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Abstract. Consider a viscous incompressible fluid in the half-plane and let u, be
a solution of the Navier-Stokes equation. In this paper we prove that the
product formula (E,;,G,,¢u)"uo, where E, is the Euler flow, G, is the heat flow
and ¢ is a suitable operator describing the vorticity production due to the
boundary, converges uniformly to u, in the limit n— co.

1. Introduction

The time evolution of a slightly viscous incompressible fluid in the presence of
obstacles exhibits features which are difficult to investigate both from an analytical
and a numerical point of view, even in the simplest two-dimensional case. In
particular, large gradients of the velocity field, localized near the boundary, make
difficult the use of the conventional algorithms, which are essentially based on
projections on low frequency quantities.

To overcome this difficulty, Chorin [1] developed an algorithm which can be
briefly described, as suggested by Marsden [5], in the following way. Denoting by
E, and G, the Euler and the heat semiflows, respectively (G, satisfying suitable
boundary conditions), then an approximation at time ¢ of the Navier-Stokes
semiflow will be:

(EnGind)"s (1.1)

where ¢ is a suitable operator describing the vorticity production due to the
boundary and making the nonslip boundary conditions (in general destroyed by E,
and G,) approximately satisfied.

The interest of the above method lies on the possibility of describing both E,
and G, by means of particle dynamics (the particles are localized in points where
the vorticity is sharply concentrated) thus taking into account, just from the very
beginning, the high frequencies of the problem.
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Beyond the approximation problems of the single step algorithm, for which we
address the reader to ref. [2] and references quoted therein, the convergence of
the formula (1.1) to the Navier-Stokes semiflow, when n—oo0, is a problem
of conceptual and practical interest, See refs. [3-5] for a better introduction to
the problem and for partial results concerning the convergence.

In the present paper we prove the convergence of the formula (1.1) in the simple
situation of a fluid in the half-plane. Our proofis rather direct and explicit, thus we
take a considerable advantage of the geometrical simplicity.

We remark that the techniques of this paper could be extended also to the half-
space case, obviously for short times only.

The estimates occurring in the proof are locally elementary. However, the
general strategy may appear rather involved. We make use of the next section to
outline the general ideas and to separate the single steps of the proof. The rest of the
paper is devoted to the technical estimates necessary to prove the statements
contained in Sect. 2.

2. Results and Outline of the Proof

Con§i§ier the Navier-Stokes initial value problem in the half-plane in terms of the
vorticity:
0,0,x,y)+u,- Vo (x, y)=Adw(x,y), xeR, y=0, t=0,
o, =curly,= —o,uV+0.u?, (2.1
u(x,07)=0.
u, € R? is the velocity field, the density and the viscosity coefficients are assumed to

be one and, finally, the initial value u, is a given function. If u, decays at infinity, the
velocity field can be recovered by the vorticity w, by

u="dylao,, 2.2)

where V*=(—0,,0,) and 4, denotes the Laplacian with Dirichlet boundary
conditions.

The initial value problem (2.1) has been widely investigated and global
existence and uniqueness theorems are known under suitable hypotheses on u,

5 '91“:{;e Chorin algorithm is defined, for ¢>0, as
0i=E,Gow;_, (2.3)
where
Ew=w—eVtA,'w) Vo (2.4)
is the infinitesimal Euler flow,
Gow=e"p, (2.5

where Ay is the Laplacian with Neumann boundary conditions and, finally,

Poi(x, y) = wf(x, y) +efA(x)3(y), (2.6)
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where
eff(x)=20,45 0(x,0"). 2.7)

The purpose of this paper is to prove that, under suitable hypotheses on u, (or
), the approximate velocity field converges to the solution of the Navier-Stokes
equation, i.e.:

lim 745 w(x, y)=u(x, y) (2.8)
e
for each ¢, uniformly in x and y, where u, solves uniquely the initial value problem
(2.1) with initial datum u,,.
"~ We spend some words to explain the meaning of the algorithm (2.3). It is rather
obvious that the limit
ang (EnGim)" 00 29)

if it exists, does not solve the problem (2.1) but only the analogous one with
boundary condition
0,w,(x,0%)=0 (2.10)

[uP(x,0)=0 1is automatically satisfied by (2.2), while u{"(x,0)+0 in
general]. The insertion of the vortex sheet given by (2.7) has the goal of
restoring the correct boundary conditions at each time step. This action is
actually equivalent to extend the velocity field in the lower half-plane in an odd
and even way for u* and u'®, respectively (w is also extended as an even function
consequently), therefore &f® expresses the jump discontinuity of u*. The
subsequent application of G, will smear out such discontinuity and the nonslip
boundary conditions will be approximately satisfied.

The vorticity produced by the action of ¢ at each time step is expected to be of
the order of & and this explains the somehow arbitrary ¢ appearing in (2.6).
Therefore, f* can be interpreted as the rate of vorticity production of the process.

We give a flavour of the difficulty in proving the limit (2.8). It is natural, as a
preliminary step, to look for bounds on f which are uniform in ¢. If one tries to do
it iteratively, a naive estimate of the amount of vorticity produced at each time step
gives [see Eq. (4.18) below] two terms. One is linear in the previous total vorticity,

but is of order [/g; the other one is of order ¢, but is bilinear. Therefore, to avoid a
catastrophic error production, we look at formula (2.3) globally in time, by means
of an appropriate expansion which is the time discretization of the usual
perturbation of the Stokes semiflow. Namely, after some trivial algebra, it is easy to
realize that the following identity holds:

n—1
wE=Stwo— 3 &St_,_ bt -VSiot, 2.11)
k=0

where
§,=(G,¢)" (212
and

bi=VtA5185 wr. (2.13)



430 G. Benfatto and M. Pulvirenti
Moreover we have, for an arbitrary initial vorticity profile y:
n—1
Sy=Gpy+ X Gou-n(fi"0) + G,(a’d), (2.14)
k=1

where
a’(x)=20,4p "y(x,0%) (2.15)

is the initial sheet of vorticity to insert if y does not satisfy the boundary condition
at time zero [like b} - VSiw} in formula (2.11)], £;>%6(x, y) and a’d(x, y) stand for
f74(x)o(y) and a’(x)d(y), respectively, and, finally, the function f;”* is determined
by the condition

k—1
aﬁ:’8=2ayAsl[Gkawo+ ) eG&k_s)(fs’eaHG,w(aya)](-,0+>. (216)
s=1

The formal limits of (2.11), (2.14), and (2.15) for 8%0, n—o00,ne=t are

w,=S,wq+ i dsS,_ (ug- V)w,, (2.17)
where
Sy=Gy+ 5) d5G,_(6)+ G (a’0) (2.18)
and
8yA51<G,y+ idsG,_s SV5+G,aV5>(~,O+)=O. (2.19)

Since we are interested in the convergence of w? given by (2.11), it is natural to
investigate first the structure of the formal limit expressed above by Eqgs.
(2.17)+2.19). This analysis has been performed by the authors of the present paper
in ref. [6]. In particular, Eq. (2.19) can be explicitly solved (due to the simple
geometry of the problem). The results concerning Eq. (2.19) are reviewed as Step 1.
As Step2 we try to carry out the same analysis for the identity (2.16).
Unfortunately in this case we do not have an explicit expression for f”* but only
bounds following suitable algebraic manipulations. On the basis of such estimates
we are now able to give uniform bounds on S;w, and w}, (the Stability Theorem).
This is Step 3. At this point we notice that the stability for Siw, (but also for w;) can
be obtained in the energy norm, rather easily, realizing that the operator ¢ is
energy preserving and the whole algorithm dissipates energy (see ref. [3]).
Nevertheless, in such norm, while the convergence of the linear problem is quite
natural, the approach to the non-linear problem seems more problematic. In fact
the non-linear limit problem (2.17)~(2.19) can be more efficiently investigated (see
ref. [6]) by the use of different and, in some sense, more natural norms, which will
be used also in this paper.

