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Abstract. A new proof of the existence of analytic, unimodal solutions of the
Cvitanovic-Feigenbaum functional equation λg(x) = — g(g( — /be)), g(x)
&1 —const\x\r at 0, valid for all λ in (0,1), is given, and the existence of the
Eckmann-Wittwer functions [8] is recovered. The method also provides the
existence of solutions for certain given values of r, and in particular, for r = 2, a
proof requiring no computer.

0. Notations

If z e C, we denote z* its complex conjugate, and reserve the notation S to denote
the closure of a set S.

Let J be an open, possibly empty interval in R. We denote

C(J) = {ZGC: Imz + 0 or zeJ}.

In particular, C(0) = C + uC_, where

: Imz>0}.

F(J) is the real Frechet space of functions /, holomorphic on C(J), with
/(z*)* =/(z), equipped with the topology of uniform convergence on compact
subsets of C(J). P(J) is the subset of F(J) consisting of the functions / such that
/(C + )cC+, and /(C_)cC_. These functions are often called Herglotz or Pick
functions.

P0(J) is the subset of P(J) consisting of the functions / such that |/(z)/z|->0 as
z->oo in non-real directions.

1. Introduction

The functional equation

g(χ)=-jg(g(-λx)) (1.1)
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was formulated by Cvitanovic and Feigenbaum [11] (see also [5]) to explain
universal features of period doubling in maps of the interval. This section
enumerates a set of constraints for the solutions whose existence is proved in the
subsequent sections. These properties are suggested by the accumulated literature.

Cl . g is an even C1 map of [— 1,1] into itself with a unique critical point at 0, and

0(0) = 1.

C2. There is a real r > 1, a complex neighborhood of [0,1] in C, and a function /,
holomorphic in this neighborhood, with /'(()) Φθ, such that

g(x)=f(xr) for 0 = x £ l . (1.2)

In particular, near 0, g(x)&l - const |xf. If g satisfies Cl and C2, then (1.1) is
equivalent to

g(χ)=-\g(g(λχ)) (1.3)

which implies g(l) = —λ. Since g is decreasing on (0,1), so is x->g(\λ\x) — x, which
takes the value 1 at 0 and g(\λ\) — 1 ̂  0 at 1. Hence it vanishes at a unique x0 e (0,1),
where g(xo)= —g(xo)/λ. Thus if λΦ —1, g(xo) = 0, so #(1)^0. It is easily checked
that λ= — 1 is incompatible with our hypotheses, as well as λ = 0 or 1, and so we
impose:

C3. Q<λ<\.

Note that this implies xo>λ (for otherwise g(xo/λ)e[ — 1,1], but g(xo/λ)
= — l/λ<— 1). Similarly, from g(g(λ)) = λ2, it follows g(λ)>λ since otherwise
flί(A)/λe[-l,l],but

g(Q(λ)/λ) = - g(λ2)/λ < - g(λxo)/λ = - xjλ < - 1 .

For each r > l , it appears, from numerical experimentation and existing
rigorous results [11, 3,13,1,14,10], that a locally unique solution exists, with the
above properties, and depends smoothly on r, with λ an increasing function of r.

The study by Eckmann and Wittwer [8] of the asymptotic behavior of the
problem as r-> oo, has shown that, in that limit, g and / degenerate but f(f)\ xr

0, λ
r

have non-trivial limits. It is therefore useful to consider:

G(t) =f(t)r = g(tVj, ^ = ̂ 0, τ = λr. (1.4)

Since f(y0) = 0, G is, in general, only analytic on (0, j;0). We also introduce, with [8]
and [3],

a(t) = G(τt) = g(λtίίJ, (1.5)

which is analytic and decreasing on [0, yo/τ).
A straightforward generalization of the facts known from [9] in the case r = 2

leads to the requirement:

C4. The inverse function of g\(0,1) extends to a function u e — P(( — ί/λ, 1)). The
inverse function on of /|(0,1) extends to a function Ue — P(( — /I" 1 , A"2)).
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Clearly this implies, for all ζ in C((-l/A, 1)),

and that u sends C_ into {ζ: 0<Argζ<π/r}. Moreover,

) = y09 1/(1) = 0, U(xo) = τy

Taking the inverse function of a, and rescaling it by —, we define:
Jo

- β - 1 θ Ό θ . (i 6)
/o

φ(z)= — U(z), (1.7)
/o

and we obtain the conditions:

C5.

Ve -P((0, ί/y0τ
2)), 7(1) = 1, 7'(1) = - p (1.8)

0, (1.9)

(1.10)

The conditions Cl, C2 define a particular class of solutions of (1.1). There are
many others, which are not at all considered in this paper. Some are analytic but
have additional critical points in (0,1), and it is likely that they correspond to a
bifurcation, in function space, of codimension > 1. Some are less regular (see e.g.
[4]) and may be expected to play a less prominent (or more complicated) role in the
dynamics of maps of the interval. Note, in particular, that, inasmuch as the fixed
point Q is conjectured to attract maps of many one-parameter families, it will
attract, in particular, many analytic ones, e.g. 1 — μ|x|r, whose inverse functions
have the properties corresponding to C4. Since these properties are very stable
under limits, g itself can be expected to inherit them.

Several proofs of the existence of solutions satisfying C1-C4 already exist for
particular values of r and λ [3,13, 1,14, 9, 8, 10]. Except for [3] and [8], they do
little to reveal the branch of special function theory which probably underlies the
subject. Nor will this paper shed much light on this, but it is, hopefully, a small step
in the right direction. The method of this paper is to look for solutions as fixed
points of a map suggested by C5, and to apply the Schauder-Tikhonov theorem
[7] by taking advantage of the normality properties of Herglotz functions.
Section 3 uses a version Mλ of this map defined for a fixed value of λ, and proves the
existence of solutions satisfying C1-C5 for every λ e (0,1). Moreover it is possible
to reobtain the existence of the Eckmann-Wittwer functions in the limit Λ->1. In
fact Mλ is essentially identical to the map used (and proved to be contractive) in
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[8] however it is used here in different function spaces. Appendix 2 owes much to
[8] and to the ideas of Ecalle reviewed there. It essentially shows that, when
suitably reinterpreted, Mλ has a limit when Λ,->1, and gives a direct proof of the
existence of the Eckmann-Wittwer functions. But since the Schauder-Tikhonov
theorem does not assert any kind of uniqueness, the proof in Sect. 3 implies no
continuous dependence of r on λ9 although it is intuitively obvious, and proved in
[3] for small λ, that this dependence is, in fact, analytic; and it is likely that the map
Mλ used in Sect. 3 is, in fact, a contraction. Section 4 describes a version of the
method where r is fixed. It is, unfortunately, much less successful, although it does
prove the existence of solutions for r ̂  14. In particular, for r = 2, it provides a proof
that requires no other computing machinery than paper and pen. It would be
much more interesting to be able to define and solve a fixed point problem for ψ or
V regarded as a function of two complex variables, e.g. z and λ. This remains a
possibility for the future. To a certain extent the methods of this paper can be
applied to the case of circle maps. This will be described in a paper in preparation
by J.-P. Eckmann and myself.

