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Abstract. We analyse the infinite dimensional algebra of observable non-local
integrals of motion of the Nambu-Goto string theory.

I. Introduction

Some time ago one of the present authors suggested a reparametrization invariant
approach towards the quantization of the free relativistic closed bosonic string
[1, 2]. This approach was modelled after the quantization of the free relativistic
particle in terms of irreducible representations of the Poincare algebra. In the
Nambu-Goto theory [3] of the string moving in d-dimensional space-time Md, the
analogue g of the Poincare algebra has been shown [1] to be of the following type

where so(l,d — 1) stands for the Lie algebra of the homogeneous Lorentz
transformations, Md for the Lie algebra of translations, fy«J and ί)̂  for the infinite-
dimensional algebra of infinitesimal generators of certain "internal" symmetry
transformations of the string. Explicitly, a basis of so(l,d — 1) is furnished by the
infinitesimal generators Mμv of Lorentz transformations in the μ, v plane, μ φ v,
μ, v = 0, 1, ...,d — 1, Mμv=—Mvμ, a basis of Md by the components ^μ,μ
= 0, 1, ...,d — 1 of the energy-momentum operator, i.e. the infinitesimal gen-
erators of translations in the μ direction, and finally a basis of ί)J and ί)^ is
furnished by certain reparametrization invariant conserved "internal", "non-
local" charges ^red+ and ̂ red" respectively. The charges ^red+ and ̂ red"
commute with the momenta &μ and transform covariantly according to finite
dimensional (irreducible) representations of the Lorentz group. The elements of fyj
commute with all the elements of 1)̂ .

The central idea of the new approach consists of viewing the loop equations of
the Nambu-Goto theory as an infinite collection of representation conditions for
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the infinite dimensional algebras rj^ and ί)^. In order to convert this qualitative
idea into a well-defined strategy, it is necessary to clarify the structure of the
algebras fj|. It would be sufficient to perform the corresponding analysis in the
momentum rest frame provided that ^2 — ̂ μg

μv^v = m2 > 0, gμv = gμv

= diag(+l, —1,..., —1). Undeniably, the specialization to the momentum rest
frame would facilitate the analysis. However, in contradistinction to the intrinsic
role which this particular choice of reference frame plays for the construction of the
positive energy representations of groups containing the Lorentz group, the
specialization to the momentum rest frame does not result in an essential
simplification of the investigations at hand. Thus only at a late stage the
momentum rest frame will be employed.

The present article reports recent progress in a detailed and systematic analysis
of the classical algebraic structure of f)«J and ί)^. Our principal motivation for this
effort derives from the role which we attribute to the algebras ί)J and ί)̂  for the
classification of the string states. In this context let us recall that the degeneracy of
states is expected to increase exponentially with energy. In addition, we have
studied the one loop renormalization of the elements of rj^ and ί)^. There are
strong indications that this renormalization involves not more than a single
(already familiar) free parameter [10].

As regards Sects. II and III, a still more extensive discussion can be found in
[4]. We aimed at setting the present analysis into a larger mathematical context in
order to make the methods and results developed in this article applicable to a
variety of algebraic and combinatorial aspects of path ordered exponentials.

II. Definition and Properties of the Algebras I)|
in the Classical Theory

We consider the linear spans of the classically conserved, reparametrization
invariant "non-local" charges, in short: invariants 3£^ μ^ (N = 1,2,...,
μ—0,1, ...,d —1) and 2£μv...μN separately and denote them by ϊ)£ and f j^:

with

N

8%μ,...μN(τ>σ} = ί J dσl...dσN Π uμi(τ9σ^).
σ + 2 π > σ ι > σ 2 > . . . > < T Λ r > σ i=l

Here we have set

u± (τ, σ) = pμ(τ, σ) ± M2dσxμ(τ, σ).

The mapping 5'1^Md:σ->xμ(τ, σ) describes the position of the string, the
mapping Sl-^V+ cMd:σ-*/?μ(τ, σ) the energy-momentum distribution over the
string.

In the following we employ units such that the mass parameter M is equal to
one.
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The canonical Poisson brackets read
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{u* (τ, σ\ u± (τ, σ')} = + 2gμvdσδ2π(σ - σ') ,

It will become clear in the sequel that f)J and ί)^ each form a commutative and
associative algebra under tensorial multiplication and a Lie algebra under Poisson
bracket operation.

The above invariants are in general not mutually independent. Apart from the
linear cyclic symmetry

there exist non-linear relations of increasing complexity, e.g.

T

F± — φ± . φ± _ ύΰ .
" μv °^μ °^V ^ μ

or

Here the tableaux stand for the unnormalized Young operators Q P in the group
algebra ON of the symmetric group SN with [5, 6]

Q= Σ sign(σ)σ,
σe{permυtatίons within the columns} πe{permutations within the rows}

For the identification of the algebras ̂  and 1)̂  as enveloping algebras it would be
desirable to isolate a minimal linear subspace of ί)̂  and ̂  respectively, each one
closed under Poisson bracket operation, which by taking tensor products and real
linear combinations generates all of ΐ)£ and all of ί)^ respectively. With this aim in
mind one might try to solve all the relations among the invariants ^~...μjv

explicitly and systematically in terms of a natural complete set of mutually
independent "reduced" invariants .2?^*^ suc'1 ^a^ a^ invariants ^^lt.,μN are
tensorial polynomials in the reduced invariants. This turns out to be a very
difficult, as yet unsolved problem. Even the very existence of an unambiguous
algorithm for the identification of the reduced invariants has not been derived from
general theorems. However, important partial aspects of the solution of the
problem in question will be presented in the next two subsections.

A less ambitious goal, the construction of an explicit though somewhat
arbitrary basis for the set of all invariants, will be achieved in Sect. IV.

In the following the dimension d of the Minkowski space-time in which the
string moves will not be specified unless stated otherwise in order to exhibit the
relevant structures most transparently. It is true that in low dimensions tensors of
pronounced antisymmetric symmetry types vanish identically. However, this fact
is not all that helpful.
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Many of the propositions of the subsequent analysis can be traced back to
identities in the group algebra ON of the symmetric group acting on the indices of
the tensors $ and 2£. We shall use the following conventions and notations:
Occasionally for a Lorentz tensor 2Γ of rank N we shall write « î ...# instead of
^~μι μN If X = Σ ^π 'π? ^π e ̂  ̂  an element of O ,̂ we shall write ̂ x instead of

πeSW

Σ ϊ όΓ
Λπ^ μπ(l).. μπ(2V)

πeSN

We shall represent permutations π of the numbers 1, ...,N by their scheme

rather than by their cycles.
Some elements of the group algebra which occur frequently are

- the cyclic permutation 3^ = 2 3 . . . A T I
- the cyclic symmetrizer ZN = idN + 3N + + SN ~ * \
- the in version IN = N (N- 1)...21.

Finally we shall focus our attention on f)^ and suppress the superscript 4- . The
algebras ί) £ and f)^ with the tensor product as the composition law are isomorphic
while as Lie algebras with the Poisson bracket operation as the composition law
they differ by a global factor — 1 for corresponding structure constants.

1. The Tensors &μι . . mμιr(τ, σ)

The building units for the invariants 3£, the tensors &μι . .μίv(τ, σ), arise essentially
as entries of the monodromy matrix for a parameter dependent system of linear
differential equations associated with the classical equations of motion [1,2].
Apart from its dependence on the parameters, the monodromy matrix is not only a
functional of uμ(τ, - ), in particular a function of τ, it also depends on the choice of a
reference point σ on the string xμ(τ, ). The monodromy matrix and hence the
tensors &μι...μN(τ9σ) are reparametrization variant. It is the eigenvalues of the
monodromy matrix, in other words [2] the cyclic sums

which are reparametrization invariant, conserved quantities. Notwithstanding the
variance of the tensors &μι...μN, it is recommendable to study the properties of
these tensors. By solving all the relations which may exist among the components
&μι ...μN> one Sets a handle on an important class of relations among the invariant
tensors JΓ.

In this subsection a minimal basis of "truncated" tensors & will be identified
with the property that every tensor component $μί...μN systematically and
unambiguously can be represented as a polynomial in the components ̂ μι μr of
the truncated tensors.

The next two propositions give complete information about all possible linear
and non-linear relations among arbitrary components of the tensor-valued
functionals $μί μN(τ, σ) for a fixed value of τ, N = 1 , 2, ____
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Proposition 1. All the components fflμι,..μN(τ, σ) for fixed values of τ and σ,
N =1,2, ... are linearly independent functional of the string-variables uμ(τ, σ').

Corollary. The equation X&μι... μN(τ,σ) = Q,X εON, for all μ—0,1,..., d-1,
i = l,2, ..., JV /or some deN, d^JV, implies X = Q.

