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of the Spherically Symmetric Einstein-Scalar
Equations in the Large

Demetrios Christodoulou*
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Abstract. In this paper we study the global initial value problem for the
spherically symmetric Einstein-scalar field equations in the large. We intro-
duce the concept of a generalized solution of our problem, and, taking as initial
hypersurface a future light cone with vertex at the center of symmetry, we
prove, without any restriction on the size of the initial data, the global, in
retarded time, existence of generalized solutions.

Section 0. Introduction

In [1] we began the study of the global initial value problem for Einstein's
equations in the spherically symmetric case with a massless scalar field as the
material model. In terms of a radial coordinate r and a retarded time coordinate u,
whose level surfaces are future light cones with vertices at the center of symmetry,
the spacetime metric has the form

ds2 = - e2vdu2 - 2ev + λdudr + r2dΣ2,

where dΣ2 is the metric of the standard 2-sρhere. We reduced Einstein's equations
to a single nonlinear evolution equation for the function h = d(rφ}/dr, where φ is the
matter field. If / is a function of u and r we denote by /the mean value function of

Then, letting

(u,r): = (\/r)\ f(u,r')dr'.
0
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and

du 2 dr'

the nonlinear evolution equation is:

If h is a classical solution of this equation, then setting ev + λ = g, ev ~ λ = g and φ =)
the above metric together with the matter field φ satisfy Einstein's equations

The integral curves of D are the incoming light rays. The initial data of our problem
is the function h at u = 0. In [1] we proved, for general initial data, the local, in
retarded time, existence of a classical solution (Theorem 1 of [1]). We also proved
that if the initial data is sufficiently small, there exists a global classical solution
which disperses in the infinite future (Theorem 3 of [1]). In this paper we shall
study the global problem for arbitrarily large initial data. Such data will lead to
gravitational collapse. Now, there may not in general exist a classical solution for
all retarded time.

In the field of hydrodynamics we have the Navier-Stokes equations describing
the motion of a viscous incompressible fluid. Also there, we can prove the global
existence of a classical solution only if the Reynold's number of the initial data is
sufficiently small. But for large initial data a classical solution may exist only for a
short time. This situation lead Leray in his fundamental work of 1934 [2] to
introduce the concept of a generalized solution of the initial value problem of
hydrodynamics. He called such a solution "a turbulent solution" and he proved
that for arbitrary initial data of finite kinetic energy there exists for all time at least
one turbulent solution.

In the present paper we shall introduce an appropriate concept of generalized
solution for the mathematical model we are considering. This model differs from
hydrodynamics in being of hyperbolic rather than parabolic character. Also, in our
problem the spacetime itself is constructed from the solution. In [1] we defined the
mass m(u9 r) enclosed within the sphere of radius r at retarded time u by

The total (Bondi) mass M(u) at retarded time u is then given by

M(u): = lim m(u, r). One of the main difficulties of our problem is that the total
r-> oo

mass M does not provide an estimate for the solution in the interior of the sphere of
radius 2M. Another main difficulty stems from the fact that one of the Einstein
equations is the local mass equation:

Dm = — π ξ 2 / g , where ξ:=2rDϊϊ.

It is therefore necessary to require a generalized solution to satisfy not only the
nonlinear evolution equation for h, but also the evolution equation for the local
mass m. (This requirement is automatically satisfied for classical solutions.)
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The principal tool of our investigation is what we call the main integral
identity. Letting χuι(w; r^ denote the incoming light ray through r = rl at u = u^
and setting

Q(uί,r1): = {(u,r)\Q<u<u1,Q<r<χUί(u;r1)}9

the main integral identity is given by:

o 0 Q(«ι,rι) g r 2 o o g

where r0: — χMl(0; TΊ). The main integral identity equates the sum of three positive
definite integrals, the first of which is an integral over the future light cone w = w1 ?

the second a spacetime integral, and the third an integral over the central line, to an
integral over the initial future light cone u = 0. The quantity in the integral over the

( 9 \ — 1
1 ) . As we shall see, this integral provides the

necessary estimate for the solution in the interior. The spacetime integral provides
an additional estimate which is essential in showing that the generalized solution
satisfies the local mass equation. It should be noted that the main integral identity,
in contrast to the mass-flux relation, holds only in the domain of outer
communications.

The plan of this paper is the following. In Sect. 1 we define what we shall mean
by generalized solution and we state the global existence theorem (Theorem 1);
Sects. 2-5 are devoted to the proof of this theorem. In Sect. 2 we introduce a
regularization of the nonlinear evolution equation depending on a positive
parameter ε, and we derive the corresponding local mass equation and the integral
identities which follow. The ε-regularized problem is in fact the original problem in
the presence of a white hole of mass ε/2 and with the boundary condition that the
scalar field vanishes on the anti-event horizon. In Sect. 3 we prove the global
existence and uniqueness of classical solutions of the ε-regularized evolution
equation. In Sect. 4 we derive various ε-independent estimates for these solutions.
In Sect. 5 we study the limit ε-*0 of removing the white hole, making various
compactness arguments which lead to the proof of Theorem 1.

In a subsequent paper we shall study the structure and uniqueness of
generalized solutions.

Section I. Generalized Solutions and the Global Existence Theorem

Let us be given initial data hQ(r) in C^O, oo[ and such that the initial Bondi mass
MO is finite. Let Q denote the complement of the central line:

, 0<r<oo}.

Definition. A global generalized solution of the problem is a function heC1(Q)
00

such that at each w, h belongs to L2(0, oo) and f h2dr is bounded by a continuous
o

function of w, having the following properties, h satisfies the nonlinear evolution

equation Dh=--(g — g)(h — ft) in Q, ft, g and g being continuous in Q, and ft(0, r)



590 D. Christodoulou

= h0(r). Also, at each u, g/g belongs to L^O, r0), r0 arbitrary. Furthermore, for
almost all w,

£ :=Um}f f (A-f i )y

exists and g1/2ξ/gr1/2 e L2((0, w0) x (0, r0)), w0, r0 arbitrary. In addition, ft is weakly
ξ

differentiate in Q and Dh=—, and m is weakly differentiable in Q and Dm

= ξ2. Finally, for each (ιιl5 rx) e Q, the main integral identity

rl n n£l I «1 »Ό^

- J g(u, 0)du = J - (0, r)dr
2 o o g

holds, where Q(w1,r1) = {(w,r)|0<r<χM l(w; r),
All the conditions of the above definition are needed in order to have a

meaningful solution of Einstein's equations. The purpose of this paper is the proof
of:

Theorem 1. For each initial data hQ 6 C^O, oo[ of finite initial Bondi mass, there
exists at least one global generalized solution of the problem.

