2 = 2ε f Kcos ΘdA + ε2 J R2ίL4 + f <£4(ε2dA = da\
WQ Wo Wo

and

m - 1

Let ε \ 0 and consider the limit problem, we have (CN°) Maximize E°/m

0,Ψ°y on 91 subject to \WodA = constant,

J R cos θdA = J R sin θdA = 0, with
WΌ Wo

Observe that R = 1 (i.e. a circular vortex) is a solution of this problem (CN°).
Indeed, E\ is negative definite on the subspace Jί^ = {(/c1,...,/cm)GJ/'0|/c1 = •••
= kOT), which is fixed by the Zm-action on Jί°. Therefore, E\ is negative definite on
the subspace Jίε

m = {(/c1?..., km)eJ^ε} for ε > 0 and small. As before (cf. Theorems
9,7), we have

Theorem 10. There exists a Zm-symmetric co-rotating patch ^~mfor ε > 0 and small in
the form rj = ε + 0(ε), j = 0, l , . . . , m — 1 . Furthermore, they are L1 -stable under Zm-
symmetric perturbations in any fixed large disk D centered at the origin.

Now let us determine the indices and the neutral stability for these vortices $~m

obtained in Theorem 9 above. The results will be presented as Theorem 10, 11 and
12. With our normalization (slightly different from that in [9]), we can readily
establish, rj = ε + ε3cmcos2θ j + 0(ε4), Ω = (m- l/4)ε2(l + 0(ε2)), with cm=~{m
- l)(m - 5)/12 (need Lemma 9). Write $£* = J^ o + eif 1 + ε 2J^ 2 + 0(ε3) on Q, long
computations show
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and

Here, Σ\ means the summation without the term with index l=j.
For small ε^O, decompose Q= Vε@Yε according to the separation of the

spectrum oϊ(£pεq)η into parts near the origin and the parts away from the origin. Thus
V° = X[cos θp sin θj], Y° = X[cos θj9 sin θj]\ Let Z ε = lxη9yη, α,,{x2 + / ) „ ] , with

a cross-section defined through α = Im(τ~J'z™) near τJ, j = 0,1,.. ., m — 1. For Ω =
0(ε2), Z ε cz Vε and Nε => Yε. Let Xε = / ε n F ε so Xε = skew-orthogonal subspace
of Zε in F ε. Hence, we have a decomposition of Q into symplectic subspaces:
Q = Xε® Yε@Zε = {(xε,/,zε)}(ε ^ 0).

Elements of 7 ε can be represented as yε = );0 + εx0();0) + εz0(};0) + 0(ε2|};0|) for
some linear functional x° = x°{y% z° = z°{y°) on 7°. Thus,

Lemma 2.

εx° + εz°

Elements of Xε can be represented as χε = χ° + ε2y°(x°) + εz°(x°) + ε2z1(x°) +
0(ε3 |x°|). Notice that ker if0 = K°, Image i ? 0 - 7°, and J2\(F°) = const. Thus,

ε2y° + εz°

Using the transformation from (fcj)eK0 onto C = (ζj)GCn via (k3) = ε(Re C; cos θj
+ Im ζ̂  sin θj\ the subspace X° goes to

foH^ΘpRey + Imy, - R e y + f lmy] 1 (e = (l , . . . , 1), y = ( l ,τ , . . . ,τ m " 1 )) .

One can readily verify by brute force computations that (ε2/2)<x°,if2x°> =
(πε4/2)<(>^C>> with L defined in Appendix (C) before Lemma 11. Thus,

Lemma 3. K * β , ^ e * β > = (πε4/2)«C,LC> + 0(ε|C|2)).
For m ̂  6, <C,LC> is positive definite by Proposition 4(a) in the Appendix (C).

Lemmas 1, 2, 3 and the above fact imply the following result.

Theorem 11. Let m ^ 6. For ε > 0 αrcd small, we have
(1) - £21 Jίε is of index 2m - 4,
(2) the system is neutrally stable.
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For m ^ 8 , the story about (ζ,Lζ} becomes complicated. Lemmas 1,2,3
Propositions 4(c) and 5 in the Appendix 3 provide us the following information
about E.

Theorem 12. Let m ^ 8. For ε > 0 and small, we get
(1) — E2\Jίz is of saddle type with index ^2m —4.
(2) — E21 Jfz is of odd index iff the number m is even.
By Theorem 4 in Sect. 3, the system is unstable for m ̂  8 and m even. Our

detailed computations of the linearized equation enable us to examine the question
of neutral stability for any m,mΦΊ.