As Steps 4 and 5 we prove the convergence of S and wf, making use of the
above preparation.

We now analyze the various steps in more detail.
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Step 1. Equation (2.19) may be better understood in terms of the Fourier
transform. Denoting by F the Fourier transform of any function F:R—-R or
F:R xR*-IR with respect to the x variable, we have:

(045 " F)(p, ) = —ie(p)/2 | dy,(e” P13l e W F(p,y), (2.20)
0

—~ (0,45 'F)(p,y)=1/2 Zodyl(e"”' b=yilg(y, —y)+ e~ P 0le(y, + ) F(p, yy),
(2.21)

where &(x), x € R, is the sign function.
By (2.19) we have (omitting the index y on f and a for simplicity):

() =2 ds [ dylem1o =000 ne =331 f(p)
0 0
— J dso)/ =10, 22)

where, by definition,

o(x)=(2/)/) Of dze™*, (2.23)
ip) = =21 dye e T dy,g (=307, 9) =2 ] dye e Mg 1)),
(2.24)
and
gly)=e "%\ /ant . (2.25)

In formula (2.24) (we shall do the same very often in the rest of the paper) we
have denoted by the same symbol the even (with respect to the y variable)
extension of § in the whole plane in such a way that G, can be easily expressed in
terms of the free heat kernel.

Differentiating Eq. (2.22) with respect to the ¢ variable, we have:

h=[1-T1)1,, (2.26)
where
h,= o, , (2.27)

and

(TH(p) = i dsd () p*(t—s) fip) = (Ipl/l/E) i dsf)/t—s(e” "1 (p)).
(2.28)

The Neumann series associated to Eq. (2.26) can be explicitly calculated and
the result is

Ji0) =@+ 2y (p) + (pl/)/7) (ft) ds/)/ t—s(e” P "I(p? +0)iy(p)).  (229)
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Formula (2.29) has been obtained in [6], where the Stokes problem was
investigated in this light. In Sect. 3 we give (also for the sake of completeness) an
alternative, and in some sense more natural, proof of Eq. (2.29).

Step 2. One can hope to deal with the approximated problem (2.16) in the same
way. In fact, by the same algebra, we obtain:

)= 3 oo()/ep(1=m) () (230)
from which
Je=hit S (T, @31)
where
Bt = (D), = (Fiy — 11— 1)0)/€ (2.32)
and
(IE="T 3,1 nDinlo), .33
where 2=egp? and
5, (A)= 2/[ k“ dze 7. (2.34)

To estimate f it is convenient to separate the first two terms of the right-hand
side of (2.31) from the rest, denoted by R,(p). We have

R(p)= T (T4,

n—1 n—k n—(k—-1) n—1 N
= Z Z Z Z hfnkén—l—mléml—l—mz“'5mk_1—1—mk
k= 2mk 1 me—1=mpe+1 my=my+1
n—2
2 ﬁe Z Z 6s1—1"'5sk—1= Z hfn‘ln—m(/l)ﬁ (235)
m=1 k=2 si...5e21 m=1
Es—n m
where
In(M)= % 2 05,(2) ... 05 (4). (2.36)
k=251+..,-f-2sk0=m—k

The basic estimate is the following
Proposition 1.
J(A)Zch. (2.37)

Proof in Sect. 3.
By virtue of Proposition 1 we can prove, more or less straightforwardly:
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Proposition 2.

|2 < c(lpl+1/)/en) sup (p, ). (2.38)

Proof in Sect. 3.

Remark. The bound (2.38)is not so good as in the limit situation for which we have,
after a direct inspection of (2.29) (see Sect. 5 or [6])

A®)S(e)/) sup [(p, y)I- (2.39)

A similar bound for f? (if true) is very difficult to obtain: the estimate (2.39) is a
consequence of the lucky circumstance that Eq. (2.26) is exactly solvable.

Step 3. We find convenient (see also ref. [6]) the use of the following norms:
|F||={dpsup|F(p,y), F:R?’-R™, m=1,2,
y

171="§dplf®), [ R'->RY.

To obtain uniform bounds on |wi|| and ||b|, we first need to estimate || Siw, ||
[see (2.11)]. This estimate is rather easy by virtue of Proposition 2. More involved
is the estimate of || Sy ||, where y = (b - V)S!wt. In fact the same strategy in this case
leads to bounds involving norms of derivatives of S} w¢. Nevertheless, using the fact
that b} is almost zero for y=0 and the fundamental theorem of calculus, one can
estimate ||SZy| by a multilinear form in w}, so arriving to an integral inequality of

n—1

(2.40)

the type Y, < Yy+c¢ X (Y)* for some a> 1, where Y; is a positive quantity larger
k=1
than ||b]] and | w5||. From this we obtain a stability result, for short times. More
precisely we have:
Lemma 1. Let b=V*4,'S%y. Then
15, 0) <c)/zsup 5(p, )1 (241)

Moreover,

b9p, y)<c (]/E sup [(p, )|+ sup ST, y)l) : (242)

Proof in Sect. 4.

The following proposition is the basic ingredient for the stability and
convergence. In proving such a proposition we improve the estimate (2.38) making
use of Lemma 1.

Proposition 3. The following bound holds:
ISzl < cCllyll + llall/)/ ne). (2.43)

Furthermore, assuming y of the formy=(b-V)F, where b is a vector field satisfying
V-b=0, we have:

1S5l < c(18,(BF)I + [bF )/ ne), (2:44)
IV+4p Swl <clbF] . (2.45)
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Moreover, if

6, Y= c()/e+y)H(p) (2.46)
for some function H=0, then the following is true:
ISzyIl < o dpH(p) | F|| +1/)/en | bF ). (2.47)

Proof in Sect. 4.
The above proposition, combined with Lemma 1, allows us to obtain the
following stability theorem.

Theorem 1. Let u, be the initial velocity field satisfying the boundary conditions
uo(x,0")=0. Let w,=curlu, and

k= supmax o, |S100pl, 165} - (2.48)

Then there exist t,, &y, and ¢ such that
M = c(to)(lwoll + lluoll) (2.49)
for ke<Zt, and e<e,,.

Proof in Sect. 4.