Section 2. The Regularization Method

We shall now give a regularization of the nonlinear evolution equation depending
on a positive parameter β. The regularization method is based on following
redefinition of the mean value operation defined in [1], Sect. 3. If fε is a function of
u and r depending on ε, we set:

r^dr'. (2.1)

We then have

We note that fε(u, 0) = 0. The principal unknown function shall now be denoted by
hε, and hε shall be given by

Kε: = ]hεdr. (2.2)

We also define

Y r ~\ &

and we set

gε . = e-4«A° (2.4)
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and

(2.5)
^ r + ε ί )

We note that gε ̂  gε. Denoting then by Dε the differential operator,

ε' du 2 εdr '

the ε-regularized evolution equation is:

(Se-9j(h*-fy (2.7)

The characteristics of this equation shall be denoted by χε. They satisfy the
ordinary differential equation,

s-ί*
We note that, since #ε(w,0) = 0 and dgjdr is bounded by 1/ε, the ε-characteristic
through any point on the central line is the central line itself.

We now define the ε-local mass function by:

). (2.9)

We have mε(u,0) = ε/2 and mε<(r + e)/2 for r>0. Also,

dmε _ (r + ε) g. dgε _ g
dr ~ 2 gldr-2πg^ ^ '

Thus raε is a monotonically nondecreasing function of r at each u, bounded from
below by ε/2, and we can write

mε=*)+2π]^(hε-hε)
2dr. (2.10)

2 o# ε

We also define the ε-total mass

Mε(u):= limmβ(tt,r). (2.11)
f-> 00

We shall derive the evolution law of Kε, Aε and mε along the characteristics χε.
We have

1 'dh 1 dh 1

Setting then
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and using the ε-regularized evolution Eq. (2.7), we obtain:

ξε=

-Ό]r = 0 + ί θe-^ dr,
0 ϋΓ

and since #ε(w, 0) = 0, we conclude that

(2.13)
0

In particular, ξε(u, 0) = 0. From (2.3) we obtain

- Sh, 1 _ „ 7_x _ , Λ ,-1 dr

Using then (2.7) we find

ε. (2.14)

Taking into account the fact that Dεr= —gε/2, we obtain from (2.9):

(2.15)
2

Now, by (2.4): Dε&= -4πgεDeAε and

Substituting in (2.15) we obtain:

On the other hand, for general / it holds:

ίίr. (2.16)
(r + ε)^/o

Hence
2π , , ε E , 7 ^ ,^λ(2 17)

By (2.14), (2.3), and (2.12), (2.13) the integrant is:
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Therefore, since ξε(u, 0) = 0, we conclude that the evolution law of mε along the
characteristics χε is

Dεmε=--ξ2. (2.18)

Integrating this equation along the ε-characteristic χ£ίUί(u; r t) through r^r^at
u = uίy we obtain the ε-mass-flux relation:

e 1> O. f i o χetuι

where r0 > ε = χε>Ml(0; r t) is the value of r at which this characteristic intersects r = 0.

Since gε/gε = (1 — ) , (2.18) implies that

(2.20)

Let δ be a fixed positive real number. We have

1

Thus, by (2.20):

Ir-l lgJr-δ (2 21)

Integrating this equation along χ f i f t t l(w; rj, we obtain the ε-integral identity:

2 o ε ^
(2.22)

where βδ,ε(w1,r1) = {(w,r) |0<w<w 1, δ<r<χε>Ml(w; rj}.
If/ιε is a classical solution of (2.7), the space time which is the manifold R x R+

xS2 endowed with the metric ds2= — gεgεdu2 — 2gεdudr + (r + s)2dΣ2, together
with the scalar field φ = hεis in fact a classical solution of the original Einstein-
scalar field equations Rμv = 8πdμφdvφ. The boundary 1R x [r = 0] x S2 is, in view of
the fact that gε(u, 0) = 0, a past null cylinder, namely an anti-even horizon, of cross-
sectional area equal to 4πε2. Thus the ε-regularized problem is in fact the original
problem in the presence of a white hole of a mass mε(u9 0) = ε/2, and with the
boundary condition that the scalar field vanishes on the anti-event horizon:
S"e(n,0) = 0.
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Section 3. Classical Solutions of the Regularized Problem

In the following we shall assume that the initial data satisfies the falloff conditions
h0 = 0(r~3) and dh0/dr = 0(r~4) as r->oo in order to obtain the fastest possible
falloff at null infinity. The results easily extend to the case when we only assume
that MO is finite.

Lemma 1. For every initial data ft0(
r)eC'1[05 oo[ such that h0(r) = 0(r~3) and

dgQ/dr(r) = 0(r~4), and for each ε > 0, there exists a unique global classical solution
hε(u, r) 6 C^O, oo[ x [0, oo[ of the ^-regularized evolution equation taking the given
data at u = 0, and such that at each u ̂  0, hε(u, r) = 0(r ~3) and dhε/dr(u, r) — 0(r ~4)
as r-κx).

Proof. First, we can prove the existence of a local classical solution by using the
argument of Theorem 1 of [1]. To prove global existence we argue as follows: Let
[0, w0[ be the maximal interval of existence. We shall show that u0 = oo. For if u0 is
finite, we shall demonstrate that hε(u, r), which is by assumption a C^-function on
[0,w0[x [0, oo[, can be extended to a C^-function at {w0}x[0, oo[. The local
existence theorem with data atu = u0 would then contradict the maximality of MO.

We first derive global a priori bounds for hε and dhjdr. Setting

4,r)\, (3.1)

we have

\hε-Kε\^2x, (3.2)

and from (2.7):

(3-3)

Integrating this along an ε-characteristic we obtain

\hε(ul9 rj| ̂  |Λ0(r0f Jl + ϊ —du. (3.4)
o fi

Hence

where

x0 : = sup |Λ0(r)|. (3.5)

It follows that

x(u )<Λ; £ M l / ε . (3 6)

Differentiating now (2.7) with respect to r we obtain:
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We have \-3(gε-gε) + 4πgε(hε-hε)
2\^(3 + ). Setting then

y(u):=sup
r>0

we obtain:

D.
dh,

dr

Integration along an ε-characteristic yields

W^1
dr o ε o ε

595

(3.8)

(3.9)

(3.10)

Hence

where

It follows that

o ε o ε

y0:=sup
dhn

dr
(3.11)

(3.12)

We conclude that hε and dhjdr, and therefore also dhjdu are uniformly bounded in
[0,M0[x [0, oo[. To prove that hε(u,r) can be extended to a C1 function at {w0}
x [0, oo [, we need to show that dhjdr is uniformly continuous in [0, MO[ x [0, oo[.

Actually, we need only show uniform continuity with respect to r. Uniform
continuity with respect to u would then follow by the following argument : From
(3.9) and the a priori bounds, it follows that Dε(dhjdr) is uniformly bounded:

Given u1,rl and Au1>Q,\etr1

through (uί,rί) intersects the line u

dh^

"δΓ
dh.