Proof. As a preliminary we shall treat the string variables uμ(τ, σ) as if they were not
subject to the constraints u2 = 0. Every tensor component &μί...μN can be uniquely
characterized by its "class" {i l5 ..., ir} (order!) and within the class by the lengths
aj — aj-ί9j = l9 ...,r, of the sequence 0 = a0<aί< ... <ar = N, i.e. by the numbers
(a0)9al9...9ar-ί9(ar). The new labels are obtained from the tensor indices
according to the following scheme:

The linear independence of all components will be established by induction with
respect to r. First we prove that the tensor components of a class with r = 1 are
linearly independent of each other and of the rest of the tensor components. To this
end we choose uμ(τ9 σx) = λδμilf(σ/)9 where λ is a real parameter and /(σ') is a fixed,
sufficiently smooth periodic function. With this choice we have demonstrated that
the only non- vanishing components 3&^ f l are linearly independent of the rest of
the tensor components. Varying the index iί9 the components belonging to
different classes {iλ} are seen to be linearly independent of each other. Varying the
parameter λ9 the components of class {z\} corresponding to different sequences
Q = a0<a1=N (i.e. of different ranks) are seen to be linearly independent of each
.other. Putting the various findings together, we have verified the induction
hypothesis for r = 1 .

Next, let us assume that the induction hypothesis holds true for all classes of
tensor components {i{9 . . .,ζ/} with r'<r. In order to show that this implies its
validity also for the class {z'1? ..., ir} of tensor components, we subdivide the circle

( γ _ -j γ _ 7-4-1 ~1

σ-\ --- 2π, σ-\ -- -2π ,7 = !, ...,r.

We choose the string variables uμ(τ9 σ) to have the following supports:

suppwμ(τ,σOC/ 7 if μ = ij
σ'

uμ(τ9 σ') = 0 otherwise .

With this choice the only non-vanishing tensor components either belong to the
class { ί ί 9 ...,ir} or to classes {Γ1? ...,£,} with rr <r. By induction hypothesis the
tensor components of the latter classes are in particular linearly independent of the
tensor components of the former class. Thus we have demonstrated that the tensor
components of the class {iί9 . . ., Q are linearly independent of the rest of the tensor
components. If the string variables uμ(τ9 σ') subject to the above mentioned choice
are scaled by independent factors,

uμ(τ9 σ")-^λjUμ(τ, σx) for μ = ij ,

N

the tensor components J>μι μjv of the class { ί l 9 . . ., ir} pick up a factor Π λfj~aj~l}.
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Taking into account the qualitatively different types of variation of these factors
for different sequences Q = a0<a1<... <ar = N, the components of the class
{iί9 ..., Q are seen to be linearly independent of each other. Putting the various
findings together we conclude that the induction hypothesis holds true for the
value of r in question, too, and consequently for every value of r.

The proof becomes more complicated when we pay attention to the constraint
w2(τ, σ) = 0. From the foregoing argument we know that all of the tensor
components not carrying any 0-index are linearly independent functional on the
space of string variables uf(τ,σ\ /φO with disjoint supports. For simplicity we
shall restrict the discussion to those functions κ/τ, σx) which do not change their
sign. This will be sufficient for our purposes. Now we solve the constraints ι/2(τ, σ")
= 0by

d-ί

,σOI= Σ sign(n,) w,(τ, σO .
d-l

<?=!

This leads to expressions for tensor components with 0-indices in terms of linear
combinations of tensor components without any 0-index:

d-ί

,σ)= Σ

Global linear relations on the space of all possible string variables must be
compatible with these relations which hold for special classes of the string
variables only. However, the possibility to vary the signs of the functions u^(τ9 σ')
independently rules out the existence of any such global linear relation among the
tensor components including those with 0-indices. (Actually, the last argument
does not apply for d = 2, where e.g. &0() = sign(ui)

2&il=&lί for all functions
w^τ, σ') which do not change their sign on S1. In this case also functions of varying
sign must be considered.)

Proposition 2. The linear span of all tensors $μίtfmμN9N = ί929...is closed under the
tensor product operation. More precisely, the following equation holds true

,(τ,σ)

Here the symbol denotes the sum over all permutations π such that

the numbers 1,...,M and the numbers
π(l), ...,π(ΛO in their orginal order.

For instance

1,. . . ,AΓ appear in the symbol

= 1234 + 1324 + 1342 + 3124 + 3142 + 3412.

Proof. The above equation follows directly from the definition of the tensors
^μιμ2 . The domain of integration of the product &μί...μM' &μM + 1...μN^ given by
the inequalities σ + 2π>σ1> ... >σM>σ and σ + 2π>σM+i> ... >σN>σ with
no restrictions involving simultaneously variables of integration of both factors.
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Obviously, the multiplication rule of Proposition 2 as well as the block-
notation introduced in that context can be generalized to more than two factors.
The blocks should not be confused with the Young-tableaux.

Proposition 1 (in particular its corollary) and proposition 2 imply that for fixed
τ and σ the tensors @tμι . >μw(τ, σ) can be represented unambiguously by elements of
the group algebra and, moreover, that the multiplicative structure of the tensor
product is characterized by certain permutations of the tensor indices. This
observation is the basis of the methodical approach of this section which consists
of transferring the analysis of the tensors to an analysis of the group algebra ON.

First we shall show that no information about the string variables uμ(τ, σ') is
lost if we eliminate the tensors M in favour of the so-called truncated tensors Stf
(generated by the logarithm of the monodromy matrix). For fixed τ and σ an
algebraically independent basis for the tensors in terms of the tensors ffi can be
given.

We define tensors ^P...μN generated by (K!)"1 times the Xth power of the
logarithm of the monodromy matrix,

Here the symbol Pjf} denotes the following element of the group algebra Ow:

P= Σ
with

, C£> = 0 for

and cKv being a coefficient of the Taylor series

or, equivalently,

for

•= Σ cκvyκ f°r Rey> — i ,

For the special case K = 1 we obtain the truncated tensor

N 1
-

v= 1

For instance,
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The following proposition is an easy consequence of the various definitions. It
states that every tensor $μι μN can be expressed as a polynomial in the truncated
tensors Sf. The homogeneous part of degree K of this polynomial is nothing but
the tensor

Proposition 3.

κ=ι

W = __ £ Stl ffia + ί &
N K\ 0 < α ι < . . . < « κ _ ι < N '" 1 1 '" K-1

Conversely every homogeneous polynomial in the tensors 9tl of degree K is
obtained by a linear combination of π^ .̂.̂ , πeS^.

Furthermore, there exist no linear relations among the polynomials of different
degrees. Both statements are implied by the following two propositions which
form the center of this subsection.

Proposition 4. The collection P f f i e O N , K = 19..., JV, provides a resolution of the
group identity

N
jd _ y p(K)

κ=ι

in terms of orthogonal projectors

p(L) p(K) _ 5 p(K)
rN *N —°LKΓN

Proposition 5.

or, equivalently, formulated as an identity in the group algebra

3 -
ON

Notice, that in the group algebra the projectors operate from the right: if
is an arbitrary tensor, then its homogeneous parts are given by

Proof of the Propositions 4 and 5. We define elements Dψ of the group algebra by
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μN = D^3tμitmmμN is generated by the pίh power of the monodromy matrix.
Obviously, the elements D^3 are related to the elements Cjy° by

v

The elements D^] are different from zero for arbitrarily large integer values of p.
However, for p > N they become linearly dependent of each other, the precise
linear dependence being given by the second equation. The projectors Pjf } can be
expressed in terms of D[$\ The rule of composition of two such elements D^1 and
Dψ reads

...NThe rule for the tensorial multiplication of Sff] ..

We conclude:

_
. . . Λ Γ —

1...M

(M+l)... j

1...M

(M + l) . . .TV

Hence we obtain the following identity in the group algebra

This identity together with the expression of D^] in terms of C^} and vice versa
leads to

00 00 00

v = 0 μ = 0 ρ = 0

with

,β= Σ Σ Σ Σ -« μ pq

y —1λκ~



602 K. Pohlmeyer and K.-H. Rehrer

For the sake of transparency we have formally extended the sums to run from zero
to infinity. From the definitions of XLK ?ρ and Ύλκ we find for — 1 < x < 0, Re 3; > — 1 .
Rez>-l:

00 00 00

Σ Σ Σ xLK,ex
eyLzK

ρ=0 L = 0 K=0

Γ(z

'
oo oo I V\ I LL\

x Σ Σ (-i)p+Ί Γ CO+*)")"
P = 0 9 = 0 VP/ V1?/

00 00 00

(Λ \ v\yz V1 ^ V (λ r "Wβ-tί^T^
— ^1 -f X>) — / , / , / f \yLK^Kρ)^ j ^

and

GO GO 00 OO / -y

Σ V V Mλτκ — V V r ( 1 V ~ . P f
λ=o ΣQ *λKy z - Σ^ ΣQ cκv(-i) I

I oo oo

This can be true only if

LK ρ ~~ LK^Ko anQ -* Afc"~~ / , ^K\λ^K-yK '

Finally, realizing that

Y p(K)= v /v r \ c^= V C^ = \d
K N v (K Kv) N TΓ(l+v)Γ(2-v) N N'

the proof of Propositions 4 and 5 is accomplished.
Proposition 4 rules out any truly inhomogeneous polynomial relations among

the truncated tensors ̂ , since with the help of the projectors P^ every possible
inhomogeneous relation could be reduced to a set of homogeneous relations. Now
we shall demonstrate that the decomposition of Proposition 3 is unique, i.e. that
apart from the linear symmetries P(N)&t

μι...μN = Q f°r L>1 there are no further
linear or nonlinear homogeneous identities among the truncated tensors ffi.