The literature concerning Feigenbaum's theory is very extensive, and only a
small part of it appears in the list of references. The reader is referred, in particular,
to [11, 12, 2, 8, 16] for more detailed scientific as well as bibliographical
information.

2. Classical Results About P(J)

The properties recalled below can be found e.g. in [6, 15].

2.1. Integral Representation

Any /eP(J) has a unique integral representation:

^ (2.1)

valid for all z e C(J). Equivalently, for any z0 e C(J),

1 1 (2.2)

Here μ is a positive measure on R with support in R — J, such that
fdμ(ί)(|ί| + l)~ 2<oo. For any continuous φ on R, sufficiently decreasing at oo,

ί φ(t)dμ(t) = lim -f φ(t) Im/(ί + iε)dt. (2.3)

The constant α^Ois called the angular derivative of/ at infinity. Uniformly in any
closed angle contained in C±,

lim |(/(z)-αz)/z| = 0.
|z|->oo
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We denote Po(«/) the subset of P(J) consisting of functions for which a = 0. It is
dense in P(J): if, e.g., / belongs to P(J) with J = (0,1) or (0, oo), then, for 0 < 5 < 1,
fs(z) =f(zs) defines an element fs of P 0 (J) which tends to / as s->l. This remark can
simplify the verification of inequalities such as (3.4), (3.5), etc.

2.2. Posίtivίty Conditions on Derivatives

Suppose that J φ 0 . Then, for every zeJ, and every finite complex sequence
vo,...,vN,

In particular f{n) is positive for all odd n, and:

2.3. Special Case of J = (- oo,0)

If / e P ( ( — oo, 0)), then f{n) is positive for all n e N r If, moreover, /(x)-»0 when
x-> — oo in R, then j(\t\ + l)~ίdμ(t)<oo, and

i z

2.4. Normality

P(0) is a normal family. The same is true of the subset of functions in P(J) which, on
J, are bounded in modulus by some fixed M< oo.

2.5. Iteration of Functions in P(0)

Denote /+ the restriction of / e P ( 0 ) to C + . Then (see [15]), either /+ is an
isomorphism of C +, or /+ converges, uniformly on any compact subset of C +, to a
constant C. There are three possible cases:

1) C= oo: this can happen only if a> 1.
2) C G R .

3) C e C + : then C is an attractive fixed point of/+, i.e. | /+(C) |<1.

2.6. Final Remark

Let /eP((fo,c)), not identically 0, with - o o < f c < 0 < c < o o and suppose that
/(0) = 0. Then, on (fo, c), f(x)/x is a strictly positive, convex function and, for all
z = x + iy such that b<x<c,

i/ωi < /(x)
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3. The Fixed λ Method

For any fixed λ e (0,1), this method sets up a map Mλ which we first describe
informally. Throughout this section, λ is fixed in (0,1).

1) Start with a given ψ0 e — P(( - λ ~x, λ ~ 2)), satisfying ψo(0) = 1, ψo(ί) = 0, and
other conditions to be stated later.

2) Define:

the real numbers τ>0, α>0, r>\ being adjusted so that

7(1) = 1, m ) = - p τ = ΛΓ.

3) Find ψ such that

ψ(z) = V(ψ( - λz)), φ(0) = 1, v(l) = 0,

and verify that ψ satisfies all the conditions imposed on ψ0. Then define

To carry out step 3), it will be convenient to introduce auxiliary functions, in
particular W:

w(θ=v(V(ζ)).

We now study the map Mλ in detail. Recall that, in this section, λ is chosen once
and for all in (0,1). In the remainder of this paper, we denote:

A = A{λ) = _ _ L ^ 9 B = B(λ) = (1 - λ2)A(λ). (3.0)
/tlog/t

Note that A^e, and B is a decreasing function of λ tending to 2 as λ->1.

5.7. Determination of τ, α, and r

We start from a fixed ψo = l — φ o e — P(( —Λ,"1^"2)), with φo(0) = l and
ι^o(l) = 0. As recalled in Sect. 2, there is a constant αo = 0, and a positive measure
ξθ9 with support in

R-(-λ-\λ-2)9 (3.1)

such that, for all ZGC{{-X-\X~2)\

and:

dξo(t)
(3 3)
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Rewriting the integrand of (3.2) in the form:

dξo(t) t

t{t-\){t-zY

and noting that, for O^z^/l"2, and t in Σ(λ),

we obtain:

1 inJτ\ 1
2) (3.4)

ί+λz = \-z = \-λ2z

Similarly, from

, . dξo(t) ( ί - l )

it follows that, for - A ' ^ z ^ l ,

(l-22z)(l-z)

and from

< ^ υ v ; < ^ : ί (3 5)
ZZZ / \ Z=2 /A . ^ \ /A \5 V ^ /

it follows that, for —λ ι^z^λ 2,

2λ

1+λz ψo(z) " 1 - l z *

Suppose now that, for some positive τ, α, and r > 1, the function

nθ=^Vo((C/«)1/f) (3.7)

is defined and differentiable at £ = 1, and satisfies F(l) = l, F'(l)= —λ'1. Then we
must have:

φo(^i) = τ, ^i = «-1/r, (3.8)

and:

7—Γ" = ~" T (3-9)

If we also require τ = /lr, i.e. r = logτ/logΛ, we must have:

(3.10)
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The function q is smooth on [0,1), with g(0) = y/o(0)(l -Λ)>0. When z->l, it
behaves like —(1 —z)~1—Alog(l — z), and tends to — oo. It therefore has zeroes
in (0,1), and we take zx as any one of them. Actually it will shortly be seen that
there is only one such zero.

Having chosen zγ in this way, we define:

Since ψ0 is strictly decreasing on [ —Λ,"1,A~2], we have: 0 < τ < l , r > 0 , α>l .

3.2. Lower Bounds on z1 and 1/τ

Since ψ0 is negative on (1, A"2), the function logφ0 belongs to —P(( —A"1,1)).
When zeC_, clearly O<lmlogφ0(z)<π, so that the angular derivative of this
function at infinity vanishes. It has, therefore, an integral representation, for
zeC((-rU)),

Iogφ0(z) = - J σ(t)dt ̂ - - i j , (3.12)

where σeU° has support in R — ( — λ"1,!), and O^σ^l. Moreover, for
te(ί,λ~2), Iogψ0(t + i0) = log[ — ψ0(t)] — iπ, so that σ(t) = ί there. The function q
has the integral representation, in C(( — λ"1,1)),

]
Let 0 < z < l . For ί^ — Λ,"1, the integrand is positive. For ί^l, it has the sign of
(A-l)t — Az^(A-l)-Az, and is certainly >0 if z<\ —A'1. We conclude:

z^l-λlog^A. (3.14)

The last inequality follows from the usual inequality logx ^ x — 1 for all x > 0, strict
for xΦl. Since r>0, it follows that:

α < - . (3.15)
τ

To get stronger bounds on z l 5 we separate, in the integral in (3.13), the
contributions from [1, λ ~ 2] and from the rest of the support of σ. For 0 < z < 1, as
already noted, the contribution from (—oo, —λ~ι) is positive. For t^λ~2, the
integrand has the sign of (A — \)t — Az, which is minorized by:

Therefore, for 0 < z < l , q(z)^q2(z), where:

I/A*

' ~ ~ " " ~ l-z)(l-/l 2z)"

(3.16)
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It is convenient to use the variable

This gives:

(ί-λ2)zq2(z) = χ(ξ)-ξ9 (3.18)

χ(ξ) = Blogξ + l+λ2-j. (3.19)

The function χ is increasing and concave on (0, oo), and χ(ξ) — ξ vanishes at ξ = 1
and at a unique ξ> 1. Since 1 £Ξ ξ^ <f is equivalent to χ(£) ̂  £, it follows that ξ is a
lower bound for ξί=(ί—λ2zί)/(l — zx). Applying the bounds (3.4) shows that:

l^ξi^ξ (3.20)

It is immediate to verify that:

from which it follows that τ<λ and hence r>\. But we need the more precise
bound:

(3.21)
' *~\-λ2'

Inserting ξ = λ~il+y) into χ(ξ) — ξ gives:

The positivity of the first bracket follows from the

Lemma 1. For O ^ x ^ l , the quantity

is non-negative, and vanishes only at 0 and 1.

The straightforward and tedious proof of this is sketched in Appendix 1.
As a consequence of (3.21),

.1+y o 12

We also note:

Indeed, χ(3) - 3 > 1 + B - 3 > 0.

- > 3 . (3.23)
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3.3. Uniqueness of zγ

The derivative of zq(z) in (0,1) satisfies:

ψ'o(z) dzκ Hy ψo(z)

[by (3.6)]. At z = zx, this gives:

\{zq{z))'\z=Zι^A\og1][A(\ogί- - l ) + ̂ J . (3.24)

Thus, the derivative of zq{z) at every zero it has in (0,1) is strictly negative.
Therefore zq(z) has only one zero in (0,1).

3.4. Lower Bound on τ

It is clear that τ>0, since zx + ί. In this subsection, we prove the existence of a
(strictly positive) lower bound for τ, which depends only on λ. In Subsect. 3.11,
using additional constraints on φ 0 , we shall prove the existence of a lower bound
uniform in λ as λ -»1.

Separating, in the integral representation of logi/;0, the contribution of [1, λ ~ 2 ]
from the rest gives:

/ N 1 1 ~ ^ Z f n . Z

logt/;0(z) + log— = — J σ(t)dt— -.
1 — z Σ t(t — z)

[Recall that Γ = R — ( — λ~ι,λ~2).~\ Letting z tend to 1 from below gives:

Letting z tend to 1 in the inequalities (3.4) we find:

and hence:

The function q1{z) = q(z) — q2(z) has been shown to be positive in (0,1). To majorize
it, we write it in the form:

, σ(t)dt {A-\)t-Az
1 Σ t(t — l) ' ' ' (ί — Z ) 2

It is easy to see that, when teΣ and ze(0,1),
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and so, for ze (0,1),

(1 - λ2)zq(z) ^ (1 - λ2)zq2(z) + (1 - λ2) {A -1) (1 + λ)k.

Assume that

(l-λ2)(A-l)(l+λ)k + l+λ2^K. (3.28)

Then, using again the variable ξ defined in (3.17), we get:

with χ as in (3.19). In particular,
2 ξ = S(ξ). (3.29)

To obtain an upper bound for the root of the right-hand side and hence for ξl9 we
may e.g. note that S'(ξ) = B/ξ-l, so that, for ξ>2B,

S(ξ)<S(2B)-±(ξ-2B).

This becomes negative if ξ > 2S(2B) + 2B, and a fortiori if ξ > 2{K + B log 5), and
this is then an upper bound for ξv The bounds (3.4) give:

Remark. Inserting (3.27) into the left-hand side of (3.28) leads to:

For λ^e~2, this is negative when ξ is given the value

c ' iogi/r

By (3.30), this implies:

which confirms that r->l as λ^O.

3.5. Definition of the Functions V and W

We can now define:

^ 1 / 0 (3.31)

Since r > 1, — V is a Herglotz function. It is defined, real and analytic at the real
points in (0,ατ~2). In particular:

p K(α) = 0. (3.32)
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This function satisfies the following identities, where we denote z = (ζ/a)1/r:

VXζ)=^Z-ψ'0(z), (3.33)

V"(O
(3.34)

^(l-r- 2 ). (3.35)

(Recall that Sψ0 and SV denote the Schwarzian derivatives of ψ0 and F,
respectively: see 2.2.) From (3.34) and the inequalities (3.6), it follows, when

(3.36)

In particular when 0 < ζ ̂  α, i.e. 0 < z ̂  1, using the first inequality in (3.36), and the
lower bound on r given by (3.22), we see that F is convex. Since 7'(1) = — ί/λ, this
implies V{ζ) ̂  1 -(ζ- l)/λ in (0, α), and so:

ot>l+λ. (3.37)

We also define

W(Q = V(V(0), (3.38)

and it will be convenient to introduce:

V(ζ) = 1 - 7(1 - Q, W(ζ) = 1 - W{\ - 0 = F(F(0) (3.39)

Both W and W are Herglotz functions. On the reals, W is defined, real and
holomorphic on (0, α): W(OL)= F(0) = l/τ, and W(0)=V(l/τ) is defined since
l/τ<α/τ2.

It is clear that W(0) < 0, i.e. VF(1) > 1, because we have shown that 1/τ > α, but
we need more precise bounds.

3.6. Lower Bounds on W(ί)

We start by applying the inequalities (3.36) to the case ζ = 1, and we find:

ΰ<-ψ§)<x (3 40)

Further, by (3.35) and the positivity of Sψ0>

^ , 0<ζ<aτ~2. (3.41)

Since W = F° F,

(3.42)

no
F'(F(0)

(3.44)
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When ζ = ί, combining (3.40) and (3.43) gives:

0 < — = ^—— < 1 Π 45Ϊ

= W\\) W'(ΰ)=λ [ }

We now apply (3.44) and (3.41) to get:

vf(T\2(\ —r~2Λ (\ — r~2Λ

(3.46)2F(C)2 2ζ2

For 0 < C < l ? the convexity of V implies:

rv>)= ί_ζ ,

hence

HO > i

ς no
It follows that

and hence

In (0,1), the right-hand side has a minimum at C = (l —λ)/2, and, using the lower
bound on r in (3.22), we get

m ' , P.47,

It follows that, for 0 < £ < l ,

and so, using (3.45),

The function /l-> — 2 log /I — λ ~ί + 1 has a unique maximum at 1/2 in (0,1), vanishes
at 1, and takes the value 3 — e at λ—\je. It is thus positive for λ^l/e, and we
conclude that for A ^ 1/e and 0 < ζ < 1,

