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On Local Solutions of the Initial Value Problem for the
Vlasov—Maxwell Equation
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Abstract. The initial value problem of the Vlasov—Maxwell equation has a
unique solution in a time interval [0, T] for each initial data in some function
space. T is estimated by the size of the initial data. The solution is classical, if the
initial data is smooth.

1. Introduction

The density distribution of the charged gas particles changes under the rule
described as the Vlasov—Maxwell equation. In this paper we prove that the initial
value problem for the Vlasov—Maxwell equation has a unique local (in time)
solution for each initial data in a slightly wide class of functions.

Let f; = f(t, x, v) be the density distribution of the charged gas particles of the type
i (1<i<N) at the time t =0 and the point xeR>® with the velocity veR3. The
Vlasov—Maxwell equation for {f;} is described in the following form:

gf,~+v-foi+gi<E +3><B)-vai=0 (1<i<N), (1.1)
ot m; c
fi|t=0=fi,0(x’v)5 (11)0
a N
EE —cV, xB=—4rn Y q;fvf{t,x,v)dv, (1.2)
=1
K

EB +cV,x E=0.
ot
Eli—o=Eo(x), Bli=o=Bo(x), (1.2)o

where E and B denote the electric and magnetic fields generated by the distributions
f:,m; the mass and g; the charge of the single particle of the i-species. The parameter
¢ = 1 denotes the light velocity. The notations - and x denote the scalar and vector
productsin R3,V, =%d/0x,,0/0x,,8/0x3)and V, =(d/dv,, 0/dv,, d/dv,). Sometimes
we use the notations ¢{,) and | | to denote the scalar product and the norm in R".
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From the first equation of (1.2) we obtain

%Vx-E = —4nXq;[v'V,fidv. (1.3)
It is easy to see that (1.1)—(1.3) imply
Vx'E‘_Vx'Eo(x):47[Zqij‘fidv‘_4n2qij‘fiyodv, Vx'B=Vx'BO. (1.4\.

Hence, to solve the above system of equations we have to put the compatit’
conditions,

N
V. Eo=4nY q; | fiolx,v)dv, V,By=0. oy
i=0 R3
If we assume

B(t, x) = By(x), (1.6)

then the second equation of (1.2) reduces to
V, x E(t,x)=0. 1.7

Combining (1.4) and (1.5) with (1.7), we have

1

E(t, X) = szq,jjmf(t, Y, U)dydv (18)

The system of Egs. (1.1) and (1.8) is called the Vlasov—Poisson equation. Many
authors have considered this type of equation. For example, see Arsen’ev [1],
Bardos—Degond [2], Batt [3], Iordanskii [6] and Ukai—Okabe [8].

On the other hand the Vlasov—Maxwell equation has been studied by rather few
authors. See Cooper—Klimas [4], Duniec [5], Neunzert—Petry [7] and Wollmann
[9]. In the study of the Vlasov—Maxwell equation the main difficulty occurs from the
term (v/c x V,.B)-V, f, when we estimate V% f. Wollmann [9] avoided this difficulty by
assuming that the initial data f,(x, v) has compact support. To treat general f, we
introduce a Banach scale H,, ; (see (1.10) for the definition) characterized by the
weight function exp(p|v]), and obtain an estimate of Cauchy—Kowalevski type
(Lemma 2.4). If we assume that f(x,v)=0 for |v| = R, then we can apply a simpler
scheme and do not need such a Banach scale (Theorem 3.2).

With the notations defined below (see (1.10)—(1.12)) we state our main result.

Theorem 1.1. Let f,,€H, ; (1 <i< N) and (E,, Bo)eH' with [ 23, p>0 and BeR.
Then there exists a solution (f+,....fx, E, B) of the initial value problem for the Vlasov—
Maxwell equation (1.1)—(1.2) in a time interval [0, T'], which satisfies the following:

fiec?'/c([()’ T]QHL,ﬂ)m C%/c([oa T]; H:;Tﬂl— ) 1ZiZN,
(E'B)eC°([0, T}, H)n C([0, T, H' ™). (1.9)
Here T>0 and y> 0 depend on Ifi’()[lfp’ﬂ (1<i=N), |Ey|, and |By|;, but not on
ce[1,00). The solution is unique in () CX[0, T]; H3 ;% ;) x C/[0, T]; H*>J) with
j=0
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B>5/2. Moreover (fi(c,t,x,v),..., falc,t,x,0), Ec,t,x), Blc,tx))e ﬂ M

([1, co): CULO, TT; HYf- ) x CL0, T}, H9)). If (Eq, By) satisfies (1.5), then (E B)
satisfies (1.4).

Remark. Our solution is classical, if f,e CY(R®)nH} ;

We introduce function spaces of measurable functlons H'=H'R3) and
H, ;= H, ;(R%) with [=0, 1,...,peR and BeR by

’6) H hoo)<=(0/0x)h(x) e L2(R?) for || < 1.

The norm |h|, is defined by
|hlf = 3. f 1(0/0x)*h(x)|*dx.

o <1 R
(ii) H, zef(x, )<, 4(0)(0/0x)(8/0v) f(x,v)e*(R®) for |a|+|/|<] with
b,,5(0) = e + |,

The norm | f|; , 5 is defined by

o\ [0\
ol e () 1

Remark. We can define H' and H!; for fractional | by the use of Fourier
transformation or the interpolation theory. This remark is used in the proof of
Lemma 2.6.