Lemma. Exactly (ΛΓ — 1)! elements of the set of tensors {^μπ(1)...μπ(2V)? πeSN} are
linearly independent. In d dimensions d ̂  N, the number of independent components

of the tensor 0f μN coincides with the dimension of ^(N} with t = (J) ^(JV) the free
N=l

Lie algebra generated by d basis elements of /(1): n(d, N)= — X μ(D)dN/D, where
N D\N

the sum extends over all divisors D of N and where μ(D) denotes the Mδbίus function.

Proof. The number of linearly independent tensors ̂ π(1) ..μπ(N} coincides with the
dimension of the left-sided ideal in O^ generated by the idempotent P$\ In turn,
this coincides with the value of trPj^ in the regular representation, i.e. with AT!
times the component of P^1} in the direction of the group identity. Now,
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N _ _ /JV-1
PSv1} = X ( — l)v 1v 1C(

]H\ and the sum C^} consists of I " ) terms each of
v= 1 \ V — 1

which has component one in the direction of the group identity. Hence the number
of linearly independent tensors ^n(i)...μπ(N} is given by

N\ N-ί
v-1

The proof of the second part of the lemma is omitted. It uses projectors Q(^}

equivalent to P^ [4] and properties of Qffl which otherwise are not essential for
the present article (see, however, further below).

Proposition 1 implies that there exist exactly Nl linearly independent tensors
^μπM. .μπW d^N. Proposition 3 makes sure that each one of these tensors is a
polynomial in the tensors ffi of rank ^ JV. Hence there are at least AT! linearly
independent monomials of rank JV in the tensors βtf of rank ^ N. On the other
hand, this is the maximal number of linearly independent monomials of rank N in
the tensors 0tl of rank ^ N allowed by the above lemma. In order to understand
this, we keep the ranks of the factors preliminarily fixed up to the order in which the
factors appear. The ranks correspond to a partition (λ) = (λί9λ2,...,λr),
λί^λ2^...^λr,oίN. We can distribute the indices μ1...μN freely over the various
factors such that the fh factors carries λj indices. For a given distribution of the
indices the/h factor contributes (λj — ί)\ linearly independent tensors 3ff. We
realize that this figure coincides with the number of different cycles of length λj9

(ί ί9..., iλj), i f cφιV> ike{ί,...9λj}. Hence the number of linearly independent
monomials corresponding to a fixed partition (λ) is given by the order of the
conjugacy class C(λ} in SN. Varying the partitions (λ), these orders sum up to Nl.
Hence the maximal number of linearly independent monomials of rank N is Nl.

The above argument implies

Proposition 6. The tensors dtl do not satisfy linear or non-linear relations other than

P£X...μw = 0 for L=2, . . . ,ΛΓ.

The existing relations among the tensors $* can be solved explicitly.

Proposition 7.

J V . . . 1

Proof. Proposition 5 implies

We apply to this equation the inversion IM and obtain

-0.



604

Starting from

K. Pohlmeyer and K.-H. Rehren

we arrive at the desired equations if we make repeatedly use of the group algebra
identities

In these identities the sum of permutations on the left-hand side has been divided
up into a sum of permutations π with π(l) = M and into a sum of permutations π
with π(l) = M + l.

According to Proposition 7 the symmetries of 3tl can be exploited such that an
arbitrary index μj stands by choice at the extreme left or at the extreme right. Then
the tensors obtained by permutations of the remaining (N — ί) indices are linearly
independent as can be seen by counting.

From Proposition 7 we read off the "parity" of the homogeneous tensors &(K}

under the transformation wμ(τ, σ)->wμ(τ, — σ) which effects an inversion of the
order of the indices:

The coordinate dependence of the homogeneous tensors &(K} with K-^N is
specified by

We conclude this subsection by pointing out that the decomposition of ̂  into a
sum of homogeneous parts defined by the action of some projectors with the
properties of Propositions 4 and 5 is not unique.

For instance

with

ι N
"1

defines an equivalent truncation as seen from the algebra

The coefficients of the polynomial expressing ^ltt,N in terms of
different from the ones given in Proposition 3, of course.

would be
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However, the projectors Pjf} have the extremely important property distin-
guishing them from all other candidates that they decompose the invariant tensors
2£ into homogeneous constituents which are separately invariant. This will be
considered in the following subsection.

2. The Invariant Tensors 3fμι...μN

There are three equivalent ways to define the invariant tensors 3?μίm.,μN'.

and

The initial and final points of the loop integrations on the right-hand side of the
two last equations need not be specified since both constituents of the integrands, u
and ,̂ are periodic functions of σ. The equivalence of the definitions can be
perceived by comparing the domains of integration on the torus (S1) .̂

According to Proposition 1, any invariant tensor of rank N

is characterized by the element X°ZΉ of the left-sided ideal ONZN generated by the
1

idempotent — Γ ZN. This element can be represented unambiguously by an element

^_! such that
X ° ZN — X

For instance

Of course, the tensorial product of two invariants is again an invariant.

Proposition 8. The linear span ί)̂  of all invariant tensors ^μπ(1)...μ7t(2V),
N =1,2,... is closed under the tensorial multiplication.

More precisely

= ZM o
1...M

Proof.

1...M

1...M
• 1 . . . Λ Γ -
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Now, we introduce the concept of reduced invariants: we propose to define the
reduced invariants ^red of rank N to be those invariants forming complete
Lorentz multiplets which cannot be represented as polynomials in invariants of
rank < N. Reduced invariants J^red 1, . . ., &τedr are said to be linearly independent
if the statement

αι^red i + _ + αr<2r«dr = SUm of products of invariants

— α1? ...,αr = scalar -implies: 0^ = ... =αr = 0.

The linear span ί)^d of a complete set of linearly independent reduced invariants on
the one hand and the linear span ί)|ίod of products of invariants on the other hand
defines a decomposition of ί)^ into two disjoint subspaces. In fact, algebraically any
linear basis of the subspace ̂ d provides a generating basis for all of ί) .̂ It must be
pointed out, however, that the subspace I)^d has not been unambiguously defined,
yet.

An important step towards the solution of this uniqueness problem is achieved
by the following Proposition 9. It makes sure that the homogeneous portions of
the invariants 2£ considered as polynomials in 3$ are separately invariant.

Proposition 9.
7 0 p(X)_ p(K-l) 0 7- _7 np(K-ί)
^N°rN ~rN-l oZjN — ^N°-^N-l '

Corollary.
N

\\ σ*> _ y qρ(K)
l) ^ μ1...μN — sL o£'μί...μN9

v^here the homogeneous terms

are separately invariant: homogeneous invariants.
ii) Apart from the case N = l: 2£^ = &μ = gpμ = giμ = 0>μ, there are no homog-

eneous invariants of degree one:

Proof. We start from the observation that the cyclic sum of the tensors
$*l ...μΛΓ(τ, σ) (the latter ones correspond to the pth powers of the monodromy
matrix or equivalently the monodromy matrix for the interval (σ,σ + p 2π)) can be
represented by the integral of &[^ ..μN_i(τ, σ) uμN(τ, σ) over p periods. However, the
periodicity of the integrand simplifies the representation to

N- υ(τ, σ)%(τ, σ) .

This equation implies the group algebra identities

Linear manipulations of these identities lead to
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with

00 OO

xβ= Σ Σ cKϊ(-ir>'v

We compute Σ

oo oo oo /v\ A

Σ xρχ
β= Σ Σ c*v(-ιrp (i+xj-p

ρ = o v=o p = o \pj ax

- Σ cκvx
v = ( l + x ) -

whence we conclude

= CK-lK-l,ρ

Insertion of this result into the above equation for ZN ° Pjf } completes the proof of
the first equation of Proposition 9. The proof of the second equation is omitted
since it does not enter the subsequent analysis in an essential way. The proof can be
found, however, in Appendix B of [4].

The following two propositions contain information about the invariant
"factorability" of invariant tensors.

Proposition 10. Apart from the case N = 2: ^(

μ^μ2 = ̂ μ^μ2, there are no invariant
tensors homogeneous of degree 2: X&(^. _μN,Xe ON, which can be written as a sum
of products of other invariants JΓVl Vr.