Step 4. To prove the convergence of the Stokes algorithm we need to introduce
norms involving derivatives. In fact, we need to compare f with f*. Since ¢ appears
always in the combination p?, to prove that the difference f— f,is infinitesimal in ¢
we have to control some extra |p|* appearing in the estimate. Putting, for any scalar
or vector valued function F defined on R?:

IF|®™= max [0.0)FI, (2.50)
0<izn
0<j<m
and, for any real valued function defined on R!
IFI®= max &F], (2.51)

we have:

Theorem 2. For sufficiently small ¢>0 and t=ne, n=1,

1S =Syl c(1+ 4 UPI® O+ Iy 1> D) + e/ 4 |al®),  (2.52)
IV+45 (S — Syl + 17+ 451 (S, — Sp)y
et + (I I* O+ Iyl D+ (/) al D). (2.53)
Proof in Sect. 6.
The proof of Theorem 2 is based on the layer theory discussed in Step 1 and

Step 2 and on some regularity properties of the Stokes semiflow to which Sect. 5 is
devoted.
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Step 5. We are now in position to prove the convergence of b, to u,,. This is based
on the expansion (t =ne):

t n—1
(i Elwft = (Sne - Sfl + l)wO + |:j0‘ dSSt—s(us : V)ws - kZO 8S(n—k)e(uks : V)wks]

n—1

+ k;o 8(S(n ke Sh- ©) (U V),

n—1

+ kZO &Sy k[ (th,— b3) - Vo]

n—1
+ kZO &Sy i(bi - V) (0, — ST %) (2.54)
and a similar expansion for the velocity field.

Since we know, by [6], regularity properties of w,, we can apply Theorem 2 to
the first and third terms of the right-hand side of (2.54).

By Theorem 1 we have uniform bounds on | b;||. Therefore, we establish a
linear integral inequality for max {||w, — S{ws||, |4, — bi||} to prove the convergence
for short times. Arbitrary times are recovered by standard arguments since we
know that |w,|| and ||u,| are bounded in any finite time interval. The precise
statement is the following:

Theorem 3. Suppose |w,]|®? < + 00, uge W2, ug(x,0*)=0. Then, for all t>0,
O<a<1/4

lim || @i —w,|le”*= lim ||b;—u,|le”*=0. (2.55)
n— o n— oo
&0 £—0
ne=t ne=t

Proof in Sect. 7.

Some additional remarks are needed.

The approximate rate of production of vorticity of the full nonlinear problem,
ie. f#in Eq. (2.6), has not been explicitly estimated. A direct estimate of £, which
seems difficult in our norms, has been avoided by perturbing the approximated
Stokes semiflow SZ. Nevertheless, in the limiting situation, the explicit knowledge
of the solution of Eq. (2.26) allows a direct estimate of the rate of production of
vorticity (see estimate (2.45) of ref. [6]) which is interesting in itself.

More general geometry seems difficult to deal with. The basic reason is that the
operator T appearing in (2.26) has | - |-norm larger than one: this, obviously,
creates problems for general situations.

The estimates in this paper are certainly not optimal. The rate of convergence is
¢ with a=1/4. This can be improved up to a=1/2 by the use of the present
techniques with some extra technical effort. Further improvements, if possible,
could require new ideas.

A similar product formula was studied in ref [ 7], the main difference being that
in (1.1) G,,¢ is replaced by the operator S,,, the Stokes semiflow (this greatly
simplifies the proof of convergence). The results obtained in ref. [7] are weaker as
regards the regularity properties, but are valid for any smooth bounded domain.
Our techniques could be applied (in the case of the half-plane or the half-space) as
well to this product formula.
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We conclude this section by fixing some conventions. We shall denote by ¢ any
numerical positive constant and by c(&, 1, ...) any positive constant depending
only on the quantities &,#,.... All the constants appearing in this paper are
computable, but we shall not give their values.

3. The Stokes Problem: Technical Details

Let us consider the Neumann series associated to Eq. (2.26):

Jo=ho)y+ X (Tp), =0, (3.1)

where T*is the k" power of the operator T defined by Eq. (2.28) and r#1(p) is defined
by Eq. (2.24). We want to show that this series can be explicitly calculated [under
suitable hypotheses on the function #,(p)].

Notice that, if k>2:

(T0) ()= | dshy(p)e P (1 —s), (3.2)
0
where
Le=9=ply/nf [ dsieds =)',
(51=5) 2 (s —8) = (t—s) T llpl"/F(k/2), (33)
FW)= | dxx*~le>. (3.4)
0
Equations (3.3), (3.4), and the formula
n!=Q2"/)/m) (/2 + 1) (/2 +1/2) (3.5)
imply that
Zlk(t s)=p* ;]/ p(t—s)"/T(n/2+1)
=9 5 (PG /m) e
= 3 QP =9y m))/m)] dezre
=p*(2/)/n) T dze—=+22V7%e s (3.6)
Therefore, o

S (T*h)(p)=p* | dsh(p) (2/)/7) | dze™t= VPP
k=2 0
~p (I) dshy(p)[2— o()/ D)1, (3.7)

where ¢(x) is the error function [see Eq. (2.23)].
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Equations (3.1) and (3.7) imply that
F0) =i+ (ol ) | dsf)/1=s(e” 70, 0)
7] st (PI2— (/=9 63

Equation (2.29) follows from Eq. (3.8) and an integration by parts in the last term of
its right-hand side.

It is worth noticing that the use of Eq. (2.29) in place of Eq. (3.8) was essential in
the treatment of the Navier-Stokes equation explained in ref. [6]. However, in the
discrete case, there is a formula similar to Eq. (3.8) (in the sense that it obeys similar
bounds) for f, but it seems difficult to obtain a formula similar to Eq. (2.29). This
forced us to use, in the discrete case, a different approach, with respect to the
continuum one, in order to get good estimates for w?, and b, (see also the comment
following Proposition 2).

The analogue of Eq. (3.8) in the discrete case is [see Egs. (2.31) and (2.35)]:

Ji@)=h0) +(Th)(p) + Rifp), (39)

and the claim that Eq. (3.9) allows essentially the same bounds, uniformly in ¢, as
Eq. (3.8)is an immediate consequence of Proposition 1, that we are going to prove.

Proof of Proposition 1. If m=2, by Eq. (2.34):

Jo(A)=064(A)* = (4/m)A. (3.10)
If m=3, we can write:
J(2) =8, (A)— S, - 1(A), (3.11)
where, for m=2: m
Su0)= ¥ (D). (3.12)
If we put A%,=1 in Eq. (2.35), we obtain
$,4()= T J D=3 613
where
n—1 mi—1 me-1—1
k= m12=k5n—1—m1(/1) mz:zk_l Omy—1-my(4) - meﬂ Omye— 1~ 1-mdA) . (3.14)

Let us observe now that §,(4) can be written in the following way:

AMk+1)
SA=(Y/m) | (@uf)/we. (3.15)

Therefore,

n—1 Amy+1)
Ifl,k=(1/‘/;)k > | ds;(An—s;) " Y2e Onmso
Amy

m1=k
mp-1—1 A(me+1)
.. Z L j dSk().mk_ 1 ’“Sk)_ 1/2e_(lmk_l_sk) . (3.16)
mg=

Amy
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An important point in the proof is that the sums in Eq. (3.16) can be calculated
“almost” exactly. Let us consider the simplest case k=2.
n—1 A(mi+1)

If,‘2=(1/7t) > %5 d51(in—51)_1/29_(ln_sl)

mi =2
/'Lml
X | dsy(Amy—s,)"H2e  hmis2)
)

n—1 Amy+1)
=(U/m) 3§ ds;(An—sp)T Pem 7

my=2 Amy

Hf(‘ dsy(sy—s5)~ 2e=(r1s2)
&

=(1/ﬂ)fdsl(/1n—51)~”2 j dsy(s;—s,)" e 72, (3.17)
24 At+e)

where eV =5, —[s,/4] is a non-negative function of s; smaller than A.
In a similar way it is easy to show that

L=/ T dsn—s) 2T s

(k—1)A+e®

T ds(semy— s M2e 0, (3.18)

T astkon
where ¢, j=1,...,k—1, is a function of s,,s,, ..., s, such that
0=V <. (3.19)
Equations (3.3), (3.18), and (3.19) imply that

ni k_ An k_
{ dse=0n=9(in—s)2 ' IT(kj2)< I < | dse 0" 9n—s5)2 \T(k/2). (3.20)
ki 0

It is worth noticing, at this point, that, for the purposes of this paper, it should
be sufficient to prove an upper bound for |[(T*A?),| similar to the one appearing in
Eq. (3.20), that is:

(TR < 5 ds|hy(p)le ="~ (hn— S)2 Ik, (3.21)

In fact, this should allow to bound Ri(p) by the corresponding continuum
expression (3.7) [with |A(p)| in place of hy(p)]. However, this is possible only if
|h,(p)|is an increasing function of s, which is not the case in the applications that we
are interested on. Nevertheless, the more refined result of Proposition 1, in which
we use also the lower bound of (3.20), is sufficient for our needs.