Throughout the paper we assume that H' is the set of vector valued (i.e. R"- or C"-
valued) functions on R* and H! ; is the set of scalar or vector valued functions
according to the situation.

For a (closed) domain £2 = R” and a Banach space Y with the norm | |y (or
more generally for a linear topological space Y) we denote by C™(£2; Y) the space of
Y-valued functions which are m times continuously differentiable on £ in the
topology of Y. We also denote by B™(€2; Y) the subspace of h(x)eC™(€2; Y) whose
derivatives (0/0x)*h(x), |«| < m, are bounded on 2. If Y is a Banach space, B"(£2; Y) is
also a Banach space with the norm

a a
( 6x) h(x)| .

Y

2

'f'lz,p,ﬂ: Z

lod + | =1

(1.10)

L2(RS)

Ihllym=lhln= 3 sup

o <m xe2

(1.11)

We denote by M%(£2;Y) (respectively MY(2; Y)) the space of Y-valued (strongly)
measurable and bounded functions on £ (respectively the space of functions whose
derivatives in the distribution sense up to order j are in M%(Q;Y)). M¥(Q2;Y)is a
Banach space with the ess-sup norm || [y ;=1 |;.

Using these notations, we define the function spaces:

() C([0, T]; H') and M([0, T]; H') with the norm ||, = sup |h(®)],.

(i) CO[0, TT;H' )5f (tespectively MO([O, TT; H' )31)< . v 5(0) (0/0x)"
(8/ov)* f(t, x,v)e C([0, TJ; LX(R®)) (respectively M°([0, T]; L*(R®))).
The norm is defined by
Ifll,p,[},y,T = Sup lf(t)ll,p-—yt,ﬂ'

0<t<T
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(it) C;([0,T):H p)af (respectively MN[0, T H}, )3f)<=f and dfjdte
C([0, T; H, 4) (respectively MY([0, TT; H, ).

Remark. In the space of functions f(t, x, v) defined on [0, T] x R®, we sometimes use
the weight function ¢, ., 4(v) instead of ¢, _,, ;(v). However there are no essential
differences and no confusions will occur.

We use the notations C™(R") = C™(R"; R*or C¥) and B™(R")= B™(R"; R* or C¥).
B™(R") is the subspace of h(x)e B"(R") such that (3/0x)*h(x), || < m, tends to zero
uniformly as |x|—oo. For 0<f<1, B""%R") (respectively B"*%(R")) is the
subspace of functions of B™(R") (respectively B"(R")) whose m™ derivatives are
uniformly Holder continuous with the exponent 6. Their norms are denoted by | |,

and || ||+t
a a
(a‘) h(x)

a a
T (5) "

lej=m
il = 1110 + sup | h(x)—h(y)I/1x =y (1.14)
xky
We also use the notation C(R") for the subspace of functions fe C™(R") with a
compact support. For a (closed) domain Q2 of R”, CF(£2) denotes the set of functions
feC%(R") such that supp f< Q.

Remark. After the completion of this work the author learned the work of P.
Degond [10], in which he proved our Theorem 3.2. He also proved the asymptotic
approach of the solution of the Vlasov—Maxwell equation to the solution of the
Vlasov—Poisson equation as the light velocity ¢ tends to oo. The same problem is
studied in [11].

[hlm= ) sup

ljsm X

b

s
]

2. The Linear Equation

In this section we solve Egs. (1.1)—(1.1), and (1.2)—(1.2), independently. First we treat
the Maxwell equation (1.2)—(1.2),. We rewrite it as

o(E _ 3 0 [E F(t, x)
5<B>—j;1014jgj<3>+< 0 ) 2
E\| (K

()=o) e,

where 4;(1 <j < 3) and F(t, x) are defined by
A= <O ‘51') b (g 8 (1)>
i= B 1= - 5
& 0 0 1 0
0 1 0 —1 0
0 0], o,={1 0 0], (2.2)
0 0 0 00
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Ft,x)= —4n i q; | vfi(t,x,v)dv. (2.3)
=1 Rl

We assume with [=1, p>0,9y=0, p—9T = p/2>0 and feR
[EBO]" (Eo, Bo)eH,
[F‘ljz,ﬂ,y,T fiEM(y)([Oa T]QH:),/;)QM;([O» T];H,lo,_ﬂl— 1)

Since Eq. (2.1) is a symmetric hyperbolic system, the operator A = A,0/0x, +
A,0/0x, + A30/0x generates a group ' of unitary operators in H'. Hence Eq.
(2.1)~(2.1), has a solution described as

(gg ) _ s @Z) N £ e (F((s), .)) s, (2.4)

It is easy to see that F(t) satisfies

N
FOLSalp.B) Y 10 flp-nne

K
a(p, By, 1) = 4n( st [012¢, 2,0 (0)dv) " < alp/2, B,0,0) = alp, ). (2.5)

From (2.4) we obtain the estimate for (E(z), B(t)), and we have

Lemma 2.1. Assume [F.11, ;. rand [EB.O) withl21,p>0,y>0,p —yT = p/2>0
and BeR. Then Eq.(2.1)—(2.1), has a solution (E(t, x), B(t, x)) which is described by (2.4)
and satisfies

[EB.1Tr (E(), B(£)eC°([0, T]; H)nCH([O, T H'™Y),
(IE@I? + B0  (1Eolf +Bol?)"?