For JV>3, the only "factorable" invariant tensors homogeneous of degree 3:
X&&..W XeON, are of the type Y(0>μί 2?%...J, YεON.

N+l
Proposition 11. For K> — - — , every invariant tensor ^^,_μN is factorable at

least like Y(^μ^f2~
1}

μN), YeON. For K= , only the totally antisymmetric

part of a tensor ^(^_^N is non-factorable.

Proof. Proposition 10 is a simple consequence of the corollary of Proposition 9. In
particular, for each N > 2 the invariants of rank N and degree (of homogeneity) 2
are algebraically independent of all invariant tensors of rank <N. The first
statement of Proposition 1 1 follows from the representation

#??..„= § dσ<#f-$- υ(τ, σ)%(τ, σ)

together with the observation that for (K — 1) > (N — 1)/2 each term in the defining
sum of

(X —1)! 0<αι< ... <aK-2<N
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contains at least one factor ̂ . This factor is independent of σ and can be pulled out
of the integral, whereas the remaining integral yields an invariant tensor
homogeneous of degree (K — 1).

I f K = - , then

We notice the relation

#Ί2#34 + #3

Thus, if 2£(*ι.t.μN is symmetrized in any two indices, the above argument applies
ensuring factorability of that part of 2£(^tmmliN. On the other hand, the totally
antisymmetric part of $f(μ®...μN cannot be written as a polynomial in invariant
tensors of lower rank since there are no totally antisymmetric cyclic tensors of even
rank. This completes the proof of Proposition 11.

We return to the problem of singling out reduced invariants. Group
theoretically, a systematic definition of them is equivalent to a decomposition of
ZN:ZN = E£d + Effoά with the following properties:

i) the elements of the group algebra ON: Er^d and E]γrod, are (up to
normalization) orthogonal projectors: EioEj = NδίjE

j.
ii) E%rod&μί μN is a sum of products each of which involves at least two

invariant factors.
iii) Every product of invariant tensors can be written in the form

_
iv) E^d and Ep

N

τod commute with ZN o P<f }.
Property i) implies that application of E™d or £&rod to the tensors ^μι...μw yields
invariant tensors: ,

— _
...μN — ̂

Moreover, property i) ensures that every invariant X o ZN&μι _ μN, X e ON, can be
decomposed uniquely into two invariant terms: its reduced part X°Eτed0iμι _μ2V

and its factorable part X ° Epτod$μι μN. According to property ii), the second term
is a sum of products of invariants of rank < N.

Property iii) entails that the reduced part of an arbitrary sum of products of
invariants - each of the products involving at least two factors - vanishes.

Properties i)-iii) are necessary and sufficient to define 3?τ

μ

d..,μN=E™d$μ^_μN

consistently as invariant tensors. Finally, property iv) formulates the additional
requirement that for a homogeneous invariant both its reduced and its factorable
part separately are homogeneous (of the same degree).

A priori, only the left-sided ideal ONEftrod generated by £&rod is known. It
corresponds to the linear span ί)!rod of products of invariant tensors with rank < N.
In general Ejjrod itself is not uniquely determined, hence also E^ed is not
unambiguously defined by the properties i)-iv) Actually an ambiguity arises
whenever there exist two equivalent representations of the symmetric group SN in
ONZN o P$\ only one of which being furnished by factorable invariants. According
to [6], (Theorem III, 3.8) in that case there exist nontrivial nilpotent elements
W=E%doXoE%od such that Er^d = E^d + λW and E%od = E%od - λW for an
arbitrary scalar λ possess properties i)-iv), too. The multiplicity Tables 1 to 8 below
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Tables 1-8. Symmetry types of homogeneous invariant tensors of rank 1-8

XI =(

N = 2

XI-(2) 1

N = 3 K = 2

N = 4

XI =(3) . 1

ΛΓ3 = (l'3) 1(1)

XI =(4) .
X2 = (391)
X3 = (22) 1(1)

N = 5 K = 2 K = 3 K =

XI =(5) . . .
X 2 = ( 4 , l ) . . .
*3 = (3,2) 1
^4 = (3,12) 1(1) . 1(1)

XΊ = (\S] . 1(1)

N = 6 K = 2 K = 3 K = 4

XI =(6)

XS = (32) '. 1(1) !
X6 = (3,2,l) . 1 1
AΓ7 = (3,13) 1(1) 1
-yo f 7^\ 1M1 1

X9 = (22,\2) . 1(1)
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N = 7

XI =(7)

X3 = (5,2)
X4 = ( 5 , l 2 )
X5 = (4,3)
Jr6 = (4,2,l)
JΠ = (4,13)
X$ = (32, 1)
Jf9 = (3, 22)
JΠO=:(3, 2, 12)
Jill =(3, 14)
JΠ2 = (23, 1)
*13 = (22,13)

Sίiίn }

K = 2

1(1)

1(1)

1(1)

1(1)

1(1)

K = 3

1

1
2(1)
1

2(1)
2(1)
2(1)
1

K. Pohlmeyer and K.-H. Reh

TV" Λ τs c Ίf f_ T£ H

1

1
1 . 1 .
1 . . .
1 1 . .
1 . . .
2 . . .

1
2 . . .

1
1 . . .
1 . . .

1(1)

K Λ jf o t^ /I t^ c î  /:
— L f\- — J jfv — τ jfv — J iv — O

XI =(8)

X3 = (6,2)
X4 = (6, 12)
X5 = (5,3)
X6 = (5,2, 1)
XI = (5, 13)
Jf8 = (42)
Jf9 = (4535 1)
Z10 = (4, 22)
AΊ1=(4,2, 12)
JΠ2 = (4, 14)
^13 = (32,2)
X14 = (32, 12)
XI 5 = (3, 22, 1)
A16 = (3,2, 13)
A"! 7 = (3, 15)
Z18 = (24)
Jίl9 = (23, 12)

JΠO = (22, 14)

ίS:ίιhlβ)

1(1)

1(1)
1(1)
1(1)
1(1)
2(2)
1(1)
1(1)

2(2)
1(1)
1(1)

1(1)

1(1)

1
1(1)
3(1)
1

3(1)
1
5(3)
1(1)
3(2)
2
3(2)
3(1)
1(1)

2(1)
1

1

1
2
1
2
2
4
3
2
1
3
3
3
1
2

1(1)

1

1
1 . 1 .
1 . . .
1 1 . .
1 . . .

2 . . .
1

2 . . .
1

1 . . .
1 . . .
1 . . .
1 . . .

1 . . .

1 . . .

The tables give the numbers m(λ)K of linearly independent tensors of homogeneous invariants for
every symmetry type (in brackets the numbers of linearly independent non-factorable homoge-
neous charge tensors)

show that such a situation occurs for the first time for tensors of rank 7, degree
K = 3, and symmetry type X6, X9, X1Q, X\\.

In spite of this non-uniqueness, the number of independent invariants of degree
K and given symmetry type is determined unambiguously. In the group theoretical
language Propositions 10 and 11 can be formulated as follows:
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Proposition 10'.

Proposition 11'.

611

= ZNop(V for AΓ^3.

/or
JV+1

red

' Nl
N

>ZN for Nodd,K =
N+l

The clearance-space between the assertions of Propositions 10 and 11 admits
invariant charges of degree 3 for ranks ^ 5 only. The complete list displayed below
of decompositions of invariants with rank ^ 6 into their reduced part and their
factorable part shows that these invariant charges do appear for JV = 5,6,...
(compare also Tables 1-8):

jy _ i . ώ^(i)__^

AT 0 όy(2) rtύ (JΛ
— Z . =>£ 19 — e/i t/̂ 2

^1235

^ = 4:

.
12"

) .
123

(3) .
123

) .
1234'

(3) .
1234"

1234?

12345 -

(3)
12345"

(4)
12345-

(5)
12345-

.1)
123456-

(3)
123456-

123456

123456 —

123456 —

12345 J

_
12345 ' 12^5^ [12][34]<y5J

123456?

red(3) ι _
123456~t~ 40z/6VL lz- ί 12345

12345^6^

12435
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n° terms of the kind ^Qs^fsβ occur. The reason for this lies in the
fact that every product of an arbitrary invariant tensor with S^l^ can be
remodelled into a sum of terms each containing a factor .̂ Explicitly

123 123— 2

τ, σ)

an appropriately defined

An example of this rule is the following identity:

which illustrates that an assertion like Proposition 6 cannot hold true for the
hitherto only provisionally defined reduced invariant tensors.

We turn now to the classification of invariant tensors according to their
symmetry types and their behaviour under Lorentz transformations. (More
detailed classification schemes are available and will be discussed towards the end
of this section.)

The rule for the evaluation of tensor products of invariants (compare
Proposition 8) is homogeneous in the string variables wμ(τ, σ) as a relation among
functionals of w, homogeneous as a polynomial in $\ and Lorentz co variant. Thus
we are justified to investigate the factorability of the invariant tensors with
different ranks, degrees of homogeneity and different behaviour under Lorentz
transformations separately.