(O ̂  exp (sC2/2) ̂  1 + sζ2/2, ^ ( Q ^ ί ί 1 + ^ - V (3.48)
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We now remark that, since — V(ζ) and W(ζ) have been defined as Herglotz
functions of £1/r, with r > l , they have zero angular derivative at infinity. In
particular, for ζ e C((l — α, 1)),

ζ J t ( t -

where u is a positive measure with support in R —(1 - α , 1), and J du(t)t~2 = λ~2.
(Recall that l - α < - λ )

Therefore, for ζe[0,1),

(In fact this bound would hold even if the angular derivative of W at infinity did not
vanish.) The last bracket in (3.50) is positive for /l<(|/5-l)/2~0.61 and, in
particular for 0 < λ ̂  1/2,

On the other hand,

4[_s{λ)Yίt2 = - +
A

is a convex function of λ in (0,1) and so for λ G [1/2,1],

so that s(λ)^l, and, by (3.48), W(ζ)>ζ(l + ζ2/6). Thus:

Lemma 2. Γterβ exisίs α number a^t\ such that, for all λe(0,1), ζe[0,1],

j n θ ^ « l + t f C 2 ) . (3.51)

3.7. Upper Bound on W{\)

Recall that

where

Using the bound (3.4) on xpθ9 we find:

and so:

1 1 /iV+i
(3.52)
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Recall that we have proved the existence of an upper bound for - depending only
on 1 τ ^

We also note that W{\ -α) = l- l/τ, and since 1 — α < — A, W(ί-a)/(l-a)
^ ί/τλ. Together with (3.52) and the remarks in Subsect. 2.6, this shows that for all

3.8. Definition of ψ

Our purpose is now to construct a function ψ = ί— ψ in — P((
satisfying:

or, equivalently,

- λz)) = W(ψ(λ2z)),

1, A"2)),

(3.54)

Recall that:

Fe-P(( l-ατ" 2 , l ) ) ,

As it is well-known, because λ < 1, it is always possible to construct a unique
function Ψ, holomorphic in a small disk around 0, and satisfying there:

ψ(z) =V(Ψ(- λz)) = W(Ψ(λ2z)), Ψφ) = 0, ψ'(0) = 1. (3.56)

For the sake of definiteness, we state the following lemma, which it is straightfor-
ward to verify (and by no means the best possible estimate):

Lemma 3. Let f be a function holomorphic in {zeC: \z\< T} and satisfying there,
for some M>0, ωeC, 0<|ω| = s<l,

rω--
ω

S2M\z\,

Let 0 < s < κ < l and 0<sJ?<min[T'/2,(κ; —s)/4Ms2]. Then the mapping

Kfh(z)=f(h(ωz))

is well defined on the class of the functions h which are holomorphic on
{zeC: |z|<.R} and satisfy there

\h(z)-z\<\z2\/sR.

It sends this class into itself and is a contraction with ratio K in the distance
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To apply this lemma, we derive from (3.49), first for real £, by the usual
estimates, then for complex ζ by the remark in Subsect. 2.6, that, for |(|<3λ/4,
\W(ζ)/ζ\<4λ~3, hence by the Cauchy inequalities,

\W"(ζ)\ <24/Γ4 for \ζ\<λ/2.

We can take, in the lemma, / = W, T=λ/2, M=12λ~4, s = λ2, κ = (i+λ2)/2, and
R = min{(l-λ2)/96λ2,ί/4λ}.

In the disk {z: |Z|<JR}5 Ψ is the limit of a uniformly convergent sequence:

Ψn(z)=Wn(λ2nz),

which satisfies \Ψn{z)\ < T for \z\ <R.
We can now proceed to extend Ψ outside of the small disk by using the

functional equation in (3.56). Note that, inside the disk, Imz>0 implies
Im Ψ(z) ̂  0, the equality being possible only if Ψ is a constant: but this is excluded
by y/(0) = l. Hence, in C + uC_, there never is any obstruction to extending ψ9

which is thus a Herglotz function (this also follows from Vitali's theorem). On R + f

we claim that Ψ continuously extends to a segment [0, yλ~2~] on which it assumes
all the values in [0, t^(l)] Indeed Ψ is clearly increasing as far as it can be extended.
If its value never reaches W(\\ then it can never reach 1. But then W(Ψ(z)) is always
defined, so Ψ extends to all of R + . It also extends to all of R_ by Ψ(z)
= V(Ψ( — λz)). This implies that Ψ(z) = z, absurd since Ψ(z) < 1 by assumption for
z>0. Therefore ΨTR+) contains (0, W(l)). In particular there is a y>0 such that
Ψ(y) = ί9 and hence Ψ{yλ-2) = W{\\ and ψ(-γλ-1) = V(l) = l -1/τ.

We can now define ψ(z) = Ψ(yz)9 which satisfies the requirements in (3.55), and
ψ = ί—ψ. Note that these functions are continuous at the ends of their real interval
of analyticity, ( — A"1, A"2), with:

V>(-A"1) = l-1/T, φ ( - A " 1 ) = l/τ,

ί), ψ(λ-2) = W(0).

The map Mλ is defined by Mλψ0 = ψ.
Note that (3.57) and (3.52) imply that |φ(z)| ̂  ί/τλ for all z e ( - λ " \λ'2\ and

hence there is a constant C^λ) > 0, depending only on λ, such that \ψ(z)\ ^ CX(X) in

3.9. Continuity of the Map Mλ

Recall that z1 was defined as the unique zero of the function q in (0,1). The bounds
obtained in the preceding sections, in particular those of Subsect. 3.3, make it clear
that z1 is a continuous function of ψo; recall that we are using the topology of the
Frechet space F(( — λ~ι,λ~2)). [For example zγ is the integral of
(2πi) ~ίtf'(i)f(t) ~ idt on a small contour surrounding it, with /(z) = zq{z).~\ Hence
τ, r, α, V, W all depend continuously on tp0.

The restriction of Ψ to {z: |z|^i^/l2} is also continuous in ψθ9 since e.g. its
Taylor series converges uniformly, and its coefficients depend continuously on ψ0.

By the very construction of Ψ, the domain of Ψ is the union of an increasing
sequence of compacts {Kn}, with Kn.1CCKn9 -λKnQZKn_u K0 = {z: \z\<^λ2R},
such that Ψ(Kn) is contained in the domain of V. We prove inductively the
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continuous dependence on ψ0 of the restriction of Ψ to Kn, assuming it to hold on
Kn_ί. Let ψί be a function close to ψ0 in -P(( — A"1,/!"2)), and Vl9 Ψx the
functions obtained from it in the same way as V, Ψ from ψ0. For a given ε>09ψ1

can be chosen so close to ψ0 that, for all ζ e Ψ(Kn_γ) + A(έ), V(ζ) and Pi(Q are both
defined with | V(ζ)- Vx (01 <ε/2, Λ(ε) - {z: |z| ̂ ρ j . Let Sbe an upper bound for | F'|
on Ψ(Kn_ x) + A(s). Choose ψί so close to ψ0 that, for all z e KM_ l 5 ¥Ί(z) is defined
and |!P1(z)-!P(z)|<min(ρβ,e/2S). Then for zeKm Ψί(-λz)EΨ(Kn_ί)
and

+ \V(Ψ1(-λz))-V(Ψ(-λz))\Se.