εbe the value of r at which the ε-characteristic
= uί — Δu1. Then Δrl>ε^'ί/2Δu1, and we have

Z J \Dε(dhJdr)\du
MI — Aui

dh. dht

(3.13)

where ηε is the modulus of continuity of dhjdr with respect to r.
Let O^ri <r1? and let us denote by χε(w; r j and χε(u; r/) the ε-characteristics

through r = r1 and r = rί, respectively, atu = u1. We set

(3.14)



596 D. Christodoulou

Then, from (3.7) we have

dψε dh

du \dr dr

where

We have

δr

Hence

(u,χε(u:rύ)

1

dg^dh^

dr dr

f :-W+tfL~3<a ~l

(3.15)

:-£)2](Λ«-fr.) (3-16)

sup
i ao

.- ΛJ [3(ί7δ- ff J - 8π?ϊ(ftβ- hε)
2 + 4π2gε(hε - /O4] . (3.17)

(3.18)

From the a priori bounds it then follows that dfjdr is uniformly bounded,

df.sup
r > 0

Therefore

We write

(3.19)

!/.(«,χ.(u; rO)!-/^,^; riWI^ft^.ίu; r^- ̂ u; r^)). (3.20)

\dr dr J(u,Xί(u;rι» \dr dr J(u,Xs(u.,rW~ \ dr ) (Ul,,e(u,ri}}

 Ψ*J

+ \(SA\ _ Ά.
We have

92gε 1
Sr

2 (r + ε)2L Ί

Hence 2 _
QiiiΛ "ε

r^o 3r2

) W] <3
/ 1 \ nv I

/(«,χε(M;rΊ))J \ ^r /(M,χ ε(W;rΊ))

^εV ε B) Wε 9ε)l ' (

2 2

~~ ε2

.21)

22)

.23)

Thus d2gε/dr2 is uniformly bounded,

sup ^ h C\
Λ 2 = ̂ 0 •> Wor

.24)

and therefore

(3.25)
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Taking into account (3.20), (3.21), and (3.25), we conclude from (3.15) that

1

du ε
(3.26)

where b = b0c + bί and c is the uniform bound of y(u) in [0, w0[. Integrating (3.26)
yields:

(3-27)
o

Now it holds:

Xε(u; rj - χε(u; rΊ) - (rv - r\) mean value < exp - J I -j± } du'\
se[ri,n] I L2 0 V Or J(u'tXβ(u'ίS)) J

^(^i-^)^(Wl"u)/2£. (3.28)

Thus, denoting by ηε the modulus of continuity oϊdhjdr with respect to r and by ?/0

the modulus of continuity of the data dh0/dr, we have

ηE(r, -ri) ̂ "0/eto0(*Bo/2e(ri -r;)) + 2ε^Mo/2ε- 1) (̂  -r'J} . (3.29)

We conclude that dhjdr is uniformly continuous in [0, w0[ x [0, oo[. The global
existence of a classical solution follows. The facts that hε = 0(r~3) and dhjdr
= 0(r ~ 4) at each u are easily deduced from a priori bounds. Finally, the uniqueness
of the solution is proved by using the argument of Theorem 2 of [1]. D

Section 4. Derivation of ε-Independent Estimates

In this section we shall derive estimates for the solution of ε-regularized evolution
equation in a region r ̂  <5, δ any given positive real number, which are independent
oϊεiϊε<,δ/2.

At w = 0, hε coincides with the initial data of the original problem: hε(Q,r)
= /ι(0, r) = h0(r). Before deriving the estimates, we shall for later reference compare
at u = 0 the quantities gε and gε to the quantities g and g. In this paragraph all
quantities are at u = 0. Let

00 Aγ 00 AY

t , v , r , fc v fc " r + ε

Then, since hε = h, and therefore hε = β", for r ̂  δ and ε < (5, we have

Ί r(r+ε)

where oo dr
-. (4.2)
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Hence for r^δ it holds:

e - 4π(ε/δ)C(δ) <®±< e4π(ε/δ)C(δ) M 3)

" 9 "

Let now ε<η<δ. For r^δ, (4.3) implies that

ί Λ
Setting r' = s-}-η{ 1 -- 1, we obtain

since g(r) is a monotonically nondecreasing function of r. Thus for r^δ, we have

(4 4)

For r^δ, (4.3) implies that also:

From (4.3) and (4.4) together with (4.5), we conclude that for each δ > 0 and for each
fc>l, there exists a s0(δ; /c)>0 such that for all ε^ε0(δι fe),

holds for all r^δ. Also, ε0(δ; A:) is a monotonically nondecreasing function of δ.
Consequently, for all ε^ε0(δ; k), we have

kδg δgε

for all r^ δ. It follows that

and mε(r)->m(r) uniformly in [δ,r0], r0 arbitrary. Since also

M0.« - m.(r) = 2π ί ̂  (ft. - A^2dr->0
>• ^ε

for r-κx), uniformly in ε (M0 ε stands for Mε(0)), we conclude that M0 ε->M0 as
ε->0. Hence excluding the case of trivial initial data, M0,ε/M0-»l as ε->0. That is,
for every k>ί there is a μ(k)>0 such that for all ε^μ(k) we have
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We shall find it convenient to assume δ^δ0, where

Then for all ε^δ/2 we shall have M0/2^M0>ε^2M0 and 2M0>ε^<$. The above
results will be referred to in Sect. 5.

Lemma 2. For every ε>0, the following inequality holds:

Proof. We have

Therefore

Integrating this with respect to w yields the lemma. D

Lemma 3. For each 0<δ^δ0 and each ε^δ/2, the following estimate holds:

where
oo \ l / 2

+ f Λ g ( r ) d r .
o /

Proof. We have

1 r 1 Λ V / 2

= r 0

 = r 1 / 2 V o ε /

hence

v l / 2

sup \hε(u, r)\ ̂
O

The conclusion then follows from Lemma 2. D

Lemm 4. For βαc/i Q<δ^δQ and each ε^δ/2, the following estimates hold:

sup |ftε(w, r)| ̂  c(w; 5) α?tίί sup

Here
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and

where

D. Christodoulou

c'(u\ 5) =

d0:=sup|Λ0(r)|, d^-
r > 0 <9r

Proo/. We integrate the ε-regularized evolution equation (2.7) along the
^-characteristic χε(u; r±) through r = rί at u = u1:

Mι,r1) = Λ(0,r0,β)+ ϊ ^Γ^toβ-^β
oLAΓ + β; j/ε

Taking r^δ, along χt, we have

1 ,

Therefore, by Lemma 3,

du.