The inequivalent tensor representations of the Lorentz group are traceless
tensors of definite symmetry type. According to Proposition 1 contraction of the
invariant tensors with the metric tensor gμίμj does not introduce other de-
pendences than those generated by symmetrization in μt and μ^ . Hence, a
contracted invariant tensor is factorable if and only if the appropriately
symmetrized tensor is factorable. Therefore as far as the factorability is con-
cerned it suffices to decompose the uncontracted invariant tensors 3fμι_μN into
their homogeneous parts and to study their factorability.

From the theory of the regular representations of the symmetric groups SN

[5, 6] we know projectors e(λ} e ON which project onto tensors of the symmetry
type characterized by that Young frame which corresponds to the partition
(λ) = (λl9 ...,/U, λ1^λ2^...^λr>0, Σ^i = N These projectors define an ortho-
gonal decomposition of the group identity:

(λ)
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The projectors e(λ) form a basis of the center of the group algebra ON, i.e. they
commute with all elements of ON. They decompose the group algebra into a direct
sum of two-sided ideals ONew = e(λ)ON. Each one of these ideals is a representation
space for the group SN carrying equivalent irreducible representations D(λ} only, in
fact as many linearly independent equivalent representations Dw as the dimension
f(λ} of D(λ) amounts to.

When the projector e(λ} is applied to the invariant tensors, one is essentially left
with the representation space ONe(λ} ° ZN which carries only m(A) ̂  f(λ} copies of
D(λ\ This implies that with SN acting from the left there exist exactly m(λ} linearly
independent invariant tensors of fixed symmetry type (λ). For instance, for N = 5,

, /(λ) = 6, m(A) = 2, the two tensors in question are ^12345

and ^345-
The degree of homogeneity helps to discriminate between the invariant tensors

of given symmetry type. Thus we reconsider and apply the projector e(λ} to the
homogeneous invariant tensors of degree K. Essentially this yields the representa-
tion space ONew °ZN° P$\ Let it contain m(λ)tK times the irreducible representa-
tion D(λ). With the help of the tabulated characters ζ(λ) [7] these multiplicities can
be computed according to the formula

m<λ>= Σ mW κ , N= Σ λt.
κ=ί i=ι

There are m(λ}'κ linearly independent homogeneous invariant tensors of degree K
and fixed symmetry type (λ). The situation for N ̂  8 is illustrated by Tables 1 to 8.
The figures give the number m(A)>x of linearly independent homogeneous invariant
tensors for each pair (/I), K and the figures in brackets, the number of the non-
factorable ones. The latter figures come about by subtracting from m(λ)tK the
number of independent factorable invariant tensors compatible with the following
two independent necessary conditions: A homogeneous invariant tensor of rank
N, degree K and given symmetry type (λ) can be written as a sum of products of
homogeneous invariants of rank AT- < N, degree Kt and symmetry type (λt) only if

ii) the Littlewood-Richardson rule [5] for the outer product of irreducible
representations is satisfied.

We turn now to a second important composition law for the invariant tensors:
the Poisson bracket operation. Taking Poisson brackets of integrals involving the
string variables uμ multiplied by non-periodic functions - which is the case for the
tensors ^μι...μw(τ,σ) - leads to ambiguities. These can be traced back to the
appearance of the derivative of the periodic <5-function in the canonical Poisson
bracket relation for the variables uμ(τ, σ). We define the Poisson brackets between
the components of the various tensors ̂  by interpreting δ2π(σ) as the limit of the
Gaussian regularization

fe=-oo-o

in the sense of distributions. This guarantees the antisymmetry of
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Moreover, with this definition of the Poisson brackets the components of the
tensors $μι...μM form a closed Lorentz covariant algebra whose structure
constants coincide with the components of the metric tensor gμv. However, this
algebra does not satisfy the Jacobi identity, a fact which can be realized most easily
by considering the appropriate Poisson brackets for the tensors ^μιμ2, ̂ V lv2

 and
&̂

κικ2κ3

It can be shown by cyclic symmetrization that also the invariant tensors
^μι...μM f°rm a closed Lorentz covariant algebra with structure constants gμv.
This time the Jacobi identity is satisfied [4], a fact which reassures us that the
invariant tensors are physically meaningful functionals of the string variables. The
Poisson bracket of an invariant tensor of rank N and another invariant tensor of
rank N' can be expressed by a linear combination of invariant tensors of rank
N + N' — 2. The integer n = (rank N minus two) defines a gradation. Explicitly

N N'

ί = l 7 = 1

for

The invariant which appears on the right-hand side with the coefficient 2gβ.v. will
be denoted by {&μί...„„, ,Srvι...Vιr }/(2gμtVJ),

- 2...N
'— 7V>1iV = A

The Poisson bracket operation defines a skew-symmetric product. It has all the
properties of a derivation.

The degree of homogeneity leads to yet another gradation of fy^:

Proposition 12. The Poisson bracket of two homogeneous invariants of degree K
and K' respectively yields a homogeneous invariant of degree (K + K'—l). Hence, if
Vk(fy0) denotes the linear span of all tensor components ^(

μι

+,^μN9 then the inclusion
relation {Ffc(f)^), Vk^)}cVk+k^) is valid.

Proof. V0(ΐ)p) = linear span of 0*μ9 μ = 0, . . . , d — 1 .

'^..llN(τ, σ) {uμ(τ, σ), uv(τ, σ

§ dσ(uμι(τ, σ)^> . .MN(τ, σ) - <#*>. . . Mκ_ t(τ, σ)«μw(τ, σ

X$dσ#f1+yιr._1(τ,σ)uμιrtτ,σ) with

)#). q.e.d.
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If we write ^μ^ ,\Nμ and ̂ μN+^..μN'V
 as homogeneous polynomials in <%\ their

Poisson bracket is given by a sum of terms of the form

(<%t\κt<%t W^ίtfW\tSl ) \ι/l , t/e< j yc/l j

According to the preceding proposition, the sum must be homogeneous of
degree (K + K'+1). Thus all contributions from {3P, $*} which are non-linear in
3f ultimately must add up to zero. This suggests the definition and use of a
modified Poisson bracket {,}* of the tensors ^μι...μN as the linear contribution
of the canonical Poisson-brackets, i.e.

plus extension by linearity to the general term {
1 ̂ i^N, N + 1 ̂ j^N' with the help of Proposition 7.

Finally, by extension as a derivation this modified Poisson bracket can be
defined for all tensors &. With this modified composition law the components of
the tensors &(&*) form a closed Lorentz co variant algebra satisfying the Jacobi
identity.

By definition the modified Poisson bracket and the canonical Poisson bracket
give identical composition laws for invariant tensors. Either definition may be used
for the evaluation of Poisson brackets of homogeneous invariants

__
(Ί<Γ λ\\ (Ίff λ(K — 1)1 (K —

)... b

Already simple examples show that the Poisson bracket in general takes reduced
invariant charges JΓred out of their linear span if the components 0>μ of the energy
momentum vector are counted as reduced charges. In particular, under Poisson
bracket operation the invariant charge 3^(^κ = ̂ r^κ acts like an infinitesimal
generator of Lorentz transformations combined with a multiplication by some
component of the energy momentum vector. The fact that the momenta £?μ have
vanishing Poisson brackets with the entire algebra ί)^ suggests that we treat the
^μ's as scalars which enter the structure constants and not as elements of the
algebra. Accordingly, from the outset we have indicated the dependence of the
algebra on &: 1)̂ . A similar situation arises in the 0(4)-symmetric treatment of the
hydrogen atom [8].

Linear relations involving ^-dependent coefficients will be called ^-linear.
Reduced invariants ^Γedl,..., ̂ reάr are said to be ^-linearly independent if the
equation

<*! ̂ red 1 + ... 4- αr^
redr = sum of products of invariants

other than momenta with ^-dependent coefficients

— α l 5 . . . , αr = ̂ -dependent "scalars" - implies: oq = ... = αr = 0.
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The examples for non-linear relations in the beginning of this section are in fact
examples of ^-linear dependences.

We denote the ^-linear span of a complete set of ̂ -linearly independent (̂ -)
reduced invariants J^-red by the symbol ί)^~red. The homogeneous invariants
^rμ\ά(Kμ2κ-1 for X > 2 do not belong to ϊf-red, provided that 0>μ0>μ = m2 > 0. This is
true since there exist identities, as for example

T

I

I
4_

5_

Hence, we may assume for the ^-reduced invariants of rank N > 3 that the degree
of homogeneity K satisfies the bound K ̂  N/2, a stronger bound than the one
established by Proposition 11.