Let us now complete the proof of Proposition 1. By the same calculations
leading to Eq. (3.7) and by Eq. (3.13):

5,105 T dsC—0(/9). (622)

Moreover,

S, ()= Z [(j)"dse—“"-”(zn—s)%‘l/r(k/z)— lkds(/ln—s)g_l/F(k/Z)]

o'-—>>* *‘

g

ds2—o()/s)— AL - A2, (3.23)



Convergence of Chorin-Marsden Product Formula 439

where
o An E_
Al=3 [ dse=®=9n—s)2 ' [(k/2)
k=n O
in

f dse_“"*s’(ln—s)% B 1/F(n/Z— 1)
0

X i [(An—s)**/T'(k/2+1)1B(k/2+1,n/2—1), (3.24)
k=0
n=1 2k L n—1
A2="Y [ds(n—s? T(k/2)= Y (k)% /T(k/2+1). (3.25)
k=2 0 k=2

We defined, as usual:
Bu, v)=T(W)(v)/T (u+v). (3.26)

Since f(u, v) is decreasing in u and v, if =3, we have

4,2 p(1,1/2) lf dS[(ln—S)% “rm2—-1102- @()/ An—s))
<2B(1,1/2)(An)"2/T (n/2). (3.27)

It is easy to prove that there exists 4, <1 and a positive constant ¢ such that, for
n=3:

Aiécol’?na Wy — 05
A2<col. (3.28)

Therefore, if 1 <1, and m=3, by Egs. (3.11), (3.22), (3.23), and (3.28), there exists
¢, >0 such that

Am+1)

O ds(z—q)qﬁ))—i!:" ds2— (/) +4p+ A5 Zcid. (3.29)

The case 1= 1, can be treated by induction. Notice that, by Eq. (2.36):

m—2 m-—3
Jm(j'): Z 5s5m—2—s+ Z 53Jm~1~s' (330)
s=0 s=0
Let us suppose that there exists a constant ¢ such that, if 2<k<m—1and 1= 4,:
k
JiScd Y e T4 (3.31)
s=2

If we use the bound (3.31) in the right-hand side of Eq. (3.30), we find, using Eq.
(3.15), if m=3:

is

m—2
T Z000m 2+ X (1/m) [ dty(Mm—2)—1,)"12e Hm=270
s=1 As—1)

As+1) m—1 @
x | odtyt; e 4cl Y e 6TDE Y 6, (3.32)
As s=2 k=0
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o)

Since Y d,=1, we can write:

k=0
Jn(D)E@/mae™ " D4/ m—1+]/m—2

m—2
+(m)e” =2 3 dty (Mm—2)—1t,) " e 12
s=1

m—1
+ed Y et VR
=2

s

m—1
S +4/mAe M=y} 3 o 6D (3.33)
=2

s

Therefore, the bound (3.31) is true also for k=m, if c21+4/=. By (3.10), for any
m=2 and any 4= 4,, we have:

J.()<cl Sio e = i /(1 —e 7). (3.34)
Proof of Proposition 2. Equations (2.31), (2.33), (2.35), and (2.37) imply that
SIS 6, il e S AR (.39
Moreover, by Egs. (2.24) and (2.32):
Vil =10, i, el (1) ffm oo i, (3.36)
and

+ + o
Outity=2lple™ 7" | dyig,(y1)(p, y1)=2ple™"g,(0) | dyre™"™5(p, ),
(3.37)

where we did some integrations by parts and used the even symmetry of § as a
function of y. Equation (3.37) implies that

10,77, < c(Ipl +1/)/a)e ™7™ sup f(p, )] (3.38)
Then, by Eq. (3.36), if n>1:
B2 < c(lpl + 1/} smpe P>~ 1 sup [i(p, ). (3.39)

Equations (3.35) and (3.39) imply that
TSI+ Al + e sup [7(p. )IK, (3.40)

where

Ko= "3 6,0 Dl +1))/amie 0+ S J(pl+1)) amye 0,
(3.41)
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By Egs. (3.36) and (3.38),
MBI ep? | do(lpl+1/)/0)e ™" sup 5, )|

<csup[7(p. )l Ip ”{dx(1+1/|/¥)e‘x
<clplsup . ). (3.42)

Moreover, by Egs. (3.15) and (3.41),

Kusbl(1+ 5 se )
+ :gll (2/]/;)6_1("_2)]//{/[(1/71 —m+)/n—m— 1)‘/%]
5 e fom

§|p|(1+ze"‘/<1—e”))+(2/1/5)e'“"*2>|p|"_gllm*/?/wn—m+Vn—m—1)

+1pl niz "j"l duf)/ue” 7. (3.43)

m=2 (m—1)4

Proposition 2 follows from Eqgs. (3.39), (3.40), (3.42), (3.43), and the bounds
n—1 n-1 m
> m_l/z/(]/n—m+]/n—m—1)§ > dU/(WI/m)
m=1 m=1m-—1
1
= Jdx/()/x|/1-x)=n, (3.44)
o]

T (@uywe o< T @uy/urde< T @uy/we . (345
0 0

m=2 (m—1)A

n—2

In the following section, in order to prove Proposition 3, we shall need a more
refined version of Proposition 2, valid if y is of the form

y=(b-V)F, (3.46)
where b is a divergenceless vector field.

Proposition 4. If vy is of the form (3.46), then

A< cllpl+1/)/ en) sup Ip-bF(p, ). (3.47)
Moreover, if
b, Y| <c()/e+ ) H(Pp), (3.48)

then
\fi < cpl+1/)/en) J dgH(p—q) sup|F(g, )] (3.49)
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Proof. Equations (3.37), (3.46), and V- b=0 imply that
1021io| < cllpl +1/}/ @)e 7" sup [pbF (p, ), (3.50)

which leads to Eq. (3.47), proceeding as before. If b satisfies the bound (3.48), we can
write:

10,1, < c[Ipl(Ipl +1/)/0) () & +1/0) +1/)/ s le” " H(p), (3.51)

where
H(p) = dqH(p—q)sup F (g, ). (3.52)
Equation (3.51) implies that
101, S cH@)IpI(1 +]/s/0)e ™7 +1/)/se 7], (3.53)
which gives very easily, for n>1, using Eq. (3.36):
) S cH(p)[Iple™ 7™~ 4-1/)/ene™#™ = ]. (3.54)
Equations (3.35) and (3.54) imply that
\fAI S 1|+ Ak |+ cH(p)K,,, (3.55)

where K, is very similar to K, [see Eq. (3.41)] and allows essentially the same
bounds. The only important difference is in the term A|A%|, which can now be
estimated in the following way:

| S cp*H) | dallpl(1 +)/of0)e ™ +1/)/oe™ 7]
<cH@)pl()/2+1). (3.56)

Equation (3.56) allows us to get the bound (3.49) only if A< 4,, where 4, is an
arbitrary constant greater than 0. If A> A, it is necessary to use another strategy.