N
+ta 'Zl Iqtl Ifiil,p,/},y,ts 0 é t é Ta (26)
where a=a(p,f) is defined in (2.5). The solution (E(t),B(t)) is unique in
CU[0, TT; H')n C*([0, T]; H°).
Moreover, if fi(c,t,x,0) (1 £i < N) satisfy
!
[F11,,r fi€ ﬂo MY([1, 00); MN[0, T]; HS - ),
j=
then (E(c,t, x), Blc, t, x)) satisfies

LEBTTy (£ B)e () MALL, o) C°(L0, TKH' ),

When we solve the transport Eq. (1.1)—(1.1),, we can treat N-equations for
f1,..., fy independently. Hence we have only to solve a single transport equation

Lfs%f—l— v-fo+<E+ng>-V,,f=k. 2.7)

fli=s =So(x, ). 2.7,
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Here we have assumed without loss of generality that gq/m=1. Consider the
(backward) characteristic equation associated with (2.7):

x_
. A
— 3 !
Ve pex)- Y e x), V=R and (28),
C

Assume
[EB.1): (E,B)eC%([0, T]; HY

vyith =3 and 0< T < oo. The well knqwn Sobolev theorem shows H'(R3)c
B'732(R3¥)and CO([0, T]; HY) = CO([0, T]; B'~ 3/3(R%)) with continuous inclusion, i.e,

|hli—3;2 £ b()Ihl,,  heH' (or heC*([0, TT; HY)) 2.9)

for I = 2. Hence there is a unique solution (X(¢), V(t)) of the initial value problem
(2.8)—(2.8),, if t is close to s. This solution is denoted as

X(1) = X(t,s,x,v) = X(t, s, x,v; E, B/c),
V(ty=V(t,s,x,v)= V(t,s, x,v; E, B/c). (2.10)
Noting V-(V x B) =0, we get

] Sivor
m V(t)l‘ =0 SIE@No=1Elo; = 1 Ello,r- (2.11)
This gives
Vs, x,0)—v| S |t=sI Ello, £ |t = sl Ello,r, (2.12)
| X(t,5,%,0) x| < [t —s|[v[+3[t=sI*| Ello,r, (2.13)

for 0<t, s < T. Similarly we have
1X(t,5,%,0) = x| S|t =s||[V|+3lt—s]* | Ello, O0Sst<T,  (2.13)

by solving the forward characteristic equation. The inequalities (2.12) and
(2.13) show that the characteristic equation (2.8) has a global solution
(X(t, s, x,v), V(t,s, x,v)) satisfying

[s17 2 (X, V)eCH([0, T]* C'%(R®)).
We define a diffeomorphism S(t,s) = S(t, s; E, B/c) of R® by
S(t, s)(x, v) =(X(t, s, x,0), V(t,5,x,0)), (x,0)eRE. (2.14)

Since the vector field (v, E(t, x) + v/c X B(t, x)) is of divergence free, S(t, s) preserves the
Lebesgue measure in R®. Thus we have

Lemma 2.2. Assume [EB.1']% with 1=3. Then there exists a unique solution
(X(t,s, x,v), V(t,s,x,v)) of the (backward) characteristic Eq.(2.8)—(2.8),, which satisfies
[S142,(2.12),(2.13) and (2.13). The C'~ 2-diffeomorphism S(t, s) of R® defined by (2.14)
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preserves the Lebesgue measure in R® and satisfies
S(t, s)S(s,r) = S(t,r) and S(t,t) = I = identity, (2.15)
S(t, s) maps By (respectively Bg) into ER(T) (respectively Bgr))
and R®\By, (respectively R®\Bgr)) into R®\By, (respectively R®\Bg). (2.16)

Here By = {(x,0)eR% |v| R}, B = {(x,0}|x [ + [v]> < R?}, R(T)= R+ T[Ello,7
and R(T)=C(T, | E|lo,r)R for R=1. The constant C = C(T,| E|lo 1) depends only
on T and ||E| o r but not on ce[1, ).

Before solving Eq. (2.7)—(2.7), we give a result on the uniqueness of its solution.

Lemma 2.3. Let (E, B)eC°([0, T1; B%(R?)), k(t)e M°([0, T1; Hy p) and foeH{ z with
BeR. Let f and ge C*([0, T1; Hg ;) n CX([0, TT; HY 45— 1) be the solution of (2.7)—(2.7),.
Then f(t)=g(t) for 0t < T.

Proof. By the same calculation applied to prove (2.25), we have

d d
Elf_ g|(2>,o,ﬁ—1 =El¢0,ﬂ—l(f— 9)112,2(R6)
<2|B—1IlElor| f =98 0p-1, sStET. (2.17)

This proves the desired result.