If we consider the momenta 0*μ as scalars and not as elements of the algebra - as
we shall do throughout the following - only a single gradation of ί)̂  with respect to
the degree *f = (rank N minus degree of homogeneity K minus one) remains:

_
.μs— 4-8

where F(/)(ί)^) denotes the ^-linear span of all invariant tensors J? .̂..̂  with
N > 2, K ̂  N - 1 and degree {. F(0)(ί)^) - ^-linear span of 2£™K is a Lie algebra. It
is isomorphic to so(d — 1), the Lie algebra of the little group of the Lorentz group,
for^μ>0.

All spaces F(^(ί)^), and in particular the linear spans of the tensor components
^Tμ?.(K}μN

 are representation spaces of F(0)(^). Hence the homogeneous invariant
tensors of given symmetry type may be decomposed further according to
inequivalent irreducible representations of F(0)(I)^). This provides an additional,
though space time dimension dependent criterion, for singling out reduced
invariants. (This is the point where it will be advantageous to pass to the
momentum rest frame. See Sect. IV below.) There are no other simple Lie
subalgebras with non-trivial representation spaces contained in some single

III. Subalgebras and Ideals of ί)^ = ί)}

The set of all invariants from ί)X = ί)J), the degrees and ranks of which satisfy the
following inequality

forms an infinite dimensional Lie subalgebra. The relations

j = N-K-l^β

define infinite dimensional ideals.
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The set of all factorable invariants is an ideal. Another infinite dimensional
ideal t of 1)̂  is given by the ^-linear span of all invariants which do not contain
dominant monomials. Here a monomial is called dominant if it is of the form
X(0>ι...ff>κ-.ι3FKmmtN)ή:Q9 XeON, 1<K<N. In particular, t comprises all pro-
ducts of invariants other than momenta. Moreover, t contains all those homog-
eneous invariants of degree K which belong to a symmetry type characterized by
a Young frame with less than (K — 1) columns.

The fact that t is an ideal of ί)̂ , immediately implies the first part of

Proposition 13. The quotient ί) = fy^/t is a Lie algebra with a gradation. Its structure
constants are determined by the modified Poisson brackets for the dominant
monomials.

In order to prove the second part of the proposition, it suffices to remark that
two invariants whose dominant monomials coincide differ by an element of i, at
most.

The dominant polynomials X°ZN(0>v...&K_ffiK^ (which by themselves
are not invariant!) are suited to serve as representatives for the equivalence classes
in ϊ^/i

In view of the ultimate goal to pass to the quantum theory by constructing
positive energy representations for the algebra ί)̂ , we are particularly interested in
abelian Lie subalgebras with dimension as large as possible. We have found several
infinite dimensional abelian Lie subalgebras of 1)̂ , whose elements in addition are
in involution with the Casimir operators and the elements of the usual Cartan
algebra of the Poincare group (compare [4]). Here we discuss only one of them.

Proposition 14. All Lorentz-scalar invariants of the form gμίμ2...gμN~ί

N and K being even integers, are in involution, i. e. commute among each other with
respect to the Poisson bracket operation.

Proof. For the sake of transparency we use Euclidean notation. The parity of the
invariants 3f(^_ vv is even. Hence, when we take the Poisson bracket of two such
invariants, each pair of indices contributes the same amount:

2m

= 8mn § dσ(uλ(τ, σ)M"ΓvU(τ, σ) -«?/.7.U(τ, o)uβ(τ, σ))£g£:.̂ (τ, σ) .

From the previously established identities

Σ
iV-K = e

we infer:

( 2 Λ - 1 ) _ Λ <®(2fc-l) _ _
ρvv . . . μμλ ?

We thus obtain
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Both, X%ιί? and Y^^ are antisymmetric under the replacement m, fc<-m, t. Thus
we deduce

V(k, f} _ γ(k, t) _ y(Λ fc) _ y (Λ fe) _ y (fc, *)
Λm,« ~ J m - l , Λ ~ ~ J Λ , m - l ~ ~ -Λ f i + l , m - l ~ Λ m - l , n + l

Applying this relation repeatedly, we arrive at the final conclusion

ι
V (k, t} _ v(k, t} _ _ ^ _ ( <&>(2k) <&>(2t) ϊ _ A
^m,n ^k,n + m-k — 0 ™ v'

2k 2(n + m-k)

because

2k

Explicit computation shows that for N^ 10 and arbitrary space time dimension
there are no other independent Lorentz-scalar invariants in involution than those
given by Proposition 14. We suppose that this is true also for general values of JV.
The number of independent invariants ^^ vv in involution increases at least as

2m .

m/2 (since ^μιμ2...^2m"ιμ2m^ίί

2

1

fe)..μ2m contains for k<, ***—— non-vanishing terms

which cannot be decomposed into scalar factors. On the other hand, the number of
independent invariants ^-u^.vv with ^^2 is less than 3m/4. This bound is a

2m~^

consequence of Proposition 11.

IV. The Invariant Charges in the Momentum Rest Frame

We are interested mainly in the positive energy representations with non-
vanishing mass of the algebra of string invariants, i.e. we assume that the energy-
momentum vector &μ satisfies the inequality

Since the quantities &μ have vanishing Poisson-brackets with all invariant charges
of 1)̂ , we may without further loss of generality perform the entire analysis in the
momentum rest frame

In this frame of reference the invariant charges are arranged according to
irreducible representations of the little group SO(d-l). The infinitesimal
generators of the little group are

M _ __ __/^(2)+
μv ~~ 9 ^ °^v
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Thus on the algebra f) ( m,o,...,o)> ^ey can ^e identified with the invariant charges

— — J^V", Oφμφ vφO. The latter ones form a basis of the stratum of degree
2m

zero: F(0)(I)(m5θ5 >0)). The previously discussed irreducible Lorentz multiplets of
invariant charges in general decompose into several irreducible representations of
the little group. It may happen that certain Lorentz multiplets of invariant charges
which were not polynomially factorable, now that we admit division by m are
recognized to consist entirely or partly of products of other invariants. For
instance:

όY>red /^red ^red ι ^red ^red \ :f l ^ _μ Λ
^ μ\κλ~ 2 V0^ Oμv^ Oκλ ~f~ °̂  OVK^ Oλμ) n Λ, μ, V, fC =F U .

The use of the momentum rest frame helps to gain control over the number and the
structure of the independent invariant charges. We shall succeed in obtaining a
(minimal and complete) algebraic basis for the set of all conserved charges under
consideration.

In the course of the construction those components of the tensors ^t

μι...μκ+ί9

K>Q, for which the indices in the extremal positions - μ1 and μκ+1- are different
from zero ("space-like"), play a particularly important role.

We start by choosing among the tensor components <%*μί ...μκ+1 with space-like
indices at the extremal positions a maximal subset &tl

κ+ ιti = 0lt

μιίmmtμικ + 1,i=l,2,...
of linearly independent ones. To each such tensor-component ̂ + lfί we assign a
dominant standard invariant, namely

unless K = l or μ2 = ...=μκ = Q. In these special cases the assigned dominant
standard invariant is

In any case, the dominant polynomial of the standard invariant consists of one
monomial only. In the first case the monomial in question is

in the second case

The standard invariants are algebraically independent of each other. The standard
invariant J"κ +1, i is contained in the stratum V(K ~ 1}(ί)(ms 0, o>) of degree £ = K — l.

Proposition 15. The identity ffiμί μκ+ί = 0 for a certain specification of the indices
μ1? ...,μκ+ι e{0,1, ...9d — ί}9K>09d>2-3tt

μitmmμκ+1 viewed as a function of τ,σ
and a functional of uμ(τ, σ), where uμ(τ, σ) is subject to the constraints u2(τ, σ) = 0
and I dσ uμ(τ, σ) = mδμ0 - implies

for even values of K,

for odd values of K.
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The proof is achieved by induction on K using the differential equation for the
spatial dependence of ffiμι _μκ+ 15

dσ&μί...μκ + 1(τ>σ) = Uμ1(τ>σ)&μ2...μκ + ί(
τ>ή

and arguing as in the proof of Proposition 1.

Proposition 16. A standard invariant ^ vanishes identically as a functional of
wμ(τ,σ) if and only if its dominant monomial ^nx^t

μί...μκ + l vanishes identically.

Proof. All we have to verify is the claim that the identical vanishing of ̂ μι μκ+ 1

implies the vanishing of ,2Γ. We treat the two cases 1) K is even and 2) K is odd in
turn:

1) K is even: According to the previous proposition &^..^K+i = ® implies
μ1 = . . . = μκ+ 1 = μ. All monomials of 3£ vanish since every partition of the cyclic
sequence 0 ... 0 μ ... μ involves at least one factor 3tl of rank two or more with no

K-l K + l

other but identical indices.
2) K is odd: The inversion 0...0//1//2...//2μ1-^μ1μ2...μ2μ10...0 takes the

original sequence of tensor indices into a cyclically equivalent one. That means

_ _
. .^2^iO . . . 0 ~ -̂

Hence ̂  = 0.
This last discussion also covers the special cases of the standard invariants.

Proposition 17. If division by m is admitted, all invariant charges are polynomials in
the standard invariants.