Thus Ψ depends continuously on ψ0. It remains to check that y is also
continuous in ψ0. This follows from y = — ψ/(0), and the fact that the same bounds,
obtained for ψ'0(z) in (3.5), also hold for ψ'(z). In particular, l—λ2^y^ί+λ. Since
the domain of analyticity of Ψ around y keeps a finite size, and [^'(y)] ~ ι remains
bounded, y = Ψ~1(ί) depends continuously on ψ0.

The information collected at this point suffices to apply the Schauder-
Tikhonov theorem. Before we do so, we shall devote the two next subsections to
obtaining bounds uniform in λ in the limit λ->l.

3.10. The Functions H and Ho

We define:

H(w) = ψ(en, HQ(w) = Ψo(eβw), j8 = logj, (3.58)

and

H = ί-H, H0 = ί-H0. (3.59)

These functions are holomorphic and periodic with period 2πί/β in C minus the
cuts *

2mίπ ^ A (2m + l)ϊ'π ^ n

+R 1 + ^ + R , meZ.β β

In particular, H and Ho map the strips {w: 0< ±lmw<π/β} into — C + ,
respectively. They tend to 1 when w tends to infinity in the negative real direction.
When w is real and increases from — oo to 2, they decrease from 1 to ψ(λ~2) and
ψo(λ~2), respectively. They satisfy the functional equations:

H(w) = W(H(w - 2)), H(w) = W(H(w - 2)), (3.60)

and

H(0) = H0(ΰ) = 0, 7/(0) = Ho(0) = 1. (3.61)

For real w < 2,

H'0(w) = βzψ'0(z),
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where z = eβw. By (3.6) it follows:

> ί-λz
H'0(w)=Pί+λz'

and this is positive for z<ί/λ, i.e. w<l. Thus Ho is concave decreasing on
(—oo,l). Since ψ obeys the same bounds (3.6) as ψθ9 H is also concave
decreasing on ( - oo, 1).

We now denote:

W ^ Λ - (3 6 2 )

ThenO<C 1<l, and:

H0(wt) = τ, fl{)(w1)=-^log-. (3.63)
A T

Since Ho is decreasing concave, and vanishes at 0,

and so:

logα^/l, oc^eλ. (3.64)

We now turn to some consequences of the functional equations (3.60). They
imply:

H(-2n) = W-n(ί) (3.65)

for all neN. Let vv^O, and denote temporarily x = H(w), y = H(w — 2). Then
0<j;<x<;i, and χ = W{y\ so that, by (3.51),

ay3 + y — x ^ 0.

To verify that this implies y ̂  x(l — afx2\ for a certain α'>0, it suffices to check
that, for all x e (0,1),

ax3(l-a'x2)3-a'x3^0,

i.e.

Since the left-hand side is ^a{\ — Za') — a\ this inequality is satisfied by

/ a

T+3a'

For a = 1/6, this gives α'= 1/9. Thus, for w^O, by the convexity of H,

H'(w) ̂  i [H(w) - H(w - 2)] , H\w) ^ | ^(w)3. (3.66)
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In particular,

*TOif - WΛ^ y (3-67)

Integrating (3.66) with the initial condition iί(0) = l, we find:

H(w)^(l-αVΓ 1 / 2 , w^O. (3.68)

The inequality (3.66) is equivalent to

βzψ\z)^ψ{z)\ for all ze[0,l] . (3.69)

For any z e [0,1], tp-»(ip(z), βzψ'(z)) is a continuous linear map of P((—λ~ \ A" 2))
into R2, and (3.69) requires its image to be contained in the closed convex set
{(X, Y): 2Y^a'X3^0}. Therefore:

Lemma 4. The map Mλ sends into itself the compact convex set

(2zlogλ)ψ/

0(z)^all-Ψo(z)T /or z6 [0,1]}. (3.70)

To prove the compactness of Ex(/l), note that every function belonging to it
maps C((-λ~\λ~2)) into C((-2C1(λ),2C1(λ))), which can be conformally
mapped into the unit disk by an obvious transformation, so that Ex(λ) is a normal
family, and that every limit of functions in E±(λ) is in E±(λ).

From now on, we assume that ψ0 is chosen in E^λ), and that, therefore, the
inequalities (3.66)-(3.69) hold with H and ψ replaced by Ho and ψ0 respectively. In
particular:

4
To conclude this subsection, we note the formula:

(3.72)

3.11. Uniform Lower Bound on τ

Using the fact that ψ0 is now supposed to belong to E^λ), we can improve the
estimates in Subsect. 3.4 so as to get a lower bound on τ uniform as λ-^1. First by
inserting (3.71) into (3.25), we get:

, 1 - 1 1

(3.73)
(1-1>'= °a'λ(l+λY

From this and (3.27), it follows that there is a constant Kx >0, independent of A,
such that, for all le(0,1), k^K^. Since

log 1/1
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the constant K of (3.28) can be taken equal to 4KX + 2, i.e. independent of λ. Thus
ξx has an upper bound ξmax which tends to a finite limit as λ->l, in particular:

ξmΆxϊ2K+2B\ogB.

Second, we note that the bound

(3.74)
τ = ί-λ

is ineffective as λ tends to 1. We therefore use the bound (3.68), as applied to Ho

rather than H, to get:

τ = 1 - Ho( - d ) ^ 1 - (1 + α'ζj ~1/2, (3.75)

where ζu defined in (3.62), verifies

It follows from (3.75) that

This bound is well behaved as λ-+l.

3.12. Existence of Fixed Points

As a result of the last two subsections, we have:

Lemma 5. There exists α continuous function λ^C(λ) on (0,1] such that, for each λ
in (0,1), the map Mλ sends into itself the compact convex set

\Ψo(z)\SC(λ) for all ze(-λ-\λ-2l

(2z\ogλ)ψ'0(z)^all-ιp0(z)y /or z6[0,1]}. (3.78)

Remarks. 1. E(λ) is compact and convex for the same reasons as E^λ) (which
contains it).

2. It has actually been proved that:

E(λ) C Mλ{Eγ{λ)), Eγ{λ) C Mλ(E0(λ)),

where

3. It is not difficult, but not very enlightening, to obtain, along the lines
suggested at various places in the preceding subsections, an explicit version of
C(λ).

Applying the Schauder-Tikhonov theorem, we obtain:

Theorem 6. There exists, for each λ e (0,1), at least one fixed point of Mλ in E(λ).
Every fixed point of Mλ in E0(λ) is in E(λ).
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3.13. Some Properties of the Fixed Points

We now assume that a fixed point has been chosen in E(λ) for each λ in (0,1), and
denote the corresponding functions ψλ9 Vλ, Wλ9 Hλ, etc., keeping the preceding
meaning for τ, α, r. These numbers depend, of course, on the choice of the fixed
point. Note that:

Hλ(2), (3.79)

Fλ(ατ-2)=Vλ(0).