Now we start to solve the transport Eq. (2.7)~(2.7);. Assume [EB.1']} and
foeH, gwith >3, p > 0and feR. Associated with the C'~ >-diffeomorphism S(z, s),
we define a linear operator U(t,s) = U(t, s; E, B/c) acting on fy:

Uz, 5)fo(x; 0) = U(t, 5; E, Bfc) fo(x, V) = o(S(t, 5; E, B/c) (x, v)). (2.18)

Clearly U(t, s)f, is in Hj;.2(R) for te[0, T] and satisfies Eq. (2.7)—(2.7), with k = 0. If
we assume

(F2T5 5, r keC)[O,TL;HY,)
with m=1, p>0, y=0 and feR, then Eq. (2.7)-(2.7), has a solution f{(t,x,v)

described as

t
f@ =U,s)fo + [ U, k(r)dr. (2.19)
To estimate f(t) in Hﬁ,,,, we make temporary assumptions

(E,B)eC%([0, T]; C'*(RY)),
foeCo™t (RY),
keC([0, T]; C5FH(R9)),
supp fo < Bg, supp k(t,") = Bg, R= 1. (2.20)
Then S(t,s) is a C'*!-diffeomorphism in R® and hence feC%[0,TT];

CLFY(R®) N CH[0, TJ; Co(R®)) and supp f(t,") = Bcg by Lemma 2.2.
Denote by | |, and (,) the usual norm and scalar product in L*(R®). By applying
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the identity v-(v x B) =0 and partial integration we can easily show the equality
1d
72:9-9)=Re(Lg,g) 2.21)
for a nice function ¢(t, x, v) and the differential operator L of (2.7). Recall the weight
function ¢ = ¢, . ,v) (see (1.10) and (1.12)). We put
g=g(t,x,v)=¢f (2.22)
with f of (2.7); Lf = k. Since v*(v x B) =0, we have
v
Lg=(L¢)f+ ¢(Lf)={—vlv|+E(p—Vt+ﬁ(1 +1vl) ‘)m}¢f+ ok (2.23)
If p=z0and y=0, (2.21) and (2.23) imply
1d
Ed—t|¢f|% S =L 1ol"2@f 15+ (o + 1B ECt, ) ol S 13
TP +IBDIEE ol @S 15 +1(dk, ¢f)], 0Ss<t<T.  (2.24)

We intend to apply (2.24) to 0*f = (0/0x)*(0/0v)*>f, o = ay + a,. It follows from
(2.7) that

Lo*f = 0%k — G,
G = [0% L] f=[0%v-V,1f+ [0 E-V.]f+ [a(% x B)-Vv] 1. (@25)

This gives

S 18013 < 1 101260 13+ o+ BDI B Dol 60
0Kk GFN] + 196, 0), sSIST. (226

The estimate of |(¢G™@, ¢p0*f)| is given by the following
Lemma 2.4. Assume [EB.1'); and [F.17. , rwith1=3,p 20,720 and feR. Let

p:B,7,
0% = (0/0x)*(0/ov)** = 0%'0*%, ¢ be the weight function and ce[1, o0). Then for 1 <
j= 1, we have

> 1(G(@), $0%f)| <b({1+|VE|,-; +|Bli-1} Y 16*f 15

9 o) 1

+c(e Bl ), (o] 2hof 3. (227)
lof !

Here b(l) and c(l) are positive constants depending only on l.

Proof. By Leibniz formula we have

[(%ov,]f= Y <O:>8§U-Vx6§‘0ﬁz‘”f. (2.28)

0S0y,lol=1
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This implies

Y (PLo% vV, ¢ ) < by(D) 3 [0 5. (2.29)

lef =j Jof=j

Similarly we have

[0%EV,1f= Y (“;)a:E~Vvaz'*“a?f.

O0<o=<ay

Each term with |o| £1—2 is estimated as
[03E-V, 05 7707 f(s U)ILZ(R_‘:’.)
SOZEoIV,03 705 f (5 0)lo, 1=lo|=1-2.

The remaining terms (if they exist) are estimated by using Sobolev theorem as
follows.

lo,"E-V,05 03 f (-, U)]LZ(Ri)

S 10 7El g3 V0% 705 (5 0) 43

= b |0E| 43 3|V, 02 70% f(-,v)]; forjal=1-1,
|0:"E-V,0% 02 f(,0)| 123, S0 "Elo | Vo S (5 0) o

< b,|0,°Eo|V,f(,v)l, for|o|=1

Summing up the above results we obtain
Y 1(@L0% E-V, 11,00 ) S by(DIVEl -1 ). 140*f 15 (2.30)
<) <)

Finally we have,

(0% (v x B)-V,1f

= L () e xogmviar ey
01<01,0<0,=0, Ul 0-2
+y (o;)(vxaxmwvazf-“azlf-

O<o=Zay

Calculating similarly as above, we obtain

2 ([0% (v x B)-V, 11, p0°f)|

ol =)

<bs()IBli-1 3. 10 5 +cDIBl Y. [[v]'2p0*f 13 (2.31)

lof=j lel <

Summing up (2.29)—-(2.31), we have the desired result (2.28).
If y satisfies

72 c(D)IBly,r (or y = y(c) 2 c() Bl 7/c), (2.32)
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then (2.26) and (2.27) give
d
Elf(t)lj,p—yt,ﬁ

