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Abstract. We consider the initial value problem for the Zakharov equations

(Z) ntt - A (n + |£|2) - 0 φ,0) = n0(x)

iEt + A E - nE = 0 E(x, 0) = E0(x)

(xεUk, fc = 2, 3, ί ̂  0) which model the propagation of Langmuir waves in plasmas.
For suitable initial data solutions are shown to exist for a time interval independent
of λ, a parameter proportional to the ion acoustic speed. For such data, solutions of
(Z) converge as λ -> oo to a solution of the cubic nonlinear Schrόdinger equation

(CSE) iEt + ΔE + \E\2E = 0.

We consider both weak and strong solutions. For the case of strong solutions the
results are analogous to previous results on the incompressible limit of
compressible fluids.

I. Introduction

The Zakharov equations [Z, GTWT],

^ntt-Δ(n + \E\2) = Q, (1.1)

iEt + ΔE-nE = Q, (1.2)

E: Rk

x x R + -> Cfc, n: Uk

x x fRt

+ -> R, describe the propagation of Langmuir waves in
plasmas. The complex vector E denotes the slowly varying envelope of the highly
oscillatory electric field, and n is the fluctuation in the ion-density about its
equilibrium value. The parameter λ is proportional to the ion acoustic speed. Other
physical parameters have been removed by scaling.

Formally letting λ tend to infinity in (1.1) yields the equation Δ(n + \E\2) = 0,
which implies n = —\E\2 if n and \E\2 are square-integrable. Substitution of this
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expression for n into (1.2) yields the cubic nonlinear Schrόdinger equation,

\E\2E = Q (1.3)

which has been used to model phenomena when λ is large [Z, GJ]. The limit λ-*co
corresponds to the assumption that the plasma responds instantaneously to
variations in the electric field.

Our goal in this paper is to present a justification of this reduction. We show that,
for certain initial data, a) solutions of the IVP for (1.1-1.2) exist on a time interval
[0, T], where T is independent of A, and b) solutions of the IVP for (1.1-1.2) converge
to solutions of the IVP for (1.3), as λ-»oo. This is carried out for two types of
solutions. First, for suitable initial data in the Sobolev space Hm with m sufficiently
large, the classical solutions of (1.1-1.2) exist for a time T independent of λ and
converge pointwise together with some number of derivatives to a classical solution of
(1.3) (Sect. 3); this case follows from the Klainerman-Majda theory of singular limits
[KM, M]. Second, when fe, the number of spatial dimensions, is less than or equal to
3, for suitable (sufficiently small) initial data π(0,x,/l) in L2, nf(0, x, λ) in H'1 and
E(0,x,λ) in H1, weak solutions to (1.1-1.2) exist globally in time and converge
weakly to the Ή1 solution of (1.3) (Sect. 4).

Computer simulations of solutions to the Zakharov equations [SZ] suggest that
solutions may develop singularities in finite time. This is believed to correspond to
the collapse of Langmuir waves and onset of turbulence. In fact, solutions to the
"approximating" cubic nonlinear Schrodinger equation develop singularities in
finite time for a large class of initial data [GRT]. The hypotheses in our theorems
ensure that solutions do not develop such singularities for the time intervals
considered.

Notation: Lp = Lp(Rk) = {/If |/|p < oo }
Hs = Hs(Rk) =

AC([Q, T^ X) = space of absolutely continuous functions on [0, T]
with values in X.

f= complex conjugate of/.
[α] = largest integer smaller than or equal to α.
TU = the transpose of the matrix U.

Throughout this paper integrals are assumed to be taken over (Rfc, and all constants
c,c1,c2,... are independent of λ unless otherwise explicitly indicated.

II. Zakharov Equations as a Dispersive Perturbation of a Symmetric Hyperbolic
System

To write (1.1-1.2) as a perturbation of a first order system we define:

= n + \E\2. (lib)
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Then, (1.1-1.2) become

0, (2.2)

0, (2.3)

ιEt + ΔE + |£|2£ - β£ = 0. (2.4)

In Sect, four, Eqs. (2.2-2.4) will be used to study weak solutions. To study
classical solutions, it is convenient to write (1.1-1.2) as a dispersive perturbation of a
quasilinear symmetric hyperbolic system. The remainder of this section will be
concerned with deriving this alternative system.