Observe that the ﬂ in Eq. (3.56) comes only from the first term in the right-hand
side of Eq. (3.54) and that it is possible to write /2 in the form A% =A%, -+ K5 ,, so that

I | < cH(p)|ple ™~ D72, (3.57)
|5, | < cH(p)/|/ene "~ 1. (3.58)
This decomposition of & implies a corresponding decomposition f=fF ,+ /3 .

f3 , can be bounded as in the proof of Proposition 2 for any A. As regards ff,,,, we
observe that, by Eq. (2.30),

-~ n_l ~
fls,nzﬁi,n-*- Z 6n—m—1f18,ma nZ—1 (359)
m=1
Let us suppose that, if 1 <m<n—1,

Feal SCA@IP X e 112, (3.60)
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Then, by Egs. (3.59) and (3.57),
_ _ n—1 Y]
|fEl ScH®)Iple™ "2 +cHp)lpl X e "7V ¥ 5,
k=1 m=1

=cH(p)|p| Y e M2, (3.61)

Therefore, Eq. (3.60) is true also for m=n and it implies, if 1= 1, >0,
|f£ Al SclplH(p)(1—e~ )~ (3.62)

This completes the proof of Proposition 4.

4. The Stability Bound
Proof of Proposition 3. Equation (2.14) and Proposition 2 imply that

IS 116l +e X of dpe™ ™)) sln =R (pl+ 1/)/2k)sup (. )
+ [ dp(1/)/ 4nne)e™"%|@ (p)|
n—1 n—
I+l A+l {sup 5 e/ S 1)/ K-

4.1
The bound (2.43) follows from Egs. (4.1), (3.44), and the inequality
n—1 © kA ©
Y de H/2ks ¥ T (dul)/we = | (duf)/upe". 42)
k=1 k=1 (k—1)A 0

Let us now suppose that y=(b - V')F. By Eqs. (2.14) and (3.47) we have (by some
integrations by parts and using V- b=0), if n=>1:

1S5y 1| S c/)/nel|bF || + |la” ||/} 47ne +c|| 0. (bF)]| - (4.3)
Furthermore,
b3 —
@'(p)= =2 dye” """V (bF)(p, ), (44)
0
which implies
la’ll = cl|bF] . (4.5)

The bound (2.44) follows from Egs. (4.3) and (4.5).
In a similar way we obtain Eq. (2.47), using the bound (3.49).
Finally, by using Egs. (2.14), (2.20), (2.21), and (3.47), we have:

n—1
1745 Syl cllal| +cllbF | +c¢ 3 e[ dpe™ "~ (p> + |pl/)/ k)
k=1
X Sliplb?(p, MI=c|bF]l. (4.6)
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Proof of Lemma 1. By Eq. (2.14),

Siy=Gy—2g,(y)e "* I dye” IPlv15(p, y). 4.7)
Then, if b=V*+4,15%y,
ﬁ%pm—fawwwsw@yr—»o, (4.8)

which becomes, using Eq. (4.7):
BD(p,0)= | do | dye1#va, {G;?(p, ) =2g,(n)e 7" | dye”PPj(p, yl)} :
0 0 0

49
which implies very easily the bound (2.41). *+9)
Equation (2.42) follows from Egs. (4.9), (2.20), (2.21), the trivial identity

P e M -
b9, y) =90, 0)+ | dy, b, y,), (4.10)
0

and the fact that 5®(p, 0)=0.
Proof of Theorem 1. First we shall estimate w’. By Eq. (2.11), if n2>1,

loall = S0l + lebs -1 V' Sir -1 [ + Z ellSu—k—1bi- VSiwgl.  (4.11)

If w, satisfies the boundary conditions, we can apply the bound (2.43) with
a’=0 to obtain
[Saeoll = clleol - (4.12)
Furthermore, Eq. (2.13), Lemma 1, and Proposition 3 imply that

n—2

3 eISho bS]

=c g e[| STkl (wogll + ST i) + byl - 1S5 0kll/}/ e(n—k—1)]
<c i M)A +1/)/e(n—k—T1)), (4.13)

where Mj, is defined as in Eq. (2.48).
In order to bound | w:]|, we have still to bound ||eb%_, - VSiw;_||. f n=1, we
have:

lebs - VS50l = lleby - VGl Sc /2 B3| ol Sc}/e(M5).  (4.14)
If n>1, we observe that
Siwi_ =Gk —2e g, (»b (p,0), (4.15)
where
By = 0,45 e} . (4.16)
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Furthermore, Eq. (2.11) implies that
ol _ =850 _,—¢eb_,-VSiwi_,. 4.17)
By Eqgs. (4.16) and (4.17) we have, using Egs. (2.13), (2.21), and (2.41)
0 —
650y (p, 0)| < B (p, 0)| +¢| | dye™ PP (Vb:_ .85 f,—5) (P, y)
0 —
<c)/ suplo,o(p, )l +cesup b oSioh oY)l (418)
Equations (4.15) and (4.18) imply that

[ Y P VA 1 [ P R VA L N
Scl/e(My )" (1 +/eM;- ). (4.19)

Putting together the bounds (4.12), (4.13), (4.14), and (4.19), we can write:
n—1 n—1
lonl=c { llevo | + kgo e(Mp)*(1+ Mp) + k;o e(Mp)?*/)/ e(n— k)} . (420

To complete the proof of Theorem 1, we need to estimate also S§w? and b:. By
Eq. (2.11),

n—1
Jon=S8n1100— 2 &S, bk VSiay, (4.21)
k=0
which implies, using Eqs. (4.12) and Proposition 3:

IS5l = ¢l +C:g;8[||5iwill (lokll + IS0k ) + 1651 | S5 ell/)/ e(n—k)]
§c||co0||+c:§,:)s(M§)2(1+1/|/8(n—k)). (4.22)

Equation (4.21) implies also, together with Eq. (2.13), that
bi=V+Ap1SE 0w — :i; eVitaptSE_ b VSiwi. (4.23)
By Egs. (2.14), (2.20), and (2.21), we can write:
17245 "S5 x00ll S 1745 G ool +dp . e~ 07 o). (424

Notice now that, since uy(x,0)=0,
Gwo=Ge V' -ug=V"-Ge,up), (4.25)

where ¢, is the sign function in the y variable. G,(&,u,) is, for y >0, a divergenceless
vector field; therefore, by using Egs. (2.20) and (2.21) with F=V"G,(s,u,) and
integrating by parts, we obtain:

V45 Gooll < cl|Gyleyuo) | S cllu |l - (4.26)
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Furthermore, by Eq. (2.38)
n—1 n—1
Fdp 3. e 0| fevs(p) el X a(1/)/otn—k) +1/)/k)
Scl/e(n—1)[wol - (4.27)
We have also, using Egs. (2.14), (2.20), and (2.21):

V4585 - (bi - VSi00) (0, Y| = SUP |Gyn -1 DiS1 4P, y1)|

n—-k—1

+ 2 ge” SRR f4(p) +1@(p) (4.28)

where y=b:V S5 wi. By Egs. (2.42) and (3.49),

n—k—1

fdp ) ge ™ SmTkTNP?| fre(p))|
k_

§C(|lwill+||Siwi|l)||Siwill z 2 &l))/ e(n— k—?)“/f)
<c)/eln—k—1) (Mg (4.29)

[dpla(@)| < c|[bill ST}l < c(M7)*. (4.30)
Equations (4.24), (4.26), (4.27), (4.29), and (4.30) imply that

IB5) S ol + /e lol +¢ 3, M +1/oln—R=1)).  @31)

Putting together the bounds (4.20), (4.22), and (4.31), we find:

Finally,

M Zc(()/ne +1) ol + o)

+c:g: LMD +]/eln—k—1) + M) +(MD?/)/e(n—F)].  (432)

which implies very easily Theorem 1.