Indeed, we obtain in addition that:

Theorem 13. For ε > 0 and small, the Zm-symmetric uniform m vortices J'm is not
neutrally stable for m ^ 8.

Proof The induced symplectic structure on Cm via xε —• ζ (x° = ε(Re ζj cos θj
+ Im ζj sin θj)) is given by (ζ, ζ') -> πε2 < iζ, ζ' >. Recall, \ < x\ J?εxε) = (πε4/2) (ζ,Lζ)
+ 0(ε5 |ζ |2). Therefore, the linear Hamiltonian system q = (&εq)η on Xε can be
expressed as ζ = —iε2{Lζ + O(ε|C|)), which is a "small" perturbation of the linear
Hamiltonian system ζ = — iε2Lζ in the Appendix (C). By Proposition 6 in Appendix
(C), -s2(Lζ + 0(ε| CD) has a pair of real eigenvalues ±s2[λ + 0(ε)], λ > 0. Therefore,
the system q = {J£εq)η is not neutrally stable.

Remark 5. The vortex patch ^~2s+1, 5 ̂  4 is an example with — E2 of even index and
yet is not stable.

Appendices

(A) Discreteness of the Spectra of (Jzf q)η and (C/Cq)n.

As before, let (ξ, η) be a smooth coordinate system x = x(ξf η\ y = y{ξ, η) near a C 1

boundary of a vortex patch χA so that dA can be expressed as ξ = ξo{η). The nature of
these operators (£Pq)η and (Jfq)η will be stated as Propositions 1, 2 and proved by
using a theorem in [12] together with some elementary calculations.

Lemma 4. The variation q = I0(dξ/dt) along ξo(η) corresponding to the 1-parameter
"group" of area-preserving diffeomorphisms generated by (dx/dt) = φy, (dy/dt) = — φx

is given by q = φη.

Proof (dξ/dt) = ξx(dx/dή + ξy{dy/dt). xξ = Iηy9 xη = -Iξy, yξ = -IηX9 and yη = Iξx

hold in general. Thus, q = lξx{dx/dt) + lξy(dy/dt) = yηx - xηy = yηφy + φxxη = φη.

Corollary 1. The symplectic structure {ψι,ψ2)-+$dAΨιdφ2 in [20] is the same as

ours (fη,gη)-^$dAfgη

drl by takin0 f=Ψi>9 = Ψ2

 o n ξoW F o r translations in
x-direction, y-direction, and rotations in the plane, we take φ = y, φ— — x, and
Φ = Hχ2 + y2) respectively.

Corollary 2. (α) —φx = jGyη>dη\

(β) ψy = \Gxη.dη',

(y) - yψx + xφy = \kG{x2 + y\dη'.

Lemma 5. For a rotating vortex patch χA,
(α)
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(β)

= SGxη.dη')=-
+ ψy= -Ωy.

15

(forProof. To see (α), xη = (Φξ/I)xη + ψy (for
xη= -ξyl)= -$y + ψy(ϊoτ $η = 0)= -ψy-

Similarly one has (β) and (y).
Let si be a linear operator on a complex Hubert space J f. Set RA =

Rλ(si) = {ueJ^\(s/ — λ)nu = 0 for some positive integer n}. For an eigenvalue A (i.e.
Rλ φ {0}), # λ is called the associated root subspace of si, when the dimension of KA

is finite. Now, we recall a theorem from Gohberg and Krein [12].

Theorem. Suppose that (1) L is a self-adjoint operator with a discrete spectrum, (2) L" x

exists and TL~1 is a Hilbert-Schmidt operator. Then, L+ T has a discrete spectrum,
and the system of its root subspaces is complete in Jf.

Proposition 1. The operator (&q)η has a discrete spectrum Σ(J£η). Its system of root

subspaces is complete in [21 — Q®iQ

Proof Express (<Sfq)η as {φξq)η — §Gqη.dη'. Thus, one can apply the above theorem
to i{<Sfq)η = i(φξq)η — ήGqη4ηf provided we use an (equivalent) inner product with
weight -φξ{>0) on QφiQ.

Fix a cross-section πα with jα(x2 + y2)η = 1, \axn = jayη = 0. Given a set S, [5]
and [S] denote the linear span of S with real and complex coefficients respectively.
One can readily see:

Lemma 6. 6 = [ x 1 , j J Θ [ α φ ( ^ + J ' 2 ) J Θ / is a decomposition into symplectic
subspaces.