*• (4.6)

1 "r1

Thus setting

we obtain from (4.6),

It follows that

l)£d0+ — f x(w
2d o

(4.7)

We now integrate the derivative equation (3.7) along the ε-characteristic χε:

- Λ l l ) ] d w . (4.8)

Using (4.7) and Lemma 3, we can estimate the second integral on the right by

1 "<

Thus setting

Xu):=sup
dht
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We obtain from (4.8),

^d1 + \ f y(u)du+ ~ ϊ
o o 20 o

, <S))2] (b(u; δ) + c(u; δ})du.

It follows that

sup r
or

•(u,ι D

Lemma 5. The solution of the ^-regularized evolution equation has at each u the
following falloff property:

and

4MΠ

where kε(u)^k(u) and k'ε(u)-*kf(u) as e-»0, uniformly in u. Here:

ί [( r Y , 7 ,Λ,1 1 u

sup —- |/ZoWI +-8π1/2 4M0

(4.9)

(4.10)

(4.11)

\(^ML\4M0

1 3

°~dr~
2~

1 + ̂ k(u)

(4.12)

Proof. For any differentiable function / such that / and rdf/dr belong to L2(0, oo)
and lim r/2(r) = 0, it holds:

oo /gf\2

rj\r,)<\r2(04-} dr.1J ^i}~n \SrJ

Let us take f = Kε and rί=4M0tε (by Lemma 1 /Γe = 0(r~1), we then obtain:

oo / P Ϊ Γ \ 2
J / ^ ^ L o Λ 2 J

(4.13)

(see (2.10)) since gJg^l/2 for r^4M0s£. Hence

1

For r^4M0 ε, we have
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Taking into account (4.13) and setting

x(u): = sup Mu9r)\

(by Lemma 1, hε = 0(r~3)) we may estimate hε for r^4M0 ε by

r

9^1/2 ' J ^
^7C 4Mn P

(4.14)

We also have

Taking Γj ^4M0>ε and taking into account (4.15) and (4.16) we derive from (4.6) a
linear integral inequality for x(u) which implies

(4.17)

where

<4 18)

This establishes (4.9). We then obtain (4.10) by deriving from (4.8) a linear integral
inequality for the quantity

XM):= sup

using the previous results. D

Let us now denote Qδ = {(u,r)\Q^u^u0,r^δ}, where Q^δ<δ0 and u0 is an
arbitrary positive number.

Lemma 6. The family of functions {dhε/dr\Q<ε^δ/2} is equicontinuous in Qδ.

Proof. By Lemmas 3 and 4, the families of functions {hε — hε} and {dhjdr} are
equibounded in Qδ\

\hε-hε\^C0 and \dhJdr\£Cl9 (4.19)

where C0 and C t are independent of ε. It then follows from (3.7) that in Qδ,

-Cι 1
-Λ
dr

(4.20)

and C2 is independent of ε. As a consequence of this, we need only demonstrate the
equicontinuity of the family {dhjdr} in Qδ with respect to r. Equicontinuity with
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respect to u would then follow, since we would have: (see (3.13))

603

^ ί \(Dε(dhe/δr)\du +
dhe

(4.21)

where η denote the common modulus of continuity of the family {dhjdr} with
respect to r.

Let now δ^r/

ί<r1. Then, taking U^^UQ, the ε-characteristics χε,Ml(w; ri) and
χε MI(M; r x) are contained in Qδ for 0^u^u1. Defining ψε(u) as in (3.14), we obtain
from (3.15) and (3.21):

du \dr (u,χε(u;rι))

'80,
dr (u,χε(u;r\)).

dh,
^"; rι))~/>'X*(u'> r'i»> (4 22>

(«,χe(u;ι Ί))

where /ε is given by (3.16). Using now (4.19), we can estimate in Qδ (see (3.22) and
(3.17)):

dr2

and

ft
a/-

and K0 and K1 are independent of ε. It follows that

(4.23)

(4.24)

(4.25)

and

!/.(«,χ.(κ; rJϊ-ffaxάu; r'^K^u; rj-χ/w; ri)). (4.26)

Taking into account that (4.26), (4.25), (4.19) and the fact that in Qε, dgjdr <; \/δ, we
conclude from (4.22) that

(4.27)
du

where K = K0C1 + K1. Integrating (4.27) yields

(4.28)
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Now, since both ε-characteristics are contained in Qδ, it holds:

XεO; rj-χ&i r/

1) = (r1-r/

1) mean value
seDi,rι]

x jexpΠj }' (d-f\ du']} £(ri -r y"-""2' . (4.29)
I \_£ U\Cr /(U',χε(M';S)) JJ

Denoting then by η the modulus of continuity of dhjdr with respect to r in Qδ and
by η0 the modulus of continuity of the data dh0/dr, we have

} . (4.30)

Thus, since K is independent of ε, the lemma follows. Π

Lemma 7. The family of functions {hε\Q<ε ^δ/2} is equicontίnuous in Qε.

Proof. The equicontinuity of the family {hε} with respect to r in Qδ follows from the
fact that the family {dhjdr = (hε — hε)/(r + ε)} is equibounded (by C0/δ) in Qδ. Thus
we need only show equicontinuity with respect to u. Let again r1 + Arli£ denote the
value of r at which the ε-characteristic χε>Uί(u; rx) through (ul9 r^) intersects the line
u = u1—Au1, Au1>Q. We have:

_ _ _
hε(ulyr1)-hε(u1-Au1,r1)^ f [_Dεhε~\ (u^ rjdu

M I ~ Δu\

+ \hε(u1-Au1,r1+Ar1>ε)-hε(u1-Au1,rί)\. (4.31)

Since Δrίtε^Au1/29 (4.19) implies that the second term on the right in (4.31) is
bounded by

l/φi-Λw^+Jr^-^ (4.32)

By (2.12) and the ε-mass-flux relation (2.19), we can estimate the first term on the
right in (4.31) as follows:

ί [βεΛβ]χBιtt (tiiπ)^

T Γί2lJ LSgJχ ε

Hence we obtain

1/2

I du

1 (MO, (AuJ112. (4.33)

/2

Hi)12 (4-34)

Thus, since M0 ε/M0->l as ε->0, the lemma follows. D

Section 5. Compactness Arguments; Proof of Theorem 1

We now begin the proof of Theorem 1. We confine our attention to a fixed but
arbitrary interval O ^ W ^ M O . In this section, Q shall denote the domain
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r>0}, Qδ the domain Qδ: = {(u,r)eQ\r^δ}, and Qδtfo the
domain Qδtro: = {(u9r)

Let us set δm: = δ0/2m, m = 0, 1, 2,..., and εn: = δQ/2n, n = l,2,3,....
We consider the sequence (fιεj n = 1 , 2, 3, . . . } of solutions of the επ-regularized

evolution equation taking the given initial data hQ at u = 0. By Lemma 4 the
sequences {hεn}, {dhjdr} and (by Lemma 3 and the regularized evolution
equation) also {dhεjdu} are equibounded in Qδm for each m and each n ̂  m + 1 . We
start with m = 0; by the Ascoli-Arzela theorem we can select a a subsequence {hεn J
converging uniformly on compact subsets Qδo>ro of Qδo to h\δo, a continuous
function on Qδo. At the next step m = 1, we can select a subsequence {hεn J of the
subsequence (ft£n o} converging to h\δί, a continuous function on Qδl. Now Λ|5 l

agrees with h\δo on β ,̂ therefore h\δί extends h\δo to βaι. We keep extracting
subsequences in this way, that is extracting each subsequence {hεn m} out of the
previous subsequence {h£n m _ J ; for each ra, h\δm extends h\δm_1 to Qδm.