We first multiply (2.4) by E and take the imaginary part of the resulting equation to
get

(\E\\ = (EΛE~EAE\ (2.5)

Next, we take the gradient of (2.4) and get

I'VE, + A VE + \E\2VE + (EVE + EVE)E - QVE - EVQ = 0. (2.6)

Now let ^2E = F + iG and 2VE = H + iL. Then, use of (2.5) in (2.2) leads to the
following system equivalent to (2.2-2.4, 2.6):

βf + λV V + FV L - GV H = 0, (2.7)
7f + λVβ = 0, (2.8)

Ft + 2(F2 + G2)G-QG=-ΔG, (2.9)

Gt - i(F2 + G2)F + QF = ΔF, (2.10)

Ht - GVG + i(F2 + G2)L + (FH - GL)G-QL = - ΔL, (2.11)

Lt + FVQ - i(F2 4- G2)H - (FH - GL)F + QH = ΔH. (2.12)

Introducing the (3k + 3)-component vector function U = T(Q, F, F, G, //, L),
Eqs. (2.7-2.12) can be written in the form:

17, + X (A3(U) + λCj)UXj + 5(17)17 = K4I7. (2.13)
j = ι

Here Aj and Cj are symmetric (3k + 3) x (3fe + 3) matrices, and X is an antisymmetric
(3k 4- 3) x (3fc + 3) matrix. £(•) and y4J'( ) are C°°, and K and C7' are constant matrices.

Note that the factors of v/2 in the definition of F, G, // and L were introduced so that
the matrices Aj(U) are symmetric. The antisymmetric operator KΔ in (2.13) reflects
the dispersive nature of the equations. The special structure of (2.13) will be exploited
in the following section on classical solutions.

III. Classical Solutions

We shall consider the IVP for (1.1-1.2) with initial data given by

(3.1)
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Theorem 1. (Existence of solutions of (Z) for each λ and a priori estimates) Let k
denote the spatial dimension and m ̂  [/c/2] + 3.
Suppose

IIM^II^ + ̂ l l / o W l l f l m + I I E o W l l ^ i ^ C ! . (3.2)

Then the IVP (1.1-1.2,3.1) has a unique classical on a time interval [0, T]. Here, T
depends on the bound Cl in (3.2) and in particular, not on λ. In addition, the solution
(E, n) satisfies the estimate

for all t e [0, T].
Classical solutions of (1.1-1.2,3.1), for fixed λ, were constructed in [SS] by

different methods than the ones we employ.
Due to the rapid oscillations in solutions that arise as λ -> oo, we have, without an

hypothesis ensuring that we are "near" the nonlinear Schrodinger equation initially,
the following convergence

Theorem 2. Assume the hypotheses of Theorem 1. In addition, suppose E0(λ)-+E0

weakly in H1. Then, the solutions (n(λ),(E(λ)) of (1.1-1.2,3.1) converge weakly to the
unique AC([Q, T];//1) weak solution of (1.3) with initial data E0.

This result can be proved by the method of proof used for Theorem 5, (see
Sect. 4). To ensure strong convergence of (n(λ), E(λ)) to a classical solution of (1.3) we
require additional hypotheses, as is seen in

Theorem 3. (Strong convergence to solutions of (1.3) as λ -» oo) Suppose in addition to
the hypotheses of Theorem 1 that

^C3, (3.4)

and that
E0(λ)-+E0 as λ-» oo strongly in Hm + 1. (3.5)

Let T denote the time of existence of the solution constructed in Theorem L Then, as
λ-^oo

n(λ) + \E(λ)\2 ->0 in C°([0, T) x (Rk), (3.6a)

V[n(λ) + \E(λ)\2] ->0 in C°([0, T^Hm~2), and (3.6b)

E(λ)^E, (3.6c)

the unique solution of (1.3) with initial data E0 in

III.A Existence of Solutions to (1.1-1.2,3.1) for Fixed λ and a priori Estimates

To prove Theorem 1, we first write (1.1-1.2) in the form (2.13) as in Sect. two. The
existence proof proceeds along the lines of the existence proof for the IVP for
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quasilinear symmetric hyperbolic systems (see [KM, M]) with modifications which
we shall now outline.

Local existence in time can be established for (2.13) with initial data implied by
(3.1) via the following iteration scheme. Define l/°(x,ί) = t/0(x), where U0 denotes
the data for (2.13) constructed from (3.1) and

dUp+1 κ

—— + £ (Aj(Up) + λCj) 1/5 + 1 + B(UP) Up+l

Ct j=ι

= KΔUp+\ Up+i(x,ty=UQ(x) p = 0,l,2, . (3.7)

The existence of solutions to (3.7) for each p follows from a natural extension of the
existence theory for linear symmetric hyperbolic systems.