SO{SO e + KOy ep s 1K<,

b=b){1+(p+ B+ DIElr +|Bli-11}- (2.33)
This implies

If(t) lj,p—yt,[} é eb"—S) I f(S) lj,p— ys,B
t
+ je”(""lk(r)lj,p—yr,ﬂd", 0=l (2.34)

Recalling Eq. (2.7) and the fact that C;" '(R®)is dense in H), ; (o > 0), we obtain under
the condition (2.20)

(F21, 5, fECYIO, TTH, ) Co([0, TY Hy 4 y)

with the weight function ¢ =¢, ;-

We also note that under the assumption [EB.1']} f= U(t,s; E, B/c)f, satisfies
[F.2], 4, r with the weight function ¢ = ¢,_,,_, ;. This is shown by differentiating
U(t,s; E, B/c) f,, recalling the condition [S]5 2 and applying (2.34) with j=1—2.
Thus U(t, s; E, B/c) f,, defined by (2.18) is the unique solution of Eq. (2.7)—(2.7), with
k=0.

Summing up the above, we have

Lemma25. Let [ 23, p>0, feR and foeH,,

(i) Assume [EB 1']% and choose y satisfying (2.32). Then f= U(t,s;E, B/c)f,
satisfies [F.21, 2, r With¢,_,, _, ) and is a unique solution of (2.7)~(2.7); with k = 0. If
k satisfies [F.21} 5 , r (respectively [F1]5 ;. 1) L Sm <1 —2(withd, ) then Eq.
(2.7)~(2.7)s has a unique solution f which is given by (2.19) and satisfies [F.217, ., r

(respectively [F.1]7 5., 7).
(ii) Suppose (E,B)eC°([0,T]; C'* 1(R3)) additionally. Then the linear operator

U(t, s; E, B/c) is continuous from H’ 4.8 Lo H S —gp SIS I, and satisfies the estimate

U5 E BJO)folyy s <€ foliy (233)

force[1,0),t,5€[0,T]0<j<landbin(2.33). Moreover U(t, s; E, B/c) is continuous
in HY ; and satisfies

[U(t, s, E, B/c) folo,p,p < et =slo+1BElo| £ lo,p.8- (2.36)

(iii) Let Hi(By) be the closure of 5t \(By) in H(R®). Let foe Hi(Bg) with0 <j < 1.
Then, under the assumptlon of (ii), Ul(t,s;E,B/c)foeC[0,T]; H’(BRm)n
CY[0, T H~ Y(Bgr)), R(T) =R +|E|o 1, and satisfies (for ce[1, o))

|U(t, s, E, B/c) folj0.8 S eglthsllfblj,o,p, 0<j=l,
5'=b+ c()| Bl, +R(T). 2.37)
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Remark. By virtue of the interpolation theorem, the estimates (2.35) and (2.37) hold
for fractional je[0,].
Now we are at the final stage of this section. We prove the next

Lemma 2.6. Assume [EB.I']; and foeH., ; with 23, p>0 and BeR. Let y satisfy
(2.32) and ce[1, ©). Then:

(i) U(t,s; E, B/c)f, satisfies [F~2]i>,/1,y,r (with the weight function ¢, . ), (2.35)
and (2.36).

(@ii) If supp fo, <= Bgr (respectively suppf,<Bg) with R=1, then U(t,s;
E,B/c)fo(x,0)=0 for |v|ZR+|t—s||Elor (respectively for |(x,v)|=
C(T, || Ello.7)R) and satisfies (2.37).

(iii) Moreover, if [EB.T]} is assumed, then there holds

-1
[F 23, r fe () MATL, 00X CY(L0. TEHy - ) CH(L0. TEHY )
j=

pB—1—j
with (j)p_m_sl,ﬁ.

Proof. To prove (i) and (ii), we have only to show that we can remove the first
condition of the temporary assumption (2.20). Since H'n C'* }(R%) is dense in H', we
have an approximate sequence (E,, B,)e C°([0, T]; H'n C'*1(R?)),

|E,— El,r+|B,— Bl r—>0 (n—o0)

by using Friedrichs’ mollifier. (This procedure is independent of te[0, T] and
ce[1, «0).) We define the sequence of evolution operators U, (t,s) = U(t,s; E,, B,/c)
by (2.18), replacing (E, B) by (E,,B,). Then f,(t, x,v)= Ut s)f, satisfies all the
conditions and estimates described in Lemma 2.5 (with k = 0) and also the equation

0
Ef,.+v-fo,,+<E,,+§xB,,)-Vl,fn:O, 0<t<T (2.38)

fn|t=s =f0(xa U)‘ (238)5

Since |E,|; r and | B,|; r can be assumed to be bounded by |E|, ; + ¢ and |B|,  +¢,
respectively, with a small constant ¢ >0, we can choose 7y to satisfy the condition
(2.32) uniformly for all (E,,, B,). All U,(t, s) satisfy the uniform estimates such as (2.35)
and (2.37). An easy calculation shows