Indication of the Proof. We want to express a given invariant charge J^}

 μίv in the
momentum rest frame in terms of standard charges. We consider ^^}...M2V as a
polynomial in the tensor components βtf of rank two or more. From this
polynomial we select the "leading" part of lowest degree q. We notice that we can
rewrite this part as a polynomial of the same degree q involving only factors &tl

with space-like indices at the extremal positions. These factors are expressed as
linear combinations of the basis elements 0fκ + ίti, which in turn are replaced by the
corresponding standard invariants 3 f κ + ι f i . This replacement involves the ap-
pearance of additional (negative) powers of m and of additional monomials in ffi of
higher degree. We subtract the homogeneous polynomial in the standard
invariants of degree q which we have constructed just now from the original
invariant charge. The remainder is considered again as a polynomial in the tensor
components $* of rank two or more. Its leading part has degree q + \. Taking into
account the cancellations of the additional monomials in & mentioned above
among themselves as well as against some of the original non-leading terms, the
leading part of the remainder can be expressed again as a polynomial (of degree
q + 1) in those ^f's which have space-like indices at the extremal positions. The
previous procedure is repeated again and again at worst until we obtain a
remainder with a leading part of degree [JV/2]. At this stage the replacement of the
leading part by a polynomial in the standard invariants leaves no longer a
remainder because there are no (standard) invariants with less than two space-like
indices.
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Corollary. The standard invariants 3?κ+ιtι provide a (minimal and complete)
algebraic basis for ί)(m,0,...,o) By evaluating these same invariants in an arbitrary
frame of reference, they provide an algebraic basis for ί)̂ .

Thus the problem of counting the number nf of independent invariants in the
stratum F(ί°(f)^) of degree f (algebraically) independent in particular of the
invariant charges in the strata F(Γ)(I)^), t' <t> amounts to counting the number
q(t + 2) of linearly independent tensor components $t

μι...μt+2 with space-like
indices at the extremal positions.

It is possible to choose, recursively in N>2, maximal sets of linearly
independent components of the truncated tensors of rank N such that the first
q(N) elements are a basis of the space spanned by components ̂ μ^..,μN with space-
like indices at the extremal positions while the others are of the form ^oμ;...μ£_1?

where &t

μί.,,μN_l are the previously chosen basis components belonging to rank
N — 1. Now the total number of linearly independent components of the tensor

^ι...μ^ίs

N D\N'

Here the sum extends over all divisors D of N. The symbol μ(D) denotes the
Mόbius function:

1 if D = l,

( — l)p if D can be decomposed into exactly p different prime factors,

0 if some prime factors of D are equal.

Hence q(N) = n(d,N) — n(d,N — ί) and the number nf of independent charges in
the Λh stratum equals n(d,£ + 2) — n(d9J' + ί) behaving asymptotically like
d -1 /+1

Next, we want to analyse the structure of the Poisson algebra of the invariant
charges in the momentum rest frame. Of particular interest is the question whether
t)(m,o,...,o) is a finitely generated algebra. If so, the relevant information would be
already contained in a few elements of ί)(IWj 0, o) and the transition to the quantum
theory would be achieved by constructing the corresponding few charge operators
[9].

The gradation of ί)̂  is one-sided: the degree takes non-negative values only.
The dimension of each stratum F(/)(ϊ)^) corresponding to a fixed finite degree ί is
finite. The Poisson bracket operation never decreases the degree f . Hence, if a
finite-dimensional subset of ί)^ were to generate an algebraic basis of ί)^ at least it
would have to contain a basis of F(0)(ί)^) and of those elements of F(1)(ί)^) which
are independent of the elements of F(0)(l)^). In fact, it would be appealing if \)&
would turn out to be a minimal extension of the Poincare algebra in the sense that
the closure under forming multiple Poisson brackets of the Lorentz group
representation spaces F(0)(ί)^) and F(1)(l)^) (together with the energy momentum
vector SP) would supply an algebraic basis of the entire set l)^.
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However, reality looks different. In every stratum F(^(ϊ)(mj 0, . . ., o>) °f °dd degree
/ there exists at least one "exceptional" element: the linear combination of the
standard invariants

Lot Φ - [(/ + 1) (d - 1)]-
 1

which - even if suitably modified by sums of products of invariant charges of lower
degrees - cannot be produced from other invariant charges by the Poisson bracket
operation.

To prove this statement, it suffices to show that the dominant part of L0^

cannot be produced by the Poisson bracket operation.
Suppose on the contrary that it could be produced. In this case it could arise

only in the form of a sum of Poisson brackets of the dominant parts of some
standard invariants of the special type

const {w^o^o v m^j2o_o</2}*, K1-l+K2-l=έ; il9jl9 12 J2 ΦO ,
Kι-1 X 2 -l

and, in addition, of Poisson brackets of the dominant parts of standard invariants
one of which carrying more than two space-like indices. Without loss of generality
we may assume that K± — 1 is even. Then parity implies: ϊΊΦjΊ. Thus the only

remaining chance to produce the dominant part — - — 7 #μv^o...ov *s to set

OWi} — O'lJi}? saY h=Jι> h—J2- However, in this case the individual Poisson
brackets yield dominant parts which transform non-trivially under SO(d — 1):

and, in addition, dominant parts of standard invariants with more than two space-
like indices. Thus, none of the dominant parts is of the desired form.

Although our experience suggests that all linear combinations of the standard
invariants with vanishing components in the direction of the exceptional elements
- when suitably modified by sums of products of invariant charges carrying lower
degrees - do in fact appear as Poisson brackets, the very existence of those
exceptional linear combinations seems to rule out any minimality property of the
algebra l)^. However, as we shall show below, the algebra ί)̂  is not considerably
reduced by passing to the algebra generated by those elements of F(1)(ί)^) only,
which have no components in the exceptional direction. The Poisson bracket
operation reintroduces the exceptional elements in the form of "nonlinearities"
containing their Poisson brackets with other elements.

Let us examine is some detail the situation in three dimensional space-time.
Here the little group is the one parameter group SO (2). We identify its infinitesimal
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generator of rotations in the 1,2-plane with the element

— 1 2jo /^ °̂  012 2 12

of the one-dimensional stratum F(0)(ί)(m>0)0)). The six-dimensional stratum
F(1)(ί)(m>0>0)) is spanned by the elements

where β(4)μv is defined as in [1] by

e Wμv — pμoiβpV
— b b (3 \tSOfA βAB

The six elements are arranged according to their behaviour under rotations in the
1,2-plane

{β,Ls}=isL5.

Arbitrary multiple Poisson brackets of Ls, s = 0, ±1, ±2, will be denoted by

L(S) = {. . . {LS1, LSJ, . . ., LSn} = {LSl, LS2, . . ., LSJ .

Their "spin" is s(L(s))= Σ Sf-

There are 10 standard invariants in the stratum F(2)(^(m5θj0)) and there are also
10 independent Poisson brackets 1L(S) which may replace the standard invariants in
question. This agrees with the "growth" of a free Lie algebra generated by five
elements taking the place of L0, L±1, L±2. However, the situation in the stratum
^(3)(I)(m,o,o)) is quite different: there are 30 standard invariants but only 29
independent Poisson brackets, whereas in the free Lie algebra generated by five
elements the number of independent triple Poisson brackets would amount to 40.
In fact beyond the Jacobi identities the following relations are valid:

We have carried out explicit computations still for quartic Poisson brackets.
We found the following five pseudoscalar non-linear relations:

—
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(1 _ 1 ( 1 > _ 1 ) — ]L(_ l ί l j -ι,i)) — 2(JL(2> -2,1, -i) — -L (_2 > 2, -ι,i))

~ V"-^(l,2, -2, -1)Ί~ ^(1, -2,2, -l)~~-"-^(-l, -2,2,1) ~-"-J(- 1,2, -2,1))

— 3(IL(0>2, -1, -l)~~-"-'(0, -2,1,1))

24 { — IQ - (IL(2 -i, -i) + -L(-2,ι,i))~~4(L1 ]L(1 -2)~~ ̂ -i '-"-(-1,2))

+ 48β2 lL( l j_1)-96ίρ L 1 . .L_ 1 },

~ ( 2 , 1 , -1, -2) (2, -1,1, -2)~~-

2(IL(1 -1,2, -2) ~]M- 1,1, -2,2))

4(L1 lL ( l ι_2 )-L_1.]L (_1 > 2 ))-16ρ2]L ( 2,_2 )

? -ι,o,θ)~ 4(]L( l5o>0) -i)~~-^(-ι,o,o,i)) + 4(JL(2) -i, -ι,o>~ -"^(- 2,1,1,0))

) -1,2, -l))~t~ 1-̂ (1, -1,2, -2)~~ ^(-l,l, -2,2))

,-2,2,-l)~^(-l, -2, 2,1) ""•"-"( -1,2, -2,1))

0, -2,2))

]L(_2>0) — L_ 2 1L(2>0))

+ 160iβ L! L_ ! - 96iβ L2 - L_ 2 - 512iβ5} ,

i l > _ 1 > 0 > 0 ) — 3(JL(2 jo,o, -2)~L (_ 2 5o 5 θ j 2 )) — 4(]L(0)2> _ : > _ i ) — -L(0) _ 2 , ι , i

- JL (_ 1 > 0 ) — L _ x IL(1>0)) — 2(L2 lL (_2 s 0 ) — L_ 2 1L(2) 0)

+ 512iβ5}.