To prove that the iteration scheme is well defined and to prove convergence of
the iterates {U p } to a unique classical solution, we need a priori estimates on the
space derivatives of the following type

\\Up(t,λ)\\H^^C4 (3.8)

for all ίe[0, T]. This would imply by (3.7) that || l/f (t, λ) ||H«-2 ̂  C5(λ). This ensures
that for fixed λ, we have convergence of {Up} in C°([0, T]; H?0~

2) by the Ascoli-
Arzela theorem, and therefore in C°([0, T];//^"*5) by interpolation. It now follows
from (3.7) that {dUp/dt} also converges as p-»oo, and the limit U satisfies (3.8).

That T and C4 can be chosen independent of λ is seen as follows. First, (3.8) holds
at time ί = 0, by (3.2) applied to the initial data in (3.7). Since VQ =
~(l/λ)Δ ~ ίW-f0(λ), we have used here the fact that the operator Δ ~ 1d2/dxidxj is
bounded on Hm. That (3.8) holds on (0, T) for some T independent of A follows from
energy estimates obtained by taking the L2 inner product of Up +1 with (3.7). As noted
in [KM, M], the λ dependence contributes nothing to the estimate since
λτUp + lCjUp+1 is a perfect derivative because Cj is symmetric and constant.

Also, the term \TUKA U = -§T(VU)KVU = 0 contributes nothing to the esti-
mate, by the antisymmetry of K. Derivative estimates of Up are obtained by
differentiating (3.7), taking the inner product of the resulting equation with the
corresponding derivative of Up, and using the above observations.

Note also that we do not require estimates for C/f ( , λ) independent of λ since the
term Up + 1 is not multiplied by a matrix A°(U) as in [KM,M].

The result is a solution U on a time interval [0, T], with T independent of λ
satisfying

| |t/(ί,A)| | f l m^C4 (3.9)

for fe[0, T]. Although (3.9) implies 176L°°([0, T];Hm), it can be shown.[M] that in
fact L/eC°([0,T];Hm)nC1([0,T];iim-2).

This result is pulled back to the system (1.1-1.2) as follows: First, Eqs. (2.3-2.4)

follows directly from (2.8-2.10), where we defined E = (1/^/2)(F + iG). Next, an L2

energy estimate for W=(VF- H9 VG - L) implies || W(t)\\2

L2 ^ecτ\\ W(Q)\\2

L2 = 0,

and therefore that VE = (l/^/2)(H + iL\ This implies that the sum of the last two
terms in (2.7) is equal to the right-hand side of (2.5). Since (2.5) follows from (2.4), (2.2)



574 S. H. Schochet and M. I. Weinstein

holds. Setting n = Q - |E|2, we have that

nt + λV V = Q. (3.10)

Q and W are then smooth enough for (2.3) and (3.10) to imply (1.1). Clearly, (2.4)
implies (1.2). Estimate (3.3) follows similarly.

III.B. The Cubic Schrδdinger Limit (λ-> co)for Classical Solutions

To prove Theorem 3, we shall first prove (3.6a, b) using (2.8). We require a bound on
Ut(t9 λ) independent of λ. To obtain this bound we differentiate the system (2.13) with
respect to t and derive energy estimates for || Ut(t,λ)\\Hm-2 analogous to those of
Sect. 3.A (again using that the Cj are symmetric and constant, and that K is
antisymmetric). We obtain a differential inequality for || Ut(t,λ)\\Hm-2 that has no
explicit /Independence. Also the initial data satisfies the estimate

||l/ f(0,λ)||^-2^C (3.11)

by hypothesis (3.4). It follows that

II l/ΛU) 11^-2 £C5

for ίe[0, T]. Note that unlike solutions to the systems considered in [KM, M], Ut is
only in Hm~ 2 and not Hm~ 1 due to the presence of the higher order KΔ U term in
(2.13). Use of (3.11) in Eq. (2.8) implies that

λ||Vβ(U)llH«-^C6 (3.12)

for t e [0, T], and hence that

(3-13)
for fe[0, Γ] by the Gagliardo-Nirenberg inequalities (see for example [F]), (3.12),
and (3.2).

Now, since (F9G9H9L) is bounded in C°([0, Tl^nC^O, Γ];//m'2), by the
Arzela-Ascoli theorem (applied in the time variable), the Rellich compactness
theorem (applied in the space variables) and interpolation, we have that for every
sequence of λ's tending to infinity (F(λ\G(λ\H(λ\L(λ}) has a subsequence that
converges in C°([0, T];H^c'

ε)? for ε > 0, to (F, G, #, I). By (3.13) and Eqs. (2.9-2.12),
the convergence takes place as well in C1([0, T];HJJ~2~ε). Thus, the subsequence
converges to a solution of the system obtained from (2.9-2.12) by setting Q = 0. By
(3.5) this limiting solution has initial data (ReE0,ImE0, VReE0, VImE0). Also,
perhaps after passing to a second subsequence, the above limit converges weakly in
Hm (as a bounded sequence in a Hubert space). Therefore, by the identity of weak
and strong limits, (F,G,#,L)eL°°([0, T];#m)nΛC([0,T];#m-2).