5. Some Properties of the Stokes Semiflow

Our aim in this section is to give some estimates on the Stokes semiflow which will
be useful in the sequel.

Suppose y(x, y) is an initial profile of vorticity, not necessarily satisfying the
boundary conditions. The Stokes semiflow is defined, according to Sect. 2, as

Sy =G{y+ad)+ [ dsG,_(f5), (5.1
where 0

a(x)=—=2uM(x,0%), and u,=V*+A,'y. (5.2)
Moreover, f satisfies Eq. (2.22) [or Eq. (2.26)] and has the explicit solution (2.29).
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By (2.24), integrating by parts, we have for the first and the second time
derivatives of i the following expressions:

(@) (p) =21p| | dyg(y)i(p, y)e P+ 2Ipl/)/ dnt)a(p)e 7, (5.3)
(@2m)(p) =2lp| J dy[(— p* + 02)g () 17(p, Y)e 7"~ Ipl(}/ 4nt®a(p)e 7™
—2(Ipl*/)/dn)i(p)e 7. (5.4)
Lemma 5.1. For t>s>0, we have
I =A@ Zclpl(T'(p))/t —s +1ap)| (t—5)V4/53%), (5.5
where “
I"(p)= sup Vy(p, y)l. (5.6)

Proof. By (2.22),
()0 = @ur— 030 2) + 92— 1)
+ T/ m eI =) @A D)
L e e T S R VD)

X (0. +p*)it(p) . (5.7)

We denote by T, i=1, ..., 4, the four terms appearing in the right-hand side of
(5.7) and estimate them separately:

IT,1< § dolo2m, ()] < J do{21p) If dy[(—p* + 09,107 (p, e 7
+elpl/o™) + (oo™ e~ 1ap))
<clp (rmido(l/lﬁw|a(p>|£do/a”>
<cpl(T'(p)()/1=)/5)+1a@)ILA/)/5)— 1))/ D)1, (53)
T <0 dol0 i) = 72 do 2l dvg )i, e

+e(pl/)/)la(p)le 77}

<clpl ' P)(/t=)/s)+apIA/Y/s)— A/ )] (5.9)
By virtue of the estimate
0.+ P (p)| S ce P (lpl sup [7(p, y)| + Il ld(p)l/lﬁ> , (5.10)

we have

Tyl < de(e™""/)/t—=7)(pII"(p) + p*la(p)/7)

gcl/t—srpvr/@)w[j: (dr/]/t—rl/?)plla(p)le-f‘]
<clpl(T@))/t—s+(|/t—s/)/ts)la(p))). (5.11)
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Finally, again by (5.10),
1Tyl =c g dalp|((e™ P — e~ "))/ s—o)(T"(p) + Ipl la(P)I/}/ 7)
+C(§s) delple *[(1/)/s—v)—(1/)/1—=0)IT" @)+ pl [dP)I/)/ 7). (5.12)

Making use of the inequality, valid for any a [0, 1],
e P e P TP —e TP <o (L —5)p2%, (5.13)

we obtain for the first term in the right-hand side of (5.12) the bound

c|p (F’(p)l/ t—slple"’zsi de1/)/ s—r)

Ha@le™ P pR e~ [ de1/(/5=7)/)
S clpl(I @)/ t=s + @)t —9"4/s%"). (5:14)

For the second term in the right-hand side of (5.12) we have the estimate

clpl(I"(p))/t—s +1ple”*|a(p)| (J) di[(1)/s—0)—())/t=o))) 7). (519)

Since

(f)dr/ﬁ[u/]/s—r)—u/yt—z)]§Vt—s(f)dr/l/r(s—r)(z—z)

<=9 ] de/()/cs=0)*")
<c((t—5)/9), (5.16)
(5.15) turns out to be bounded by
Pl ()}t —s +1a(p) (= 5)"/57).. (5.17)

Collecting all the above estimates and realizing that |/t —s < (t—s)"/*t'/%, we
conclude the proof of the lemma.

Lemma 5.2. Putting I'(p)= sup |j(p, y)|, we have the following bounds:
y

[P < ce™ P Ipl(T(p) +1d@)I/)/ 7). (5.18)
ISl S cCliyll+ llall/)/2), (5.19)
17Spl <c(IPyl +lal )/t + llalfo). (5.20)

Proof. Estimate (5.18) is obvious after (5.10) and (2.29) and (5.19) is suddenly
obtained after inserting (5.18) in (5.1).
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To obtain (5.20), consider the equality
t
VSy=VGy+VGad+ | dsVG,_(f.d). (5.21)
0

We have
VGl =clVyll, (522)
IV G.ad)| <c|dpe* sup Ldpl+ yl/Dg1la@) = (c/D) llal , (5.23)

‘i dsd, G, £3(p, y)[ écgt) ds(lyl/(t—$))g;- e I f)
< cli] [ds/e— 91l -, )

+cj)[ds/(t—s)]e‘f""”m(p)—ﬁ(p)|‘ (5.24)

The first integral in the right-hand side of (5.24) is uniformly bounded. Inserting
(5.5) in the second one, we get:

i ds0,G._,£0(p, y)| Sc{l£@)|+ ' (®) +Ipl ld@)|) 1} (5:25)

A similar estimate holds replacing 0, by 0,. Therefore, by the use of (5.18), we
obtain (5.20).

Lemma 5.3.
[Vap Syl =c(IV+4p 'y +lﬂ||)’||)» (5.26)
IV+ap*Sdyl clyll. (5.27)
Proof. Proceeding as in (4.25), putting u,=V*45'y, we have
G(y-+a0) = Gy(e, V" u,)— 2G,[uM( -, 0)5] = G,V (e,u,)
=V'Geu,). (5.28)
Hence, by Eqgs. (2.20) and (2.21),
V451 Gy +ad)l| =1V+45 V4 Gleu)l Scl Gleu)| Scllu, |l (5.29)
Moreover, by (5.18):

t
V4451 [dsG, L £:5(p, y) S f dse™ 79| p)|
0

<c/t{T (@) +1a@))/t} (5.30)

and this estimate achieves the proof of (5.26).
Expression (5.27) follows easily by the inequality ||[F*4; 0| <clly|| and by
estimating as in (5.18) the new f generated by the initial condition Fy.
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Lemma 5.4. Suppose a=0. Then, for all ne(0,1],

IS, =Dyl clPylmly)t ~"em2, (5.31)

ViAp (S, — Dyl < . 5.32

Proof 174454 (S, ~ Iyl <c)/slyl (5.32)
N\ 4 -

(G, = D3, y)= ] de(=p* + )G, 1), (5.33)

I(Go— Dyl =c E dr (f (dp/)/7) sup 7y(p, y)l)",

(1 dprosuplite. )~ <l vpriofaajo'
=cl[Vnl"liyll* "o (5.34)
On the other side, by (5.18) (since a =0),
w0 o= ISe] dete e a0l Q). (539

Therefore, the norm of the right-hand side of (5.35) is simultaneously bounded by
ey, (5.36)

elyl{ def)/a ==}/ =cly. (537)

Interpolating the bounds (5.36) and (5.37), we complete the proof of (5.31).
Finally, by (5.33), (2.20), and (2.21),

and by

7445 G, = Dy, I Se ] @el)/Dr), (539)
P45t dsG,- o f3(p. )| S dsf)/o=5)Tp), (539)

which imply (5.32).