{% FoV,+ (E +2x Bn>-vv}(fn 1)
= (B En) Vofu—z X By = Bu) VoS = ke (2.39)
From the uniqueness of f, — f,, (Lemma 2.3) it follows
1) =0l = [ U6 K 0 (240)
The estimate (2.34) established for U,(t,s) = U(t, s; E,, B,/c) gives

t
Ifn _fm 'O.p—y[t—sl,ﬂ-l § fe"ovnlt—’”kn,m]o‘p-yu-q‘p ldr
s
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<|t—slet (| E, = E,lo,r + |B,~ Bulo,r)

X sup Ime(r)lo,p_w-rm’ (2.41)

sSrst

whete by, =(p + 16— 1)|Eplo.r (o + B~ 1)(IElo+bye) Sbo.  Since
[Vu®lo ol f = =|VUt,")folo,_y_np 1 estimated by (235), it is uniformly
bounded in m and ¢, re[0,T] (and in ce[1,00)). Hence {f,(t)} converges in
HY_, ;- uniformly in te[0, T]. Noting that (2.35) implies the uniform bounded-
ness of { f,(t)} in C)([0, T]; H,, ;) and applying the interpolation theorem between
H) ., 4p-1and H,, L 1and then between H,™%,_,_,and H},_,_ s, We see that
{f(t)} converges 1n H%, 4s-5 0<d =1, uniformly in te[0, T], and the limit
f()eCA[0, T, H, 7~ ;) (with b, Pli=syb- 5)- Taking the equality (2.38) into account,
we see also that feC}([0,TT; H, ;-1’-5) and satisfies Eq. (2.7)~(2.7), (with k = 0).

If we construct U(t,s) = U(t,s; E, B/c) by (2.18) from the original (E, B), then
U(t,s)f, satisfies [F.2], %+ and Eq. (2.7)-(2.7); (withk =0) (Lemma 2.5 (i)). By
virtue of Lemma 2.3 we have

t S5 E B/C)fo = S-lim U(ta 85 Ena Bn/c)fO
in Hp wi—sp-p 0<6=1 tef0, 7] (and cel1, ). (2.42)

On the other hand, {f,(¢)} is weakly pre-compact in Hp Ji-2. and the only
accumulation point is f(f). Thus we see

U(t,s; E, B/c)f, = w-lim U(t,s; E,, B,/c)f, in H' (2.43)

and that the estimate (2.35) holds for U(t, s; E, B/c) f,, constructed from the original
(E, B). Since the Hilbert space H g5 18 separable, weak measurability of f(t) in
[0,T] lmphes strong measurablhty

If f,e H(By), we can apply Lemma 2.5 (iii) to the sequence { f,,(t U,(t,3)fo} in
the same way as in the above argument. Then, we have

p—ylt—slB>

f(t)= U(t,s; E, B/c)fo =s-limf,(t) in H'"%(R®), 0<d6=1, (2.44)
f(t)= Ult,s; E, B/c) fo = w-lim ,(t) in H(R®), (2.45)
[ fu®i-5,0,0 = =1 () li—5.0,0 0=6=1 (2.46)

for t, t'e[0, T] and all n. Here b can be chosen to be independent of # (see(2.37)).
Since feCO([0, T); H'~'(R®)) and H'*'(R®) is dense in H(R®), it follows that f(t) is
weakly continuous in H{(R®) on [0, T).
We define the Fourier transform h(&, ) of h(x, v) by
(&) = (2m) 732 | e =& Ip(x, v)dxdo.
RS
If we define the norm |h|; of he H/(R®) by
[hi} =R§6(1 +1EP + PV IRE ) dedn, 0=j<], (2.47)

the estimate (2.37), and hence (2.46), still hold for j=0, 1,...,I with b replaced by
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some appropriate constant (if necessary). We note that the norm | h|; defined by (2.47)
is monotone increasing and continuous in je[0,] if he H(R®).

Let n— oo and then § — 0 in (2.46). Then (2.44) and (2.45) with the above remark
give

/@Ol < f(E), t,1'el0,T]. (2.48)

This means that | f(¢)|, is continuous on [0,T]. Thus we have proved that
f(®)eC([0, TT; H{R®)). Since suppf(t) = By, for te[0, T, it follows that f satisfies
[F27, 4, and hc?nce [F.21, 4., rforeachp =0, eR qnd y 2 0. Since the union of
C4tY(Bg) is dense in H', ;, the proof of Lemma 2.6 (i) is completed.
cen . p,ﬂ .
The proof of (iii) is easily carried out.

3. The Nonlinear Equation

In this section we study the nonlinear Vlasov—Maxwell equation (1.1)—(1.2). For
simplicity we study the following equation for the plasma of a single species:

%f+ >V, f+ (E+ng>‘V,,f= 0, t>0, xeR3 veRd, G.1)
fli=o =folx,0), (3.1
;—tE — ¢V, x B= —4nfvf(t, x,v)dv,
0
—a—tB +cV, xE=0, t>0, xeR3 (3.2)
El,—o=Ey(x), Bl,=¢=Bo(x) 3.2),

We prove the existence and uniqueness theorem for Eq. (3.1)—(3.2) (Theorem 3.1).
However no essential differences occur in the proof of Theorem 1.1.