Now, uniqueness of L°°([0, T];#m)nv4C([0, T];ffm~2) solutions to the IVP for
(2.7-2.12) follows from a straightforward energy estimate for the difference of two
solutions. It follows that the convergence to (F, G, /?, L) takes place without passing
to subsequences. Theorem 3 now follows upon interpreting this result for the system
(1.1-1.2)
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IV. Weak Solutions

The main tool in establishing the existence of global weak solutions are the
conserved integrals of (1.1-1.2). We define

N= \\E\\l, and (4.1)

H=\\VE\\i2-±\\E\\*<+±\\Q\\l + ±\\V\\2

L2. (4.2)

N and H can be shown, using (2.2-2A) the definitions (2.1), to be constant on
sufficiently smooth solutions of (1.1-1.2) (see for example [GTWT]).

Let ψ(x) denote the spatial profile of the ground state solution of (1.3), i.e. u = ψis
the unique positive H1 solution of Δu — u + u3 =Q (see [W]). We denote by k
the number of spatial dimensions, 1 ̂  fe g 3. We first have for each fixed /I/O,
the following weak existence

Theorem 4 Consider the initial value problem for (1.1-1.2) with data given by (3.1) for
which the functional N and H are finite, i.e. EQeH^, n0eL2 and nt\t=0€H~l. Suppose

\\E0(λ)\\L2^c'< ||ιA||L2^(2π)1/2(1.8662)1/2, ifk = 2, and (4.3)

|| VE0(λ)||L2 ^ c" ^ \H\ andN|H| < —^ifk = 3. (4.4)

Then, for any fixed λ the system (1.1-1.2,3.1) has a global weak solution for which
neL°°(U + ;L2), and EeL00^,//1). //, in addition,

. £ c l 5 (4.5)
A

then
1 1

n I f, Λ, t Γ 2 ~T" — 71* ( Γ, A I rj ~ 1 ~T~ ηj~ 71** ( f, A ) rr ~" 1

A Λ

+ ||JE(ί,λ)||fll+||£f(ί,λ)||ίί-ιgc2. (4.6)

Weak solutions to (1.1-1.2,3.1) were constructed for fixed λ in [SS]. The
criterion (4.3) was shown in [W] to ensure global existence of H1 solutions to (1.3).

As for classical solutions, due to rapid oscillations as λ->ao9 we have the
following weak convergence

Theorem 5. Assume in addition to the hypothesis of Theorem 4 that

I I V /oWllH' 1 = C3» and (4.7)

E0(λ)-+EQstrongly in H1 αs/l—>oo. (4.8)

Then, as λ -> oo

n(λ) + \E(λ)\2-»Q weak-* mL°°([R + ;L2)

and for any & > 0 and 1 < p < oo,

where E is the unique AC(R + ι H ί ) solution of (1.3) with initial data EQ.
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IVA. Existence of Weak Solutions for Fixed λ and a priori Estimates

We now prove Theorem 4. As in [SS], for the case of fixed λ, we use the Galerkin
method. Let {wj}j°=1 denote a smooth orthonormal basis for L2([Rk), and denote by
Pm the L2 projection operator onto span {w7}^. We shall seek approximate
solutions in the form:

Qm = Σ *«/f)wj, Vm = Σ <WO< and Em = £ emj(t)w^
7=1 7=1 7=1

where <2m, Fm and Em solve the system

QT + Pm(λV-Vm-(\Em\2)t) = ̂  (4.9)M

= 0, (4.10)m

|£M|2£m - QmEm) = 0, (4.1

with initial data

λ)). (4.12)m

These are simply Pm applied to the system (2.2-2.4, 3.1). The system (4.9-4. 12)m can
be solved for {dqmjldt,dvmj/dt,demj/dt}rf^l to yield a system of (2k + l)m nonlinear
ordinary differential equations in time, which have a solution on some maximal time
interval [0, TJ.