6. Convergence of the Stokes Algorithm
Consider Eq. (2.26) associated to an initial vorticity profile and its discrete version
hi == T)f - (6.1)

It will be convenient to think of Eq. (6.1) as defined for all times ¢ = 0 by considering
* and f* as functions defined on R* by

W=k, fe=ft, s,=[slele, sze,
R=fi=H, O0<s<e, 6.2)
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and T, extended on arbitrary functions by

(T, = T dstplfy/ e e, iz,

(T.,=0, O=t<e. (6.3)
With these conventions we take the difference between Egs. (2.26) and (6.1):
(I-T)&E=(T,=T)[ + (K —h), (6.4)
where oA a
c=r—f. (6.5)

To estimate £ we need two preparatory lemmas.

Lemma 6.1. For t=ne, n=>1,

(T, — T)f 1 (p) < c)/elpll (p) + clpl (e/t) **la(p)) (6.6)
Proof. We have, for n>1:

[(T—T)f1dp)

=(lpl/)/m) {j ds(e™ "I 1—5)(fe—fo) (D) + i ds(e™ " =9)/t —S)fs(p)} :

By Lemma 5.1 and estimate (5.18): (67)

(T n)f],up)gcpZi as{I'(p)()//)/t=5) +1a@)le /()1 =553 )} 7

+cp?T'(p) i ds/)/t=s +cp?e~"a(p)| (f) ds))/t=s)s

<c(|pIl '(p)1/5+ Ipl1a(p)| (e/t%)*'*)
+cp* I (p))/ e+ cp™()/¢/)/t—2)la(p)le7*. (6.8)

On the other hand

[(T—T)f1(p) ScpPe *(la(p)l + /eI (p)), (6.9)
and this achieves the proof.
Lemma 6.2. For t=ne and n=1,

| — Bl < )/ |pIT (D) + (¢/£%) 21pl |a(p)]) - (6.10)
Proof. Let n>1; recalling Eq. (5.4):

i~ ) =D — @i =2~ § da(aa”"‘a”m' a

g

t
do | dto*m,

&

¢ t t t
<ce '|plla@)| | dofdetfc*+ce  pll(p) | dofdul))/x
t—¢ [ t—¢ [

Sce!l*[(t—e)*?)lplla(p)| + celpl"(p)/)/ t — &
< ce"*Ipl 1a(p)|/(t —&)*"* +c]/elpl["(p). (6.11)
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For n=1:
B —h(p)<e™! i dai d22|p| |f dy(—p*+ 02)g.(»)7(p, y)e 7|

+ce ! idcr(lpl/l/;)ld(p)l <c(}/elpll"(p) +Iplla@)I) e) . (6.12)
Hence (6.10) is proved.
Lemma 6.3. For t=nand n>1:

&) < c)/elpl(1 + PO (p) +ce¥/*(Ipl/e*) (p?t + 1)]d(p)] (6.13)
Proof. By Egs. (6.4) and (2.31)

o=l +(TD,+R,, (6.14)
where
L=UT,—Df1,+ K —h), (6.15)
and et
R,= ¥ (T}, (6.16)
k=2

By (2.35), Proposition 1, Lemmas 6.1 and 6.2

n—2 n—2
IR, = cA mgl [l {I/EIPPF ‘)t +Ip| Id(p)limg1 (8”“/83/4)m’3’4}

<c{)/elpPtI (o) +)/ e lplPla(p)in'} . (6.17)
Moreover,
(TD(p) S cp? J‘ ds(e™P¢=9))/t—s)(}/e"(p) + (e*/*/s3*)|a(p)])
<clpl)/eI"(p) + c(e*/£"*) Ipl la(p)] . (6.18)

This, together with estimate (6.17) and Lemmas 6.1 and 6.2, concludes the proof
of Lemma 6.3.

Proof of Theorem 2. By (2.14) and (2.18), for t=n,

n—1 t
(Sr—Sf.)V= - Z 8G(n-—k)a'flsc.eé-’_ de(Gt—s— Gz—se)fseé

=1

_+_

(=R L

dsG,_ f.5+ | dsG,_(fi—1.)3. (6.19)

Denoting by W, i=1, ..., 4, the four terms appearing in the right-hand side of
(6.19), we have, by Lemma 6.3:

B I SC S, ale™ ™M =R, (6:20)

Wl <e)/ely |0+ 71 DA +0)+e(e/D " A+ 1) al®,  (6:21)
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since
Ipl :i‘; se—Pz(n—k)a/] /(n——k)e <c, :il 8e—P2(n—k)a/(] /(n_ k)&(k8)3/2) éc/tll"' )
= =1
(6.22)
Furthermore,
W0 1= {456, .= DG~ o£,81(p,)
t s—Se N 1/2
g{ds( | dr|a,G,+t_s<fsﬁ)(p,y>|)
(U TG 31 +1G, .30
<clds (Vesup |VG,_S(?;6)|)“2 AN (=)
<ce'* [ ds(t—5)" 7o), (6.23)
0
1W< c(en) 1719 + c(e/t) V4l a]©, (6.24)
W3(p, y)<c I ds(1/)/t=s)Ipl(T(R) +1a@)I/)/s), (6.25)
1W< c()/ el O+ )/ e/t )all ). (6.26)
By Lemma 5.1

W, y>|§c|p|§ ds{T"(p))/ &)/ 1= +|a@)le /() 1—s53*)}e P, (6.27)
Whence
WLl < c)/et(Ip1% O+ 914 D) + (e/6) 4] a] D). (6.28)

This proves the first part of Theorem 2.
Finally, again by (2.14) and (2.18),

VJ'AB 1(Sfx+ 1= Sy, )= VJ_AD_ 1{(Gs —DG(y+ad)} + ;1 8G(n+ 1 —k)afiea

dsG,_(fs,+:—1:)0
(6.29)

Ot

t
+ gds(Gt—sa_ Gt—s)f.‘s‘s+55+

The first term in the right-hand side of (6.29), using (2.20), (2.21), and some
integrations by parts, can be bounded by

¢ (1/51" )+ i (da/)/o)Ipl Id(p)l> : (6.30)
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Therefore, proceeding as in the estimate leading to (2.52), we have:
1745 Sa s =Su? | S e/ e Iyl +)/ellal®)
+Le)/e(t+ )12+ 1714 2) +e(e/) 41 + ) [a] ]
+(et) 1y +c(e/t) " lall +c)/et(y]| O+ [y V)
+c(e/t)*lal . (6.31)
In a completely analogous way, using decomposition (6.19), we have:
17451 (S, = Syl S e+ L)/ ey @ O+ 11 D) + e/ la]| ]
+e[(e/0 Iyl + (/0 *llal]
+e[}/elyll +)/ellal ™
+e[)/ e/t [p1D O+ Iy O D)+ e/ all]. (6.32)

This concludes the proof of Theorem 2.