Recall that (JΓq)η is the induced transformation of {£fq)η on Jf.

Proposition 2. The linear operator Jf η possesses a discrete spectrum
Σ(J£η) = {0,0, ±iΩ}κjΣ(jfη) (including algebraic multiplicities). Furthermore, the
system of root subspaces of Jf η is complete in [Λ^J = Jf ® iJf.

Proof. The matrix representation of if η with respect to the decomposition given in
Lemma 6 has the form:

-

0

Ω

0

0

0

Ω

0

0

0

0

0

0

0

d

X

0

0

0

0

0

0

0

0

X

\

1
with d=- Jo,- J?(α,) = -

Therefore, (i)

(x2 + y2)η~] θ Jf).

(&η) = {xη±iyη}
+iΩ, with J?*,β = R,Ω(^η\ίaη,

η K J oWJ for some ne^K.
(ii) R*lΩ g [(x2 + y 2 ) , , ^ ] and KA(jSg g [(x2 + y\^J for A ̂  0, ±iΩ.

(iii) Λ*,β « K± ώ(Jf,), and Rλ(&η)« Rλ(Jf,) for Λ. # 0, ± i Ω, via the projection
2 2

Our Proposition follows from the above three facts (i), (ii) and (iii).

(B) The Smooth Dependence of E(χB) on the Boundary dB

As before, let (ξ, η) be a smooth coordinate system x = x(ξ, η), y = y(ξ, η), near a C1

boundary of a vortex patch χA so that dA can be expressed as ξ = ξo(^) Denote by
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C\η\ C°(η) the Banach spaces of C\ C° functions in η. Take 21 c C\η) an open
neighborhood of χA in C 1 ^), so that each ξeQl represents a vortex patch χξ near χA

with boundary given by ξ = ξ(η). To each £e2ί s let ψiξ), ΦMl Ψy(ξ) be the
restrictions of φ(χξ), φx{χξ\ Φy(Xξ) on the boundary ξ = ξ(η) respectively. Thus,
ψ(ξ)eC1(η) and ψx(ξ)> Ψyiξ^C0^). Notice that φ is usually not even C2 on the
variables x, y. Amazingly, one still can have the next smoothness result.

Proposition 3. (a) The map ξe3l-> ψ(ξ)eC1(η) is smooth.
(b) The energy function E(χξ) is smooth in ξ.

For (δE/δξ) = Ioψ(ξ\ it suffices to prove (a).
Now we need the following facts:

(α) Suppose &0(ξ\η\ &(ξ;η) are smooth in ξe'Ά, C° in η. Then so is the product
sί-Λ, the quotient stlSt (if » φ 0).

(β) Suppose stf(ξ; η, η') is smooth in ξ9 C° in η, η'. Then j stf(ξ; η, η')dη' is smooth in ξ,
C° in η.

(y) Let F(ξ,η)eR be smooth. Then, F(ξ(η\η)eC\η) and the map ξ -»F(§fa),ff)eC1

is smooth.
(δ) Write x(f/) = x(^),f/). For η-η' small, xfa)- x(η') = g(ξ;η,η')(η - ηr) with

fi<ξ; i/, η') = J h(dx/dη){tη + (1 - Oί'Mί. Thus, fif(ξ; >y, ^') is C00 in ξ and C° in ιy, η'.
The same kind of result holds for y(η) with y(η') — y(ηf) = h(ξ; η, η')(η — η'\
and g2 + h2 Φ 0.

Proof. It suffices to show that the maps

ξ -> tfr(ξ), ^ r ^ ) , ^(ξ)eC0(fy) are smooth.

(1) Write φ = (l/4π){%$(xf - x)ln(l/r 2)d/ - j ( / - y) In (I/r2)dx') + \dx'dy'},
where r 2 = (x — x')2 + (y — y')2.

Thus,

From facts (α), (y), (δ), (x'- x)ln(ί/r2), ( /-y) ln( l/ r 2 ) , (dy'/dη1), (dx'/dη1),
(δ(x\ y')/(δ{ξ', η')) are C00 in ξ and C° in η, η'. By the fact {β) φisC^inξ and C° in η,

From facts (α), (y), ((5) ((x' - x)2/r2\ {(x' - x){y' - y)/r2\ {dx'/dη'l {dy'/dη') are C00 in ξ
and C° in ?y, ̂ '. By the fact (β), ^ y is smooth in ξ and C° in η.