Also, we computed the following spin-5 and spin-3 relations:

JL(1 2),

The fact that certain linear combinations of k-fold Poisson-brackets can be
expressed as polynomials in β, IL(s) = lL(Sl ,...,Sk')? and /c/x-fold Poisson-brackets
involving L±1, L± 2 and the exceptional elements L0ίf, ?f=l,3, ... seems very
alarming at first sight. However, a closer inspection of the "non-linearities"
encountered so far reveals the remarkable feature that the exceptional elements do
not occur as factors in the polynomials. If this phenomenon holds true in general -
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as we conjecture and as we shall assume in the sequel - then the situation can
possibly be cured simply by including the element β2 e F(1)(ί)(m 0 0)) and the
exceptional elements L0^e F(^(t)(W)0>0)), / = 3,5, ... (L01 = L0) into the set of
generating elements. Equivalently, as generators we shall use the elements Q2,
L{

S

1}ΦLS, s= ±1, ±2, and the members of the abelian subalgebra (see Sect. Ill)

Definition. 1$ - L ;̂;;;;̂  - { . . . {L^\ L(/2

2)}, . . . , L(/;}} with Sj = 0 whenever ^ Φ 1

Proposition 18. Suppose that tensorial multiplication is only explained for products
of the form Q times a spin zero invariant. Then all other monomials in Q and in IL^
φL(

0

1}

5 L
(

0

3), ... with more than two factors can be defined with the help of multiple
Poisson-brackets involving the element Q2 in an essential way.

Proof. By induction on the degree of the stratum V(*\l)(mί0iQ)) containing a
particular "admissible" monomial: The claim is trivially true for £ = \. Suppose
that the claim is true for all admissible monomials contained in the strata
J^O^m.o.o)) with ̂ '̂  Then - as we shall show - it is also true for all admissible
monomials contained in the stratum F(ίf+1)(f)(mj0j0)).

We observe that we need only consider factors L^ involving at least one non-
exceptional generator Ls, s= +1, +2 because otherwise L$ would vanish as a
consequence of the "commutativity" of L(

0

A) and L(

0^
2) : {L(

0

Λ), I#2)} -0.
Now, consider an arbitrary admissible monomial M in the stratum

V(*+ 1}(I)(m> o, o)) Choose one of the factors of M which involves the smallest number
of generators. Call it 1L. Let v be the number of generators involved. The factor Q
corresponds to the value v = 0. By induction on v we shall show that M = M 1L,

V
/> _ v /

Me V j=1 (ί)(m,o,o)) can be defined as explained in the proposition:

v = Q:TL = Q: M - Q i s defined by tensorial multiplication if s(M) = 0 ,

if s(M)Φθ.

v = l :L = Ls, 5=±1,±2: M LS = ({M Q, LJ - {M, LJ - β)/(is),

where multiplication by Q is defined as before. Let M = M 1L e V(£ + 1}(l)ίm 0 oO be
e-ϊtj '

defined for all L with v = 0,l,...,n and all Me 0 F(r)(ί)(m 0 0)).
l f = l

Consider IL with v = n + 1^2. 1L contains at least one non-exceptional
generator. Without loss of generality ]L={I/, Ln+1}, where I/ is an admissible

^ t
factor involving /ι generators. Hence M 1LX e (Φ) F(^'}(Lm 0 0)) is defined as well as

r = 1

{M, Lπ + J ]LX. The product M - JL is finally obtained from the relation
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This completes the proof of the proposition.
The non-linear relations N(*\ and N(*\ exemplify that by passing to the

Poisson algebra generated by the elements L±1, L± 2 one cannot get rid of the
nonlinear constraints among the Poisson brackets, nor can one avoid the
appearance of the exceptional invariants alltogether. For instance, the right hand
side of N(s\ involves the exceptional invariant L01 in form of the Poisson brackets
{L01, LJ, s= + 1, ±2, which are linearly independent of the brackets {LS,LS/},
s,s'=±l, ±2.

V. Summary and Conclusions

The aim of the research reported in this article is a detailed analysis of the algebraic
structures of the "internal" observable conserved charges of the classical closed
Nambu-Goto string. These invariant non-local charges originally came about as
eigenvalues of monodromy matrices associated to certain Lax pairs of systems of
linear differential equations depending on infinitely many parameters.

An important first step towards the aforesaid aim is taken by mapping the
relevant algebraic structures of the matrix elements of the monodromy matrices -
they are the building blocks of the invariant charges - to natural structures of the
group algebra O^ of the symmetric group SN. Thereby, both object and method of
the investigation are put into a general mathematical context. In particular, well-
known theorems from the theory of the regular representation of the symmetric
group can be applied.

In principle, for the analysis of the algebraic structures of the invariant charges
themselves the situation is the same. However, unfortunately very little is known
about the structure of the algebra ZNONZN decisive in this context (ZN = cyclic
symmetrizer). Thus no ready-made mathematical theorems pertinent to the
algebraic aspects of the invariant charges are available.

To be specific, we have shown that the set ί)^ of invariant charges for arbitrary
space time dimension forms an associative algebra under tensor multiplication
and a Lie algebra under the Poisson bracket operation. The set ί)̂  can be
decomposed in a natural way. This leads to gradations and selection rules for the
Lie algebra.

The Lie algebra of the invariant charges does not depend for better or for worse
on the canonical Poisson brackets of the (unobservable) string variables. There
exists at least one inequivalent albeit non-local modification of the Poisson
brackets which yields the same Poisson Lie algebra for the invariant charges.

We have revealed Lie subalgebras of ί) .̂ In view of the representation problem,
special interest was paid to abelian subalgebras. Questions relating to the
completeness and maximality of these subalgebras still demand an answer.
Finally, we have analysed the invariant charges in the momentum rest frame. We
were able to count the independent invariants and to construct an explicit though
somewhat arbitrary algebraic basis for them. We established that \)9 is not a
finitely generated algebra. Nevertheless, in a certain sense ί)̂ > seems to be a minimal
extension of the Poincare algebra.

For the special case of three dimensional space-time we computed examples of
non-linear relations among multiple Poisson brackets. We argued that by a slight
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extension of the set of generating elements ordering problems associated with these
nonlinearities can be reduced when representing ί)^ as a commutator algebra.

Acknowledgement. One of the authors (K.P.) wishes to express his gratitude to the staff of the
Institut des Hautes Etudes Scientifiques for the cordial hospitality extended to him during his stay
in Bures-sur-Yvette.

References

1. Pohlmeyer, K.: A group theoretical approach to the quantization of the free relativistic closed
string. Phys. Lett. 119B, 100 (1982)

2. Pohlmeyer, K.: An approach towards the quantization of the relativistic closed string based
upon symmetries. Seminaires de Meudon, Springer Lecture Notes in Physics, Vol. 226,159.
Berlin, Heidelberg, New York: Springer 1985

3. Nambu, J.: Lectures at the Copenhagen summer symposium 1970 (unpublished);
Goto, T.: Relativistic quantum mechanics of one-dimensional mechanical continuum and
subsidiary condition of dual resonance model. Progr. Theor. Phys. 46, 1560 (1971)

4. Rehren,K.-H.: Freiburg university thesis, 1984, Physics Faculty, THEP 84/8 (in German)
5. Hamermesh, M.: Group theory. Reading, MA: Addison-Wesley 1962
6. Boerner, H.: Representation of Groups. Amsterdam: North Holland 1970
7. James, G., Kerber, A.: The representation theory of the symmetric group; Encyclopaedia

Math. Appl., Vol. 16. Reading, MA: Addison-Wesley 1981
8. Pauli, W.: Uber das Wasserstoίfspektrum vom Standpunkt der neuen Quantenmechanik. Z.

Physik 36, 336 (1926)
Bander, M., Itzykson, C.: Group theory and the hydrogen atom (I) and (II). Rev. Mod. Phys.
38, 330 and 346 (1966)

9. Luscher, M.: Quantum non-local charges and absence of particle production in the two-
dimensional non-linear σ-model. Nucl. Phys. B135, 1 (1978)

10. Pohlmeyer, K.: The invariant charges of the Nambu-Goto theory, in WKB-approximation:
Renormalization. Commun. Math. Phys. 105,629-643 (1986)

Communicated by K. Osterwalder

Received July 16, 1985; with enlarged introduction January 27, 1986