We define yo = l/a, xo = a~llr, and:

Uλ(z) = yoΨλ(Z), Uλe-P((-λ-\λ-2)),
(3.80)

uλ(z) = Uλ(zyi\ uλe-P((-λ-\l)).

These functions satisfy:

uλ(z)=\uλ(uλ(-λz)) for all z6C((-ΓM)),
λ (3.81)

A straightforward generalization of the results of [9] is possible. We enumerate
some salient facts without going into details.

1) The Feigenbaum function restricted to [0, xo/λ] is the inverse function gλ of
the restriction of uλ to [ — A"1,1]. It satisfies all the conditions C1-C5.

2) The function uλ has continuous boundary values at the border of
C(( — A"1,1)) and its values there are always non-real except at —λ~ι and 1.
Its only singularities on the real axis are simple branch points at (-λ)~n,
n = 0,1,2,3,... . Its continuation across its regularity segments on R can be
studied by the method of [9]. (Note that when r is not an integer, the "domain of
analyticity" of gλ becomes a ramified Riemann surface.)

3) The functions ψλ, Vλ, Wλ9 Hλ are also continuous at the boundaries of the cut
planes where they have been defined, and they are bounded there. In fact uλ( — ίoo)
= c(λ)eC+ is a periodic point of period 2 for ujλ: uλ(c(λ)) = λc(λ)*.

3.14. Existence of the Eckmann-Wittwer Functions

Recall (see Subsect. 3.6) that the function Wλ is in P((l — α, 1)) and is bounded in
modulus on the real interval (1 - α, 1), by 1 + ί/τλ, with α > 1 + λ. On that interval,
we have therefore | Wλ(ζ)\ S C(λ). In particular there is a constant C such that for all
A^0.5, |^(C)I<C on ( l - α , l ) . As a result, the functions {Wλ9 2^0.5} form a
normal family, and we can find a sequence {λn}, tending to 1, such that the Wλn

converge to Wx e P(( — 1,1)). This function is finite and non-constant, since it must
satisfy

β \. (3.82)
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For 0.5 ^/I < 1, the function Hλ is holomorphic in the domain

w: 0<|Imw < ? „ or Imw = 0 and Rew<2>, (3.83)
-log/I J

which it maps into C + uC_u{|w| < C}. Hence {Hλ} is also a normal family and,
changing to a subsequence if necessary, we can arrange that the Hλn converge,
uniformly on every compact subset of C(( — oo, 2)), to a Herglotz function H1. The
subsequence can also be chosen such that the corresponding τ and a also have
limits τx and ocί. In the limit, we have:

H1(w) = W1(H1(w-2)), J?!(0) = l , (3.84)

and, on the real axis,

1 (3.85)

Since, for A<1, Eq. (3.72) holds, the functions Vλn also converge to a function
Vx e -P((0, α^i"2)). This function satisfies 7^1) = Γ, 7/(1) = - 1 , and, at least near
1, ^i(*Ί(0) = ^i(C) = 1 - Wi(l - O This relation extends analytically in C((0, αj) .

It is interesting to ask about the fate of the function ψλn when w-> oo. Since tpA(z)
= HA(logz/log I/A), and since Hλ(w) ^ (1 — vv/9) ~1 / 2 on (— oo, 0), we see that, if e.g. z
is fixed in (0,1), ψλn(z)-+l. This is not in contradiction with ψλ(ί) = 09 because 1 is
not interior to the limit (intersection in this case) of the domains C(( — λ ~1, λ ~ 2)) as
λ tends to 1, but on the boundary of this limit.

4. The Fixed r Method

It is tempting to apply the preceding method, with its quasi-tautological estimates,
to prove the existence of the Feigenbaum functions for given values of r, instead of
λ. This section describes the very limited extent to which this can be carried out, at
least in a straightforward way. In this section, r > 1 is fixed once and for all.

We start again from a function ψo = l—ψo belonging to — P(( — λ$ 1 , ^ 2 ) ) ,
with ψo(0) = 1 and ψo(ί) = 0, where λ0 e (0,1) depends on the choice oϊψ0. We then
attempt to define a function V by the same formula (3.7) as in the fixed->l method,
the constants τ > 0 and α > l being determined by requiring that:

There must exist λe(0,1) such that:

= -j, λ" = τ. (4.1)

This implies that z1 = tx~1/r must satisfy

and hence

— ̂ ±ψ'(z )ψo(z )1/r~1=—z Ψo(z)1/r\z=z = 1 . (4.3)
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There clearly exists a zγ e(0,1) which satisfies (4.3), and it has to be estimated as
well as possible. As in Sect. 3,

1 ^ ^ ) , (4.4)
l+λoz.~ 1-z " I—XQZ

and, for —A 0 " 1 <z<l,

— 0~ x ° r < 7-— < — Γ7̂  r . (4.5)
ίΛ 2 z^fl z) — w (z) — (\ -\-λ z)(\ z)

The similar bound t//o(z)/t//o(z)^ —2λo/(ί +λoz) implies that the left-hand side of
(4.3) has a strictly positive derivative in (0,1), so that (4.3) has a unique solution
there. Moreover (4.3), (4.4), and (4.5) imply:

1<

/ ' = '

The first and last expressions in (4.6) are increasing in zγ. For a fixed λ0, they take
the value 0 at z1=0, and +00 at zx = l. Hence the first and last inequalities
respectively express zx ^ zmax(/l0) and zγ ̂  zm i n(λ0). Moreover the first (respectively
last) expression in (4.6) is, for a fixed z l 5 decreasing (respectively increasing) in λ0.
Hence zmax(/l0) is an increasing function of λ0 and zmin(A0) is a decreasing function
of λ0.

From (4.5) it now follows that

{λo), (4.7)

where

[
i + V μ ) J ' ( 4 8 )

( 4 9 )

It is easy to verify that [because z^ax(/l0) ̂  0] λmin(λ0) is a decreasing function of λθ9

so that λo^b implies λ^λmin(λo)^λmin(b).
To obtain an upper bound on λ9 we can use some of the work expended on the

fixed-A method as follows. We note that zt is a zero of the same function q as in
(3.10), with the same expression for A, viz. A = A(λ) = l/( — λ logλ). Since logφ 0 has
an integral representation analogous to (3.12), we immediately get:

z^X+λlogλ^λ. (4.10)

The difference with the case of Sect. 3 is that the real domain of analyticity of ψ0 is
now ( — XQ1,!^2) and that σ is known to be equal to 1 on [1,/IQ

 2 ] , instead of



418 H. Epstein

Assume now that λ^λ0. Then we can repeat all the calculations of Subsect. 3.2,
giving lower bounds on zγ and 1/τ: denoting

B X~λ2z ~ ξ~X (4.11)
* 1-z ' " ξ-λ2'

we find again:

(1 - λ2)zq(z) £ (1 - λ2)zq2{z) = χ(ξ) -ξ, (4.12)

χ(£) = £ log <J +1 + λz — —. (4.13)

Recall that χ is a concave increasing function and that χ(ξ) — ξ vanishes at 1 and at
a unique ξ >1, which is a lower bound for ξ1 =(ί—λ2zί)/(ί —zj, itself a lower
bound for 1/τ. Since O<A<1, we can make the change of variable ξ = λ~x, with
x>0. Then if ξ = λ~*, it has been seen in Subsect. 3.2 that

x = x(λ)>——L- (414)

Moreover, 0<x<x(/l) is equivalent to ξ~1[χ(ξ) — ξ']>0, which, in terms of x,
reads:

x^~1(l-^2)-(l-^)(l-^+2) = ̂ (^^)>0. (4.15)

Since this is a decreasing function of ξ for ξ ̂  <f, it is (for fixed A) decreasing inx for
x^x(λ). It is easily checked that dZ(λ,x)/dλ>0 when /l2g(x-l)/(l +x). Hence
x(λ) is an increasing function of λ. The last inequality in (4.14), and an upper bound
on x(λ) which is easy to get (by the same argument as in the remark at the end of
Subsect. 3.4) show that x(λ)^\ as /l->0. We denote x^b(x) the function equal to 0
for 0 ̂  x ̂  1, and to the inverse function of x for x > 1. The inequality (4.15) is then
equivalent to: λ>b(x). Since 1/τ̂ cf, we must have r^x(λ\ and hence

(4.16)

This means that we must have

^ (4.17)

This proves:
If be [b(r), 1), then λo^b implies that λ^b and also, as already seen, λ ̂  λmin(b).
Choosing λ0 in [λmin(b(r)), b{r)~], we can take z1 as the solution of (4.3) in (0,1)

and define τ = ψo(z1), λ = τ1/r, oc = z^r<τ~1, and V by (3.7). The function V then
belongs to — P((0, OCIQ

 2r)), vanishes at α and is convex on (0, α) for the same reasons
as in Sect. 3. In particular, again, α ^ l + λ The function W=V° V is certainly
defined near 1, and also at α, since W(oc) = F(0) = l/τ.

However, in order for W to be defined at 0, it is necessary that V(l/τ) be defined,
i.e. that 0<(ατ)~1 / r^/l0"

2, or, equivalently,

zxλl^λ. (4.18)
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If so, then W(0) < 0, since 1/τ > α. A sufficient condition for (4.18) to hold is that, for
some bέib(r),

1 -zmaxφ)-(l+bzmax(b))lb2zmax(b)J>0. (4.19)

Let us assume that (4.19) holds. Then WeP((0,α)). The estimates in Sect. 3,
leading to

W(ζ) = ί-W(ί-0> £(1 + aζ2), (4.20)

with α ^ 1/6, for ζe(0,1), extend to the present case. Defining, as before,

βow), βo= - l

we again find that Ho is concave on (— oo, 1). The same calculations as in Subsect.
3.7 give

and hence

* FΊΓ^PΓT ( 4 2 1 )
ΛminVΛmin

The hypothesis that (4.19) holds implies that this bound is finite for the considered
value of r. The final steps of the method are the same as in the fixed-/l method. To
conclude:

Lemma 7. For a fixed value of r > 1, a sufficient condition for the existence of a
fixed point is that there exist a pair (b, z) of numbers in (0,1) satisfying the three
following conditions:

rbr-1(l-b2)-(l-br)(l-br+2)>0, (4.22)

z( l- fc 2 )-r( l-z) 1 - 1 / r ( l+bz) 1 / r ( l-b 2 z)>0, (4.23)

l-z-( l+i>z)(b 2 zy>0. (4.24)

Recall that (4.22) implies b>b(r), and that b(r)2 <(r-ί)/(l+r).
For a given r, it is easy to verify numerically whether or not the conditions in

the lemma can be satisfied, and it appears that the method works for all r ̂  14.4,
although we have no proof of the (numerically patent) fact that, if the conditions
can be satisfied for a certain r0, the same is true for all re(l,r 0). The method,
however, is particularly easy to apply for small integer values of r. For example, in
the case r = 2, it suffices to find b and z in (0,1) such that:

fo4 + 2 b - l > 0 , (4.25)

z2(l -b2)2-4(1 -z)(l + bz)(ί -b2z)2>0, (4.26)

l-z-(l+bz)z2b4>0. (4.27)

These conditions are satisfied by b = 1/2 and z = 0.9. This is obvious for (4.25), and,
for (4.27), follows from:
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To verify (4.26), note that

z2(l-fc2)2>0.8x & = 0.45,

and

4(1 -z)(l +bz)(ί -b2z)2<0A x | ( l -0.225)2<0.4 xf x (0.8)2 = 0.4 x0.96<0.4.

The cases r = 3 (b = 0.65, z = 0.9) and r = 4 (6 = 0.7, z = 0.9) are still manageable.
Higher values of r require the use of machines. Owners of a pocket calculator can
verify, if so inclined, that Table 1 gives, for integer r up to 14, pairs (fe, z) satisfying
(4.22H4.24).

Table 1

r

2

3

4

5

6

7

8

9

10

11

12

13

14

b

0.5

0.65

0.7

0.75

0.78

0.81

0.83

0.85

0.86

0.87

0.88

0.888

0.8946

z

0.9

0.9

0.9

0.92

0.93

0.93

0.94

0.94

0.945

0.95

0.95

0.954

0.956

Appendix 1. Proof of Lemma 1

Denote, for x = 0,

To prove that /(x)>0 for 0 < x < 1, since /(0)=/(l) = 0, it suffices to prove that
/ " < 0 on (0,1). Explicit calculations show that /"(*)-•-oo as x->0, /"(I)
= 2(1-log3)<0, and f"\x) = P(x)/Q(x), where

3 , P(x) = 2(l-x) 2(l+2x)(2 + x).

The verification of this is facilitated by noting that f(x) = —x2f(l/x% hence f'"(x)
= x~ψ'(l/xl and, since ρ(l/x) = x~8ρ(x), P(x) = x4P(\/x).

Appendix 2. Direct Proof of Existence for λ = 1

It is possible to define a fixed point problem directly for λ = 1 (i.e. r = oo) by working
with the function Ho instead of ψ0. Let

^(w) = ΊV#(w)3 for w ^
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The last condition implies:

0<H(w)^(l-w/9)- 1 / 2 for w^O. (A.2)

Let Ho eS and H0 = 1 -Ho. Then, in C((- oo, 2)),

rfo(w) = f ^ , ^ = - J * o ( 0 (A.3)

where ρ0 is a positive measure with support in [2, oo), such that J dρo(t)/t = 1.
The function F will be defined by

The constants τ>0, α > l must be such that F(l) = l = - F ( l ) . This implies
Q(Ci) = O, where

^ Z § - 0 , (A.5)

The functions logff0 and Q have integral representations:

b l (A.7)

(for CeC — R_), where σeL°°(R) has support in R+, equals 1 on [0,2], and takes
values in [0,1] everywhere. It follows from (A.7) that Q(ζ) > 0 when ζ ̂  1. It is clear
from (A.5) that Q{ζ)^> — oo when ζ-*0. Thus ζ± exists in (0,1). For more precise
bounds, just as in Sect. 3, we split Q as Q = Qγ + Q2, where Q2, the contribution of
[0,2] in the integral in (A.7), is given by:

1 ( 8 )

+ 2 - - .