(3) Similarly, one gets φx = — (l/4π) J In (l/r2)dj/ is also smooth in ξ and C° in ?/.
Combining statements (1), (2) and (3) above we get the smoothness of the map
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(C) The Stability of Thomson's m Point Vortices

Suppose we have a vortex patch consisting of m disk-like components with small
radius ε and centered at z 0 , . . . , zm _ x in a rotating system with an angular velocity Ω.
The velocities at points zt = Xj + iy} are approximately given by

3H_

dzsd7

dt

dϋ or dt

dH

+ ywith ά(zt,..., zm) = j y
ŷ/j | 2 7 — Zχ\ L j

(For \j) = H + constant (ε).) For the sake of completeness, we include the studies
of the stability of this Hamiltonian system in a complex variable setting.

It is elementary to establish the following

Lemma 7. ln(l/| 1 + tz\) = -t(z + z)β + (ί2/4)(z2 + z2) + -"for small t.

Lemma 8. Let 2β1 = Σk = ϊ W ~ Λ Then 2βλ =(m- 1/2).

Lemma 9. Let 2β2 = Σΐ=ϊ V(l - ^f Then 2β2 = ~(m - l)(m - 5)/12.

Lemma 10. Let sp = Σk=ι (τ*V(l - τfe)2)(l ^ p g m). T/zen sp = i(p - 2)(m - p)
- ( ( m -

Recall that τ = e/ 2 π / w, and let Zj = τ7"(l + Q, for each . Using Lemmas 7,8, one
can establish that Zj = τj, j = 0,...,m— 1, is a stationary solution of (dzj/dt) =
— 2i(dH/dZj\ with an angular velocity ί2 0 = β1s

2( = (m— l)/4)ε2. Furthermore
(use also Lemma 9),

Here, Lζ = βtζ + Bζis symmetric with respect to <(, η > = Re 0? with

1 τΊ

Now set

2(τ'-

1

a r e a ' number, / φj.

— 1

Lemma 11. By" = (-{sp+ x + i?2)f.

, = ΣV-W' = Σ - \ ^ Z
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(τ — τ j

Corollary 3. The linear transformation L has eigenvalues (m—l)/4 + (l/4)(p—1)
(m — p—1) with eigenvectors Re yp, Im yp\ i Re yp, i Im yp, p = 0,1,..., m — 1 except the
zero vectors Im y°, i Im y°, Im ym/2, i Im ym/2 (if m is even).

Let e = (l, . . . , l). Through simple computations, we can immediately deduce
that

Proposition 4. L\[_e,ie]L is

(a) positive definite for 2 <Ξ m ^ 6,
(b) positive semi-definite for m = Ί,
(c) of saddle type for m ^ 8.

Corollary 4. The system (dzj/dt)= — 2i(dH/dz~j), j = 0, l , . . . , m — 1 is nonlinearly
stable for m ^ 6 «n<i is neutrally stable for m g 7.

There are redundant in our expressions for eigenvalues of L; Re y*7 = Re yp/,
Im yp = — Im yp> for p + p' = m. Thus, we can obtain an orthogonal decomposition
by avoiding such repetitions:

[βMΫ= Σ [ R e y M m y p ] θ p R e ^ ϊ Ί m y p ] Θ Σ [Rey^/Rey^].
l^p<m/2 p = m/2

L has index 1 on [Re yp, f Re yp~] 2p = m, and even index (0 or 2) on other subspaces.
Hence, we have

Proposition 5. For m ^ 8, L\{e, ie~]L is of even index if and only ifm is odd.
Finally, we linearize the system in C-coordinates; (dζj/dt) = — iε2{Lζ)j, j

= 0, l,...,m— 1. This is a Hamiltonian system with a quadratic Hamiltonian H2

with respect to the symplectic structure ω(ζ,ζ') = <ίζ,C>. One has a symplectic
decomposition of — i(Lζ) into eigenspaces;

[ejey= Σ [Rey p ,/Rey ' ]Θ[ImyVImy']Θ £ [Rey

For an even m = 2s, - i(LQ| [Re ys, i Re ys] has eigenvalues ± i N / ( s - I) 4 - (2s - I) 2.

For an odd m = 2s + 1, - i(Lζ) | [Re y\ i Re ys] has eigenvalues

± iy/(s - l) 2s 2 - (2s)2. Thus, we obtain

Proposition 6. For m ^ 8, (a) — z(LQ| [e, ie] 1 /zαs a pair of real eigenvalues ±λ,λ> 0.
(b) The system (dzj/dt) = -2i{dH/dZj) is not neutrally stable.
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