To pass to the limit m -» oo we shall need a priori estimates on the sequence of
solutions to the finite dimensional problems (4.9-4. 12)m, independent of m. These
are obtained by observing that the system (4.9-4. 12)m inherits the conserved
integrals N and H of the exact system (2.2-2 A). To see this, we take the (real) L2 inner
product of (4.1 l)m with Em and then take the imaginary part of the resulting identity.
Using that Pm is self-adjoint and equal to the identity on span { w7}^ ί we conclude
that the functional N is constant on Em. Next, adding twice the real part of the inner
product of — E™ with (4.1 l)m to the sum of the inner products of Vm with (4.10)m and
Qm with (4.9)m implies that H is constant.

As shown in [SS], the constancy of N and H imply

II βm(ί, λ) \\L2 + II V*(t, λ) ||L2 + II Em(t, λ) \\al ^ c(λ) (4.13)

without additional conditions if k = 1, and provided (4.4) holds, when k = 3. When

fc = 2 [SS] shows that (4. 1 3) holds if N < 1/^/2; the sharper criterion (4.3) follows from
the calculation of the optimal constant in a Gagliardo-Nirenberg interpolation
inequality [W]. The criterion (4.3) is a sharp condition ensuring that the functional
formed from sum of the first two terms in H is positive definite.

When (4. 1 3) holds Tm = oo, for all m. For, if Tm < oo , the local existence theory for
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ODE's would imply

lim sup {\qmj(t)\,\vm.(t)\,\em.(t)\} = co.

This would contradict (4.13).
We shall now establish the sense in which the solution of (4.9-4. 12)w approaches

a solution of (2.1-2.4, 3.1) as w-> oo. Fix a positive integer M, and multiply (4.9-
4.11)m respectively by test functions φ(1)w(1),φ(2)w(2) and φ(3)w(3), where φ(i}(t)
vanishes for all sufficiently large ί, and w(ί)espan {wj}f=ί. Upon integrating the
resulting equation over [Rt

+ x Rk

x we obtain a weak form of (4.9-4. 1 l)m which we call
(4.9-4. ll)£f where we can omit the projections Pm for m^M.

Passing to the limit m -»oo requires some observations on compactness of
(βm, Fm,Em), which we now make. First, studying an equation for the time-Fourier
transform of χ[0>T]Em(t), using that A Em + \Em\2Em - QmEm is uniformly bounded
in L°°((R + , H~ 1), it can be shown that [Em] is bounded in H\QC(R+\ L2) for s < i (See
the argument used to prove (3.32) in chapter 3 of [T]. We cannot solve (4. 1 l)m for E?
to obtain regularity of Em in time, since Pm is not bounded independently of m on
H~ 1.) It follows from compactness Theorem 2.2 of chapter 3 in [T] that there exists
a subsequence, still denoted (βm,Fm,£w), and functions β, FeL°°([R+;L2) and
ZeL^lR + Ή1), such that (βm, Fm,£m,V£m)-+(β, F,£, V£) weak-* in L°°(K + ;L2),
and that Em->E in L2

oc(U + ιHl0~
ε) for any ε>0. Since Em is bounded in

L°°(ίR + ;//1~ε), Em converges as well in Lfoc(R + ;#1

1

0~
ε) for any 2^/?<oo, by

interpolation.
To pass to the limit in the above-defined weak form (4.9-4. ll)Jf we remark that

for each M, { wj}f= l have uniform decay at infinity. Due to this uniform decay of the
test functions we can pass to the limit m -> oo, using the weak-* convergence for the
terms linear in Qm, Vm and £m, and the Lf^R + H1"') convergence of Em plus the
weak-* convergence of Qm for the nonlinear terms. The limit along this subsequence
(β, V, E} satisfies

\dt Jdx[ - φίυw(1)β - λφ(1)Vw(1) F - φ^w^lEI2] - J d

(4.14)

JΛ f ώc[ - (/>j2)w(2)Fμ) - AV w(2)β(/l)] - - J Jx(/>(2)(0)w(2) - -A ~ 1 VV /0(/l),
A

(4.15)

- </>(3)Vw(3)V£(A) H- φ(3)w(3)(|£(/l)|2£(A) - Q(λ)E(λ)}]

(4.16)

Since the span of the set of functions φ(t)w(x) with the above properties is dense in
Co(K + , Hl\ and since the functional in (4.14-4.16) are continuous in the topology
of Cl

0(U + ιHl), (4.14-4.16) hold if 0(ί)w(ί) are replaced by any functions in C^R + H1),
i.e. (β, F, E) is a weak solution of the IVP (1.1-1.2, 3.1). Furthermore if (4.5) holds,
then N and H are bounded independently of λ, and hence the constant C(λ) in (4. 1 3) can
be taken to be independent of λ.