Then, the diagonal subsequence whose ith term is the ith term of the
subsequence {hεn t J, converges uniformly on compact subsets Qδ ro of Q to h, a
continuous function on Q which for each m agrees on Qδm with h\δm. We shall
denote this diagonal subsequence simply by {λεj, keeping in mind that n now
ranges only over a certain subsequence of the sequence of positive integers.
Lemma 4 implies that h satisfies in each Qδ the bound

sup|A(tt,r)|^φ;δ), (5.1)
r>δ

and Lemma 5 implies that at each M, h = 0(r~*) for r-κx> and

By Lemma 6 the sequence [dhεjdr \ n = 1 , 2, 3, . . . } is equicontinuous in Qδm for
each m and each n^m + 1. Consequently, by the Ascoli-Arzela theorem, for each m
the subsequence {hεn w} can be chosen so that the corresponding subsequence
{dhεn Jdr} converges uniformly on compact subsets Qδm>ro of Qδm to h'\δrn, a
continuous function on Qδm. Then the diagonal subsequence will be such that the
corresponding subsequence {dhεjdr} converges uniformly on compact subsets
Qδtr0 of Qtoh'a continuous function on Q. It follows that for each r', r/x>0,

and therefore h' = dh/dr and h is continuously differentiable with respect to r in Q.
Then Lemma 4 implies that dh/dr satisfies in each Qδ the bound

sup
dh
d r v '

and Lemma 5 implies that at each u, dh/dr = 0(r~4) for r-»oo and

sup
r ^ 4

(5.3)

(5.4)
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According to Lemma 2,

o on o

Now for every <5>0 and every r0>δ,

J h2

ndr-+ J h2dr,
δ δ

uniformly in u. Consider the sequence { fm} of functions

_ JO for r < δm and for r > m
m \h2 for δm^r^m

The fm form an increasing sequence of measurable functions such that

By the monotone convergence theorem, h2, which is the point wise limit of fm for
m-»oo, is integrable on (0, oo). Thus (since h is measurable, being continuous for
r > 0) h ε L2(0, oo) at each u and

+hldr. (5.5)
o oπ o

Let
r

KBn= $ hεndr .
o

By Lemma 3 and Lemma 7, the sequence {KEn\n = i,2,3...} is equibounded and
equicontinuous in Qδm for each m and n ̂  m + 1 . Hence the same is true for the
sequence {ζ£n | « = 1 , 2, 3 . . . } . Consequently, by the Ascoli- Arzela theorem, for each
m the subsequence {h£n m} can be chosen so that the corresponding subsequence
{C£n m} converges uniformly on compact subsets of Qδrn r to ζ|dm, a continuous

function on Qδrn. Then the diagonal subsequence will be such that the correspond-
ing subsequence (£εj converges uniformly on compact subsets Qδ ro of Q to C, a
continuous function on Q. Lemma 3 implies that for each <5>0,

It follows that at each M, ζ(δ)-*Q as δ->0. On the other hand, we have δζεjdr
= hεn-^h, uniformly on compact subsets of Q. Hence

But ζcn(r)-ζsj(δ)-^ζ(r)-ζ(δ). Therefore ζ(r)-ζ(δ)=$hdr. Since, by the previous
δ

paragraph, feε !/((), r0), r0 arbitrary, letting <5->0, we obtain

ζ(r)=]hdr = rK.
o
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We conclude that ftβn converges to ft uniformly on compact subsets Qδ ro of Q. Also,
ft is a continuous function on Q and satisfies in each Qδ the bound

sup|f t(w,r)\^b(u; δ). (5.6)

Furthermore, the fact that, at each u, ft belongs to L2(0, oo) implies that at each w, h
belongs also to L2(0, oo) and δh2(u, (5)->0 as <5-»0. In addition, (4.13) implies that

1

and (5.2) implies that

W,4M0)|S ̂ 1/2 ,

\h(u,r)\

(5.7)

is bounded by a continuous function of u.
The facts that ft£n, h&n, dhjdr converge uniformly in each Qδ ro to h, ft, dh/dr,

respectively, and that ft£n, ft£n, dhεjdr tend to zero as r->oo uniformly in u and n,
imply that ft£n, ft£n, dhjdr converge uniformly in each Qδ to ft, ft, dh/dr, respectively.

For each δ>0 and each r0>(5,

(5.8)

uniformly in r e [̂ , r0] and we[0,u0]. By Lemma 5(see(4.15))sinceM0/2^M0>fi

^2M0 for r^8M0, we have

where C is independent of r and n. Hence, if r0 ̂  8M0,

oo — dr
The same inequality must hold for J (ft — ft)2 — . Given now any ^>0, we can

ro r

C2 /8M \2

choose r0 such that — ί - - 1 <ηβ.

By (5.8), we can then choose N^ such that for all n^JV l 5

dr

Then,

^Ί drj2
r-\-8n
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We conclude that

γ

:= (h~^'

uniformly in Qδ for any δ > 0. Therefore also

g£n : = exp( - 4πAJ ->g : = exp( - 4πA) ,

uniformly in Qδ for any δ > 0. The fact that, at each u,h — he L2(0, oo) implies that,
at each u, δA(u, c>)->0.

We know then that g is a continuous function in Q. At each u, g(u, r) is positive,
continuous, and monotonically non-decreasing in r. Hence g(u, r) tends to a limit
as r->0. We set g(u, 0) : = lim g(u, r). Then g is continuous with respect to r even at

r->o
r = 0. The sequence {g(u, l/m)|m=l,2, 3, ...} is a non-increasing sequence of
continuous functions of u which are >0 and <jl. It follows that g(u,0)
= lim g(u, 1/m) is a measurable function of u which is ^0 and ^1.

τn-xχ) Λ γ

We now consider g: = - J gar. It follows from the above that g is continuous
r o

with respect to r for all r ̂  0 and g(u, 0) = #(w, 0). We shall now show that g is also
continuous with respect to u in Q. Given any η > 0 and r0 > η/2, by the continuity of
g with respect to u in Q we can choose ε such that for \u — u'\<ε, we have

\g(u,r)-g(u',r)\£η/2r0 for all re[^/2,r0].