Theorem 3.1. Let foeH!, ; and (Eo, Bo)eH' with 123, p>0 and feR. Then there
exists a solution (f, E, B) of the initial value problem for the Viasov—Maxwell equation
(3.1)-(3.1)g and (3.2)-(3.2) in the time interval [0, T] satisfying the following
properties:

fec;)/c([oﬂ T]a H;,ﬂ)m C';l)/c( [O’ T]’ H‘lo,_ﬂl) = Fi),ﬂ,y/c,Ts (33)
lfh,p,ﬁ,y/c,T = ?0 = Zo\foh,p,ﬂa (3~4)
(E,B)eC%([0,T); H)n C%([0, T} H' ™ ') = EBY, (3.5)
|E|1,T + |B|1,T S2|Eoli+1Bol) +aTY,, a=alp,p). (3.6)

Herey, T, Y, and Z depend onl, p, B, | fo 1,5, | Eoly and | By |, but not on ce[ 1, ), and
are determined by (3.14),(3.15),(3.19) and the solvability conditions of (3.17) and (3.26).
The solution (F, E, B) is unique in

1
() CU[0, TL; HE ) x CA[0, T1; H> ) with B > 5/2,
j=0



564 K. Asano

and f is described as f(t) = U(t 0;E, B)f,. Moreover
(/.E, Be ﬂ MI(1, co), C([0, T3 Hyj- ) x C([0, T} H' ),

Proof. We define the sequence (f,(t), E,(t), B,(t)) by

(fo(t), Eq(t), Bo(t)) = (folx, v), Eq(x), Bo(x)), (3.7
()b~ e om
F,(t,x) = —4n [vf (t,x,v)dv, n2=0, (3.9)
) =U(t,0;E,, B,/c)fo, nz1. (3.10)

If we assume that
(fu-1sEn- 1By 1)€F} 54,0, X EB;, (3.11),—y
a-tlppya =Ya-15Y, (3.12),-,

with some Y, 7y >0, y;, >0 and p —y,7, = p/2, then by Lemma 2.1 and 2.6 there
hold

(fwE,.B)eF, ., . x EB., (3.11),
|Enlie + |Bulie £ 21 Eoli + | Bol) + atY, -y = G(tY, ) (3.13)
with a = a(p, p) defined in (2.5) and with some t€(0,7,] and y =y, satisfying
» 2 b)G(zY) 2 b()|B,|,,. (or v = Yc) 2 b()G(x Y)/c), (3.14)
p—y1=/2 (force[l, o0)). (3.15)

By virtue of Lemma 2.6 (i) and the assumption (3.12),_, we have

|fn|l,p,ﬁ,'y,r =Y,= ebrlfO[l,p,[] =< erd{chy)H}lfo'l,p,p =F(z,Y),
b=b){1+(p+ B+ DIE+IByli-1.}

d=>b(h(p+|Bl +1). (3.16)
Let Y, > 0 be the smallest positive root of the equation
Y = e O £, 5 (=F(z, Y)). (3.17)

If > O is sufficiently small (the bound is estimated by a=alp, ), d,|Eol, + Bl and
[ foli,p,p), then Eq. (3.17) has two positive roots 0 < Y, < Y,. Wefix sucha >0, and
see easily the following,

0<Y,_,<Y,implies 0<Y,=F(r,Y,_ )< Y,. (3.18)
Noting that | fol,, ;= Yo < Yo, we have
Ifnll,p,[i,y,r = Yn < ?O’ h ; 19 (312)n

for y > 0 and t > 0 which are chosen to satisfy the additional conditions (3.14) and
(3.15).
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Summing up the above arguments, we have
[ fuli,p.8,9.c S Y/voEZo|fo|tp/3a o=e 0T+l > 1 (3.19)
[Euli.+ Byl £ G(2Y,) £ G(zYy). (3.20

From the definition of (f,, E,, B,) we obtain

t
fn+1 —'fn = i U(ta S5 En+ 19Bn+ I/C)kn(S)dS,

knz_( n+1" n) van ( X(Bn+1_Bn)>'vam ngl’ (321)
En+1_En _t o(t—s G”(S)
(B,,H—B,,)—ge( ’A< 0 >ds.
Gn(t’x)= _47tjv(fn _fn—l)dv’ (322)

In a similar way as in (2.34) we see from (3.21) that

t
Ifn+ 1 _fn'O,p—yl,ﬂ—l § gerdG(r?O)lkn(r)'o,p—yr,ﬂ— 1 dr

é teth(tYO)bZ 3}0('En+ 1™ En|0,t + IBn+ 1 BnlO,r)' (323)

On the other hand applying Lemma 2.1 to (3.22), we obtain

|E,+1—E,)o,+|Byr1—Bylo.Salp,f— I)t'fn—fn—llo,p,ﬂ—l,y,ta Otz
(3.24)

Combining (3.23) and (3.24), we have
[ fos1—Sa lO,p,B— Ly S tzetdc(ﬁo)bz ?oa(/’, B—=Dlfu—Su-1 IO,p,ﬁ— Ly te (3.25)
If we choose Te(0, 7] so that there holds