7. Proof of Theorem 3

We consider a time interval [0, T'], with T to be fixed later. Our starting point is the
expansion (2.54). We denote by «;, i=0, ..., 4, the five terms appearing in the right-
hand side of (2.54) and estimate each of them separately.

ool = [1(Sne — Seo | + S5 — G,)ew, |
<c(1+0) g ® Ve +c|[(I = G|l +(c/)/ne) |7+ 45 (I = GJag | (7.1)

by virtue of Theorem 2 and Proposition 3 [recalling that V*4, *my(x,0%)=0].
It is easily seen that the last two terms in the right-hand side of (7.1) can be

bounded by c\/gllwoﬂ(" D and by (CS/W) ol Y, respectively. Therefore, for ¢
small,

lowo | = e(1 + 1) flaog | 1. (7.2)

Furthermore, o, =f; + f8,, where

Bu= JasS, =S, o], (1.3)

t
BZ = .!) dsst—s[(us . V)ws - (us,s : V)wsa] . (74)
Then, by Lemma 5.4, (5.19) and (5.20),
t
1B, Sce* [ ds|VS,_ (s, V) |18, - (us, - Vo, |12
0

=C(T)8”4f ds(ll(us, - Voo, | D) — )+l | D/ =)*"),  (7.5)
0
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where d, is the velocity field generated, on the boundary, by (u -V)w,,.
Furthermore,

(s, - VYoo, | P < cllug I P oo, 22

13, 1W< Jdp|| dye™ ¥ |p] |u,, - Voo, || cllug,|l oy, |, (7.6)
0
Therefore,
1811l < c(aro, T)EM* (1.7)

by the use of Theorem 4.1 of [6], for which [juy|**) and ||w,||***) are bounded

functions of the time, while ||ogl|** gc(wo)/ﬁ provided that |wy||*? < + c0.
We have also

Br=Bi+53, (7.8)
where .
ﬂé = (.‘; dsst—s(us - us,;) : Va)s (79)
and ¢
ﬁ% = j(;('i*s‘st—s(z'{sa : V)(COS— wsg) (710)

satisfy the bounds
t
183 écgds{llus—usell Vel + llug—u, | loogll/)/ ¢ —s}
t
Sec(wo, T)g ds{|[Vesl +llwgll/)/ t—s}, (7.11)
1831 écgdSIst—wsgll {log Il + llug Il/)/ t —s}
t
<V ectwo, T)] ds(llo 1+ lu 1)/ 1=). (712)
For the bound (7.11) we have used Lemma 5.2, the obvious bound
1745 us—uy,) - Vo | = VA5V - (us—us o | S cllug—ug || |oyll, (7.13)
and the estimate (see [6, Theorem 4.17)

”atut” Sc(wy, T). (7.14)

For the bound (7.12) we have used the estimate (2.47) of Proposition 3 with S?
replaced by S, (and H =|w, ), the bound

17445 (s, Vs~ w5 )| Scllug | o~y (7.15)

and the estimate (see [6, Theorem 4.17)

18,00, < e, TY)/ 1. (7.16)
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Hence
1B2]) < )/ ec(wo, T) (7.17)
and
lloey | S 6o, T). (7.18)
By Theorem 2

loa | S e(T)e! n‘;“l oLl (e V)0l P+ 1t | > T (n— k)] 4]

k=0
n—1
Sete(T) X ellull® Vo |4 2/[n—k)e]V*. (7.19)
k=0
By Theorem 4.1 of ref [6] it is easy to argue that |u,]|®" is bounded and
o2 < (oo, VY ¢ (7.20)
provided that |w,||®*? < + co0. Hence
lloy | S &4 e(wo, T). (7.21)

By Proposition 3, Eq. (2.44),

n—1
flosll = k;{) e{([luge—BE - logell/)/ (n— K)e) + [l (e — bRy [} . (7.22)
Since
[ (e — B[+ < [l — S Of | |0l + [t — BEIl 0|5, (7.23)
we conclude that

n—1
sl < eleo, T) 2 el = bill + oo =S wi /) (n—k)e). (7.24)

Finally, by Lemma 1 and Proposition 3, since V*b{=Sw;,

loeall = kg; el — STi | LABEN/Y (n—K)e) + (gl + S70p)]. (7.25)

Collecting all the above estimates, we obtain:

|, — STyl = c(o, T) (8” 4+ nil en‘(ke)/}/ (n— k)S) (7.26)
k=0

for T smaller than any time for which the stability result of Theorem 1 holds. In
(7.26) we have used the notation
ﬂe(n8)=maX{“(Dn£—S£1(0f'”, “une—bft“} . (727)
Therefore, we need an analogous estimate for |u,, — by ||. Applying to both sides
of (2.52), we obtain:

4
Uy —bi= 3 Vidpta,. (7.28)
i=0
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According to Theorem 2:
1V+A4p ol =745 (S —Sns 1)o | Se'*e(T) o |- (7.29)
Moreover,
VEdap ey =V*A5 By + B3+ B2) (7.30)

and, by Lemma 5.4 and Proposition 3
t
17445 Ball <c)/e [ dslS,-s(us, Voo,

= CVE(ft) ds[(1/)/t =) || o, |1+ oy 2T S ¢}/ 2c(wo, T). (7.31)
By Lemma 5.3 and the bound (7.14),
V45l écs dsug—ug || [l = c(wo, T)e. (7.32)
By the same argument, using (7.16), we have:
1745 B3l écgdSIlus,;H loo,— o, || S (o, T}/ 2. (7.33)
By Theorem 2

n—1
[V+4p toyll S c(T)e'* kgo e(l| (e - V)| P + 1@l D/ [(n — k)e]*) < e, THe"*.
(7.34)
By virtue of (2.45),

n—1 n—1
IVEdp el s¢ B ellue—bil - ol S cleo, T) Z elue—bill,  (7.35)

n—1 n—1
IV+dp oyl <c kgo el bl lloo, — STkl £ c(wo, T) kgo &l oy — STl (7.36)
In the last bound we assume that T is so small that the stability result of Theorem 1

holds.
Therefore,

n—1
lltne — b3l < c(wo, T) (6”4+ 2 ene(k8)>. (7.37)
k=0
Combining (7.26) and (7.37), for T small enough, we conclude that

n(ne) < c(wq, T) <z—:1/4 + ki; en(ke))/ (n— k)s) , (7.38)

implying
}Lm ni(ne)=0 for ne<T. (7.39)
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To extend the validity of (7.38) to arbitrary times, we observe that, by (4.31),
there exists a positive decreasing function d([|wol|, [|4oll) for which the stability
result holds if ne <d(||wqll, [[tl]). Choosing, for any fixed T,

d=min (5 <2 tsgg ., 2211; llwtll), 1), (7.40)

we divide [0, T] in intervals [t;, ¢;, '~ , such that |¢;, ; — ;| < J. In the first interval
we obviously have convergence. Then, for ¢ sufficiently small, we have

(67,1 =2sup lufl, fof, | S2sup o . (7.41)
t<T t<T

This allows us to obtain the stability and hence the convergence also in the
second interval of time. The procedure can be iterated up to the last interval and
this concludes the proof.
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