Then

^ f \g(u,s)-ί
o

\
η/2

Hence f gdr, and therefore g is continuous with respect to u in Q.
o

We know from the above that

uniformly in u for 7, δ fixed, (5 ̂  y > 0. Thus for every y > 0 and every η > 0, there
exists N(γ, η) such that for all u e [0, w0], we have

<η, for all n^N.

Given now any ηf>Q, let N' = N(η'/2,η'/2). Then we have

δ δ
J g(u,r}dr- f g£n(u,r)dr <η'/2 for all n^N x,

/'/2 ι,'/2
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and therefore

609

]g(u,r)dr- ]gεn(u,ι
o o

We conclude that

ί g(u9r)dr- ] g£n(u,r)dr
ΪI2 η'12

+ =η' for all
2 2

converges uniformly in u to J g ( u , r ) d r . For r^δ, we write
o

δ r

rcϊ(r) — i Q( 14 s)ds ~f~ 1 d(u s)ds
o δ

Since r

]gεn(u,s)ds
δ

r

converges to Ig(u9 s)ds uniformly in Qδ)ro, r0 arbitrary, we conclude that

n)gεn = ί 0βn(«, (u, s)ds

converges uniformly in Qδ ro to rg. Therefore gεn-^g uniformly in compact subsets
Qδ ro of (λ Furthermore, the fact that for r^r0 we have

and

together with the fact that g£n-+g uniformly in Qδ, implies that g£n-+g uniformly in
Qδ, for any δ > 0.

Let us recall the function ε0(<5; k) which is defined in the first paragraph of
Sect. 4. We may assume that ε0(δ'9 2)^(5/2. Let N(m) denote the smallest positive
integer such that εN^ε0(^w; 2).

We shall now show that at each u9 g/g e !/((), rj, r1 arbitrary. First, for each m

r\

(ιι,r)dr,

uniformly in w, since gfεn(w, δm) is uniformly in n and u bounded from below by a
positive constant. By the ε-integral identity (2.22), for each u^Q, we have

2fc (0,r)dr.
sm \9j
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Since r0 > £ n^r1+w1/2, if n^N(m) (see first paragraph of Sect. 4)

ΪW)*
\9*n/

o \g) ? r r'~ YI Ul

Hence for all n I

and C is independent of either n or m. It follows that also
rι /fl\
ί ( ϊ ) ( u ,
tm\gj

Consider the functions
g for r^

0 for

At each u, the sequence {/TO | m = 0, 1 , 2, . . . } is an increasing sequence of functions in
!/((), Γj), Γj arbitrary, such that

f l

ί /m(w? r)dr<C (independent of m) .
o

By the monotone convergence theorem g/g, which is the pointwise limit of the fm

for m->oo, belongs at each u to L^O, r^, r1 arbitrary, and

{9.
We shall now show:

Proposition 1. The property that, at each u, g/geLl(Q,rι), r± arbitrary, together
with the finiteness of M(u), is equivalent to the property that, at each u,he L2(0, oo).

Proof. Since

ί ~.dr= - J rd\og(rί/rg)=-r1

^ implies that log(l/g)e !/((), rj, and therefore that
log(l/0) e !/((), Γi). On the other hand,

o

and if we take rί=4M9 we have
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Thus the integrability of log(l/#) on (0, r^, r1 arbitrary, together with the fmiteness
of M implies that h — heL2(Q, oo). Finally since

J h2dr= f (h-h)2dr-δh\δ),
δ δ

the square integrability of h — h with respect to r implies the square integrability of
h with respect to r. The reverse implication is established by considering that

and

For each (ulίri)eQ, we define the characteristic χUί(u; r j through r = r1 at
dχ 1

u = u1 to be the solution of the ordinary differential equation — = — -g(u,χ),
ttU jL

satisfying the condition χ(ιO = r x. The existence and uniqueness of χuι(u; r j for all
(w l 5 r t) E Q is guaranteed by the continuity of g and dg/dr in ζλ We shall now show
that the εw-characteristics χεn converge uniformly to the characteristics χ. The επ-
characteristic χεn u (u; rx) through r = rί at u — uv is the solution of the ordinary
differential equation,

satisfying the condition χBn(uί) = r1. Thus, we have

l-l-log(l) Lίr = r1log(l/ff(r1))+ ί \ o g ( l / g ) d r . D
.9 wJ o

and (χ6n — χ)(κι) = 0. Integrating, we obtain

(*«, - χ) («) = \ ί Cί J«'» χ J«0) -
^ u

= ί [».„(«', XW) - 9(

We set yε»: = |χe»-χ(M)|. Then yεn(Ul) = Q. Since (w^r^eβ, we have
(ul9 Γi) e βό for some δ >0, and therefore (u, χεn(u)) e β^ and (w, χ(w)) 6 25 for all
M^M!. By the uniform convergence of ^εn to g in Qδ we have \gεn(u',χ(uj)
— g(u', χ(wO)l ̂  *?ϊi5 where ?7n->0 for n-^oo. Also the fact that the sequence {dgεjdr}
is equibounded in Qδ,
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implies that ,

&>', χJiO) - &>', χ(tO)l ̂  ̂  yε>0 -

Hence we obtain from (5.11) the inequality

1 1 Ml

It follows that yen(«) ̂  *ίn - S(e(Uί~tt)/2δ- 1). We conclude that )>£n->0 uniformly in u
for w-κx), and therefore the εn-characteristics χ£n converge uniformly to the
characteristics χ.

The function hEn satisfies the integral equation

M«ι.' ι)='ΌCeJθ; rθ)+ ίo
Let (MIS Γj) e Q. Then (w l5 rx) e Qδ for some (5 > 0, and we know that for each δ > 0,

hεn-^h uniformly in Qδ,

hεn-+ h uniformly in Qδ,

gεn->g uniformly in Qδ,

gεn-^g uniformly in Qδ,

and h, ft, g, g are all continuous functions in Q. We also know that χ£n(w; rj
~+χ(u:> rί) uniformly in u. It follows that for n-^oo:

and

Therefore, for all (w l9 rx) 6 Q it holds:

dtt. (5.12)

We conclude that h satisfies in Q the nonlinear evolution equation in the integral
sense.

We shall now show that h is continuously differentiable with respect to u in Q.

We know that dh/dr is a continuous in Q. We set /: = — - — (ft — Λ). Given

(u^r^eQ and Δuί9 let rί + Ar1 be the value of r at which the characteristic χ
through (M!,^) intersects the line u = uί — Auί. Then from (5.12) we obtain

(5.13)
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and we have

ήTl 1 " [ - - ( ( '

Since h is known to be continuously differentiable with respect to r in β, as Auί ->0

the right side of (5.13) tends to the limit ( /+ -τ- -# ((MI,^). Hence h is
V dr 2 )

continuously differentiable with respect to u in Q and

dh \ , __ „ 1 .dh

We conclude that h e Cl(Q) and satisfies the nonlinear evolution equation in the
differential sense in Q.