T2eToTT0b, Toalp, f— 1) <1, (326)

then {f,} is a Cauchy sequence in C([0, T]; HJ ;_,). By (3.12), and by a similar
argument as in the proof of Lemma 2.6, we see that {f.} is a Cauchy sequence in
CX[0, T];H,/-5), 0<d < 1. This argument and (3.24) show that {(E,,B,)} is a
Cauchy sequence in C°([0, T]; H'°), 0 < 6 < 1. Putting

f@=slimf() inH, 2%, ;, 0<6Z1,
(E(t), B(t) = s-lim (E,(¢), B,(f)) in H'™% 0<6<1, (3.27)

We see that feFl, 2, 1, (E,B)eEBY %, 0 < < 1, and also (f, E, B) satisfies (3.1)—(3.1),
and (3.2)-(3.2),

Noting that {f.(t)} is weakly pre-compact in H' we see

p—yt.B>

f(t) w- hmfn(t) m Hp B Ogté Ta lf'l,p,[f,y,Té §Zo|fo|1pp (328)
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Similarly we have

(E(t), B(t) = w-lim(E, (1), B,(t)) in H', 0<t<T,
|Elir+1Blir = 2(|Eoli+Bol) +aT Yo =G(TY,). (3.29)

By the separability of the Hilbert spaces H' and H,_,, ; we can show that
(E(t), B(t)) and f(¢) are strongly measurable in [0, T]. Then, from the integral
representation of the solution (E(t), B(t)) of (3.1)—(3.1),, it is proved that (E, B)e EBY;..
By virtue of Lemma 2.6, feF}, ;. , since f(t) = U(t,0; E, B/c) f,.

The uniqueness of the solution is easily proved by applying the same inequalities
as (3.23) and (3.24) to the solution (f,, E,, B,) and (f,, E,, B,) of (3.1)—(3.2). Here we
take p =y =0and g = ' with a = a(0, ' — 1) < c0. No other differences occur. The
last assertion of Theorem 3.1 follows from the fact that f, and (E,, B,) satisfy
[F.11,,r and [EB17}, respectively, and the estimates (3.16) and (3.20) hold
uniformly in ce[1, 00). Thus we have completed the proof.

If the initial density fo(x, v) satisfies the support condition

folx,v)=0 for |v]=R,, (3.30)

then we can adapt, instead of the Banach scale, simpler norms to estimate
(v x V.B)-V, f. In fact we have

Theorem 3.2. Let f e H}, ; and satisfy the condition (3.31), and (Eo, Bo)e H' with 1> 3
and B> 7/2. Then there exists a unique solution (f, E, B) of the Vlasov—Maxwell
equation (3.1)—(3.1), and (3.2)—(3.2), in the time interval [0, T] satisfying (3.2)—(3.6)
with p=y =0 and

ft,x,0)=0 for [v|ZRo+t|Elor, 02t<T (3.31)

T, Y, and Z, depend on I, B, | foli.0.5- | Eoli | Bol; and Rq but not on ce[ 1, o), and are
determined by the solvability condition of (3.39) with a =a(0, f). If f —m >5/2 and
m <1, then

(f,E, B)e .('jo Mi([1, 0); C([0, T]; Hij— ; x H' ™)),

Moreover, if f,, satisfies the support condition
folx,0)=0 for |x|=R, or |v|ZR,, (3.32)
then the solution f(t, x,v) also satisfies
f(t,x,0)=0 for |x|=ZR,+tRy+3t*|Ello, or
lvl 2 Ro + tllElo,- (3.33)

Sketch of the Proof. The support condition (3.31) and (3.33) are easy consequences of
Lemma 2.2 and the definition of U(t, s; E, B/c) f,. Defining (F;, E,,, B,) by (3.7)—(3.10),
and noting that

Sult,x,0)=0 for [v]ZRo+t[Ey,lo. (3.34)
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we obtain by Lemma 2.6 (iii) and Lemma 2.1,

WEGIRWES eE"tlfoh,o,ﬁ’
bu=b(){1+(IBI+ D(Eslr +1Buli)} +c(DIBulir(Ro + b, |l 7),  (335)
|Enlie+1Bulo, S2(1Eoli + | Bol) +at| fu— 10,5,
=G6(t| fa-1li0,p0 a=al0,p). (3.36)

If we assume

[ fa-1lop:=Yi-1 =Y, (3.37)

then we have with d = b())(|f| + 1) + ¢(]) and R; = max{1,R,},

|fn|l,0,ﬂ,t — Yn é erd{l+G(1Yn_ DRy +1b,G(cY, 1)} | fO ,1;0;3' (338)

If we choose T > 0 so small that the equation

Y= er{l+G(TY)}{R1+TbZG(TY)}!f0|l 0.8 (339)

has two positive roots 0 < Y, < ¥, then we can conclude that

0<Y,_ <Y, implies 0<Y,<Y,. (3.40)

Since | fol,0,5= Yo < Y,, we have

| fuliopr=Ya< ~Yo- (3.41)

The rest of the proof is quite similar to the proof of Theorem 3.1.

Remark. The latter part of Theorem 3.2 was first proved by Wollmann [9].

Acknowledgement. The author appreciates the kind advice of Prof. Ukai. Lemma 2.4 was introduced by
his suggestion, and the proof of Lemma 2.5 was much clarified by virtue of this lemma.
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