The function χ(ξ) — ξ, just as in Sect. 3, is concave and vanishes at 1 and at a unique
ξ> 1, and ξ± = 1 +2/ζ1 >ξ. Since χ(5)-5>0.01, it follows that ξ>5, and ζι < 1/2.
Defining τ = H0( — ζί)9 and using (A.3), we get:

l^ξ!>5. (A.9)

The uniqueness of ζx follows as in Sect. 3, from:



k= 1 ̂  = -log[-2fΓ0(0)], (A.11)
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To obtain a lower bound on τ, we denote

and observe that

Any £ m a x > l such that S(ξmax)<0 is an upper bound for ξί9 for example
£ m a x = 41og4 + 4/c. Using (A.I) this gives £ m a x <15. From (A.2) it then follows:

We now define:

logα = ζ 1 log-, (A. 14)

so that 1 < α < l / τ .
The function F defined by (A.4) is in -P((0, ατ" 2)). Its iterate W= F° V is in

P((0,α)), and Wφ) = V(l/τ)<0, W(p£) = V(O) = l/τ. We also define W(ζ)
= 1 - W(l-ζ). For w<2, it follows from (A.3) that:

HΪM^ flg(w) 6

<
#ί>(w) = 2-w' ίP0(w) = (2-w)2

The first of these bounds implies that, for 0 < £ < α τ ~ 2 ,
V"(ζ) 1Γ 2

1

Ί

α) J 'C L1 21og(l/τ)-log(C/

Hence V is convex on (0, ot/τ2e2\ in particular on (0, α), hence α > 2. Also:

( A * 1 6 )

ix >8" ( A ' 1 7 )

Moreover:

^4 l> 0<C<oπΓ2,
2ς

\ +[log(l/τ)]|^4r ^ ̂  + |

^ ( 1 ) = 0, W"'{\) = SW(ί) = 2SV(ί), (A.20)

so that:

1 W'"(\)
i ZLJ^Z^o.4. (A.21)

6 6

Moreover:

W{4\0)= -W^\\) = 2V"{\)SV(\)>1. (A.22)
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Since W is a Herglotz function, W(5)(ζ)^0 on ( l-α, l) , hence Wi4\ζ)>3β on
[0,1). Thus

+ ^. (A.23)

To obtain an upper bound on W{\) = 1 - W(0\ we note that W(0) = H0(l -ζ%)/τ9

and integrate the first inequality in (A. 15) starting at — £x. This gives

J^(l)^21og-<10. (A.24)

Definition of H and H. The next step is to construct a function H = 1 — H e S, such
that, in C((-oo,2)),

H(w) = W(H(w - 2)), H(0) = 1. (A.25)

To obtain, first, the existence of this function as an element of P((—oo,2)), we
denote, e.g. for se[0.5,1), Ws = s~2W, and construct a function Ψs satisfying:

Ψs(z) = Ws{Ψs{s2z)), Ψs(0) = 0, ψ;(0) - 1 . (A.26)

As in Sect. 3, this function is defined as the limit of the convergent sequence
Ws

n(s2nz) in a small disk around 0, then extended by using (A.26). In C +, this yields
a Herglotz function. On the positive real axis Ψs extends to an increasing function
on a certain interval [0, L).

Recall that, on [0,1), Ws satisfies Ws(z)^z + az3 with 1/6^α<l. This implies
(see Subsect. 3.10) that, on [0,1], W'1 is defined and W~\x)<,x-άx3, with
α^l/9. Since Ψ;1(x) = s~2nΨ;1(Ws-

n(x)\ it is clear that tFs-
1(l) = y>0 exists.

We denote

Hs(w) = Ψs(γ exp(- wlogs)). (A.27)

This function is holomorphic in a domain which contains

Δs= jweC((-oo,2)): |Imw|<π/log-|, (A.28)

and maps Asr\C± into C+. On (—oo,2), i?s takes values in (0,10s~2). Hence
{Hs: 0.5<s<l}isa normal family, and the limit of a convergent subsequence (as
s->l) yields the required H. It belongs to P((-oo,2)), takes values in (0,10) on
( — oo,2), satisfies (A.25), and on (—oo,0],

H(w - 2) = W~ \H(w)) S H{w) - ^H(w)3,

so that HeS. We define H=ί~H.

Uniqueness and Continuous Dependence of H on Ho. It is clear that W depends
continuously on Ho in the topology of their respective F(J). It will now be shown
that H is unique and depends continuously on W. Note that

H(-2n) = W-n(l), neN. (A.29)
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Because H is in S, it is the unique solution of a very simple and well-known
interpolation (or moment) problem. In C((—oo,2)),

where the positive measure ρ has support in [2, oo). Let

oo

Φ{p)=\e~ptt-ίdρ{t).

This function is holomorphic for Rep>0, continuous and bounded by
exp(-2Rep) for Rep^O. For Reζ> - 2 ,

(A.32)
ζ

where μ(x) is equal to ^Φ(-^logx) for xe[0,1] and to 0 elsewhere. Note
that 0^μ(x)^x/2 for all x^O. For any integer w^l,

The Fourier transform μ of μ,

fi(w) = J eιwxμ(x)dx (A.34)

extends to an entire function with modulus bounded by 1/2 on R, and satisfying,
for all w e C,

(A.35)

and

It follows that

N (fwγ -1

(A.36)

l* ( A - 3 7 )

Let / be a C2 function on R, with support in [0,1], such that \f{x)xkdx = δQk,
fc = 0,l. Denote

so that /(0) = l, /'(0) = 0, and

so that

, (A.38)

-v"(x) = μ(x)-bj(x (A.39)
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Then v is also entire, v has support in [0,1], and there exists a constant C,
depending only on the choice of/, such that:

weC; | ? ( W ) |<-^—- WGR. (A.40)
W -j- 1

Given ε > 0, one can find R > 0 such that

1 C ε

2π |W |>Λ w +1 2

then N such that

πΛΠ 2'

This ensures that

, 1 ? _ , ^ Γ £ ίiwr- 1, , *. . . , ^ ,Ίdw
w2

Note that î  and JV are independent of W. Finally the formula

holds when ReC > 6, and shows that, in this half-plane, H depends continuously on
Ho. Since H remains in the normal family S, Vitali's theorem shows that H
continuously depends on Ho as an element of S.

Existence of Fixed Points. The map T defined by TH0 = H is continuous on the
compact convex set S, which it maps into itself. Hence it has at least one fixed point
in S.
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