From the ε-integral identity (2.22) it follows that for r0^(50 but otherwise
arbitrary and for each m and n^N(nί):

(considering the fact that βδm,,.0Cgδw>εn(w0,r0)
 and taking into account (5.10)).

The constant C depends on r0 and u0 but is independent of either n or m. Thus the
sequence

is contained in the closed ball of radius C/2π in L2(Q3m>ro) for any r0 ̂  <50 and each m
and n^.N(m). In virtue of the weak compactness of the closed balls in L2, we can
choose for each m the subsequence {h£n w} so that the corresponding subsequence

α1/2

»£«.™

converges weakly in L2(Qδmjro) for any r0 ̂  50 to a function defined on Qδm, which
we denote by

'βl!l_L
ϊ r^, ύm

and which belongs to the closed ball of radius C/2π L2(Qδm>ro), r0 arbitrary. Then
the diagonal subsequence will be such that the corresponding subsequence

-1/2

converges weakly in L2 on compact subsets Qa>ro of Q to

r 1 / 2 '
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a function on Q whose restriction to each Qδm equals ( g ί / 2 ξ / g r ί / 2 ) \ δ r n . Consider the
measurable functions

for (M, r) φ Qδm

for (u, r) € Qδ .

the sequence (g f^ |m = 0, 1,2, ...} is an increasing sequence of functions in
i/Cg^o)), r0 arbitrary, such that

f j f2dudr^C/2π.
Q(ro)

The function g1/2ξ/gri/2

7 which is the pointwise limit of the fm for m-»oo, is
measurable, and by the monotone convergence theorem belongs to L2(Q(r0)), r0

arbitrary, and

IS -^Giro) 9 r

By the above paragraph, for any L2 function ξ whose support is a compact set
in Q we have:

l/2 £ l/2 c

(514)
Q g r

Since gl^2/gεn is not less than 1 and converges uniformly in Qδ for any δ > 0 to g1/2/g,
(5.14) implies that for any C°° function ^ whose support is compact and contained
in the interior of β, we have

(5.15)
Q Q

Now .,

(see (2.13)). Hence, for any C°° function ^ whose support is compact and contained
in the interior of Q it holds:

(5.16)

Since ^£n(/ίεn — KBι)/(r + £„) converges uniformly in β^ for any δ>0tog(h- K)/r, the

left-hand side of (5.16) converges to - JJ g - φdudr. By (5.15) the right-hand
fiώ Q r

side of (5.16) converges to JJ ξ — dudr. Therefore, for any C°° function φ whose
Q Oΐ

support is compact and contained in the interior of <2, we have

f f -(h-K) ., , f, ,Sφ , ,
— \\ g - -φdudr = Jj ξ^-dudr.

Q r Q or
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We conclude that ξ is weakly differentiable with respect to r in Q and

l-'̂Since g/g^l, the fact that g1/2ξ/grl/2 eL2(Q(r0)) implies that
<^1/2r1/2eL2(β(r0)). χhus? for almost all u ξ(M,r)/ff1/2(M,r)r1/2εL2(0,r0). Let

us set r = r0e~s and ξ*(M,s) = ξ(tt,r), #*(w,s) = g(w,r). Then since,

oo £*2 r0ί:2 Λ

(5.18)

(ζ*/g*ll2)(u, )eL2(0, oo) for almost all u. By (5.17),

δs
Therefore

- (5 19)

Since Q* g 1, we conclude that for almost all u ξ*(u, ) belongs to the Sobolev space
fί^O, oo), and in fact than f*eL2(0,r0; H^O, oo)). By the Sobolev imbedding
theorem for almost all u ξ*(u, - ) e C1/2[0, oo[ and ξ*(u, s)->0 as s-+oo. It follows
that for almost all w, ξ(w, r) is continuous with respect to r and £(w, r)->0 as r->0.
Since

(5.20)
<5 r

letting <5-»0, we conclude that

ξ(r)=limί^(Λ-S) — . (5.21)
5->o 5 r

We note that the function g(h — h)/r is not necessarily Lebesgue integrable on
(0, r0). However for almost all u the above limit exists and equals ξ(r). The fact that
ξ/g1/2 r112 e L2(β(r0)) implies of course that (ξ/g1/2) ( ,δ)e L2(0, u0) for some δ > 0.
Then, as a consequence of (5.20) ξ/^1/2( ,r)eL2(0, MO) for all r>0. It follows also
that the restriction of ξ to the characteristic χαι( ,rι) through each (w1,r1)eβ
belongs to L2(0, Uj). For every s0 e [0, oo[, we have the Sobolev inequality

ds, (5.22)

where c is a universal constant, independent of s0. Since g* is a monotonically non-
increasing function of s, (5.22) implies that

0*(s0) 0*0o)so\ \Ss J J SQg
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Taking into account (5.18) and (5.19), we obtain from (5.23) that

f/>2\ -) Cr0κ2 Λ Λ

sup V (r) \£c ί^- + ^-(0(r0)ι 6]o fr0] [\g J } [o g r 4π

<5 23)

(5.24)

Since g is continuous with respect to r at r = 0, (5.24) implies, if we let r0 ->0, that at
almost all w ξ2/g-+Q as r->0. Integrating now (5.24) with respect to u we obtain

«o ί 'K2

ί sup
.Q(r0)

ίto(ιι,ro)-ff(ιι,0))dιιM5.25)

Since

we have

It follows that r^r0(r0>0), (ξ2/^) W^2(ξ2/^)(^o) + c

? where C is a continuous
function of u (considering the falloff property ofh — hϊoΐ r->oo). We then conclude
from (5.25) that

Since, by dominated convergence,

J (g(u, r) — g(u, QJ)du-+Q as r -> 0 ,
o

letting r0-»0 in (5.25), we obtain

«o (P2\

f fM(tι,r)dw->0 as r->0.

We summarize the results of the last paragraph in:

Proposition 2. At almost all u, ξ/gί/2 is a continuous and uniformly bounded function
of r such that ξ/gi/2->0 as r->0. Also, at each r £/£/1/2eL2(0,w0), UQ arbitrary.
Furthermore,

ξ

and

sup

ί Mr- (tι,r)dιι->0 as r->0.
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According to (2.12)

8h^l__ (hεn-hj ξεn

du 2ε»

For any C°° function φ whose support is compact and contained in the interior of
β, we then have

en φdudt=_^K dudr. (5.26)
r JJ ε" v '

Since ^En converges to /F uniformly in Qδ for any δ >0, the right-hand side of (5.26)
Λ /

converges to — Jf h^-dudr. Si
Q on

uniformly in Qδ for any <5>0,

converges to — Jf h^-dudr. Since also fo£n and ^£n converge to h and ̂  respectively,
Q on

Q 2

Now, ^/r is also a C°° function whose support is compact and contained in the
interior of Q; consequently, by (5.15)

Q r

We conclude that

4 r ' 2rf

ξ
Hence h is weakly differentiable with respect to u in Q and Dh — —. Consider now

00 _ Aγ ^ΐ

A:= J (h — h)2 — .It follows from the preceding that A is weakly differentiable
r T

with respect to u in Q and

Taking into account the fact that

we obtain

DA=]\^g(h-h)-ξ\.(h-E)d^. (5.27)

Since g = e~4πA, g is weakly differentiable with respect to u in A and
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1 r

We shall now compute the evolution law of-Jgdr, <S>0. We have
r δ

9 ίΐ

dr.
>~1 vj£, N «V \J \. / / r~) V ^ ̂  V " \ ^ r~\ >J *J 'Λ f

2* Γ 2*1 I δ \ *-ι Of J

We can write

δ * Sr

Substituting this in (5.28), we obtain

(1 r \ 1 a 4π 1
-f qdr I = — --^δq(δ)-\ δq(δ)DA(δ)— ^-q(Q — S) — L

rδ ) 2r 2 r 2r

+ — ]g(r— ~9^-}dr. (5.29)
r a \ 5r 2 or J

From (5.27), we have

dDA _1 g^ _(h-h)

dr 2 dr r

Hence (see 5.17).

f / dDA 1 δ^lN

f - v * " " ' * / * - ! f z ^ j -1 κ2 -1 i:2/s:\ /c ™\= J gf ξdr= J ς — αr= -^ ζ (δ) (5.30)

Substituting (5.30) in (5.29), we conclude that

where

fδ:= --^δg(δ)-~ξ2(δ)+—δg(δ)DA(δ). (5.32)
2 r r r

We shall now show that at almost all u /^->0 as <S-»0. The first term in fδ tends
to 0 at all u as <5->0. By Proposition 2, the second term tends to 0 at almost all u as δ
->0. It remains therefore to be shown that:

Lemma 8. At almost all u, δDA(u, (5)->0 as <5-»0.

Proof. According to (5.27),

Thus
1 °° /7Γ °° ΩYl-\g(h-W^+ f |ξ | |Λ-fcK. (5.33)
-<£ δ <5 *
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We decompose the first integral in (5.33) into

00 Aγ (51/2 Aγ 00 Aγ

\g(h-W~= J g(h-K)*™ + J g(h-h)2aί (5.34)
δ T δ T $1/2 r

(since we are interested only in the limit <5->0, we can assume δ < 1). We estimate

_ _ υ as
δ r ,5 r 4-τι

by the continuity of g with respect to r at r = 0. Also,

δ112 „
as

r" - b " x ' r '

We conclude that at all u,

<5 ί g(h — h)2^--^0 as <5-»0. (5.35)

We decompose the second integral in (5.33) into

J \ξ\\h — K\~2 = ί |ξ | | f t — f i l ~ 2 + ί \ξ\\h — K\-2 + ί |ξ| |Ί — K\-2 (5.36)
5 Y δ F 51/2 ^* 1 "̂

We estimate

ί'" ,,dr a1/2..... π rfr /ί"2^2 \ι/ 2/^' 2 «,_JΛ2 \ ι / z

Now, at almost all u ξ/gl>2ril2 e L2(0, r0), r0 arbitrary. Therefore at almost all u the
first factor in the above inequality is finite and tends to 0 as δ -»0. The second factor
is equal to ((g(δ1/2) — #((5))/4π)1/2, which tends to 0 for all u as (5-»0. Hence

<51/2

as δ— >0, for almost all M. Also,

l /2 / I - 2 \ l / 2

_
for almost all u. Furthermore, since we have J |A — Λ|-y ^C, where C is a

continuous function of w, the third integral in (5.36) is bounded by a multiple of
sup|£|, which, by Proposition 2, is finite for almost all u. We conclude that at

almost all w ^ ,
δ]\ξ\\h-h\-^^Q as <5->0. (5.37)

<5 Y

Considering (5.35) and (5.37), together with (5.33), the lemma follows. D
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Thus, for almost all u and all r>0, fδ(u,r)-+Q as (5->0. Hence, from (5.31),

— ξ2 . (5.38)
r

For all C°° functions ^ whose support is compact and contained in the interior of
β, we have

-ίί -iff* ) i t y A i d r = f f D \-$gdr }φdudr.
Q\Tδ J Q \Tδ J

1 r

As ~lgdr-*g for <5->0 uniformly in the support of φ, it follows that
rδ

Λ " \
= lim jjΊ> -Jf#dr }φdudr .

δ->o Q \r δ /

Since φfδ is dominated by an integrable function (see Proposition 2 and proof of
Lemma 8) and tends to 0 almost everywhere as <5->0, by the dominated
convergence theorem, we have

/I \ Λ Γ \
lim Π D - J g d r ] φdudr = j j lim D(-$gdr) φdudr .
<5->o Q \r δ J Q δ-+o \r δ /

We conclude that g is weakly differentiable in Q and

(5.39)
r δ J 2x r

It follows that m: = (r/2)(l —g/g) is weakly differentiable in Q and

β 9

We conclude that the mass equation is satisfied in Q. Thus (see [1, Sects. 2-4]) the
complete system of Einstein's equations is satisfied in Q.

r

We now compute the evolution law of j (g/g)dr, δ>0. We have

D(g/g)dr= D(g/g)+ g - ( g / g ) dr-
2

and, since g/g = (l — 2/κ/r)"1, the mass equation gives,

2mV2/2Dm .
- = - -,

(5-40)
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Hence we obtain

D $(g/g)dr = — 2πJ -^ — dr—-g(δ), (5.41)

since it holds:

l ΐ m ] ( g / g ) d r = ] ( g / g ) d r ,
δ^Q δ 0

and also

lim D] (g/g)dr = -2π]^-dr- ~g(0) ,
<5->o δ δg r 2

we obtain by dominated convergence, in the same manner as in the preceding, that
r

l(g/g)dr is weakly differentiable in Q and
o

D](g/g)dr=-2πϊ^dr-1-g(V). (5.42)
o og r 2

Integrating the mass equation along the characteristic χMl( ;τ"ι) through
(HI, 7*1), we obtain the mass-flux relation

= m(0,r0), (5.43)
0 13

where r0 : = χMl(0; r^). Finally integrating (5.42) along χuι( rx), we obtain the main
integral identity:

]-,(ulyr^dr + 2n JJ ^-drdu+ ^] g(u,ΰ)du= ?l(0,r)dr,
0 g Q(m,rι) gf Γ ^ o 0 0

where

Q(M1,r1): = {(u,r)|0<r<χ l l l(M;r1),0<M<tt1}.

The proof of Theorem 1 is now complete.
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