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Existence and Partial Regularity of Static
Liquid Crystal Configurations

Robert Hardt*, David Kinderlehrer*, and Fang-Hua Lin**
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Abstract. We establish the existence and partial regularity for solutions of some
boundary-value problems for the static theory of liquid crystals. Some related
problems involving magnetic or electric fields are also discussed.

Introduction

The equilibrium configuration of a liquid crystal may be described in terms of its
optical axis, a unit vector field n defined on the region Ω in R3 occupied by the
material (see [E]). For a nematic liquid crystal, the Oseen-Frank free energy density
W is given by

2W(Vn,ri) = Tc^divn)2 + /c2(n curln)2 + τc 3 |n x curln| 2

+ (*2 + κ4)[tr(Vn)2 - (divrc)2], (0.1)

where the constants κl9 τc2, κ3, and κ4 are generally assumed to satisfy

κ1>09 κ 2>0, κ3>0, κ 2^|/c 4 | , and 2κ1 ^ κ2 + κ4.

(Here we will assume only that κί9 /c2, and κ3 are positive.)
The principal questions we shall discuss are the existence and partial regularity

of a vectorfield n with the property that

W(n) = inf i f(u\ where 1f(u) = J W(Vu9 u)dx, (0.2)
Ω

and where the infimum is taken over all u:ί2->§2 having prescribed boundary
values n0 on dΩ.

The existence of a minimizer neH1(Ω,S2) by direct methods is presented in
Sect. 1. The first ingredient of the proof is to establish that the class of competing
functions is nonempty. The second involves certain coerciveness estimates for the
functional if. Of relevance here is the observation by C. Oseen, and later
independently by J. L. Ericksen, that the last term in if is a surface energy in the
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sense that it depends only on the restriction of n and its tangential gradient to the
boundary dΩ. In Sect. 5, additional terms are added to i^ which allow, in particular,
treatment of cholesteric liquid crystals and applied magnetic fields.

The partial regularity result we prove in Sect. 2 is that a minimizer n of W is real
analytic on Ω ~ Z for some relatively closed subset Z of one dimensional Hausdorff
measure zero. Recent work [HKL], involving a reverse Holder inequality, shows
that Z may be chosen to have Hausdorff dimension strictly less than one. In general,
continuity of n on all of Ω may be impeded by topological considerations; as for
example, if Ω is the unit ball B and n0 has nonzero degree as a mapping from
<9B = §2 to S2. In the present paper, the set Z is defined as the set of points a inΩ for
which the normalized Dirichlet integral on the ball BΓ(α),

r'1 J \Vu\2dx (0.3)
ί2nBr(α)

fails to approach zero as r -> 0. Our main work involves establishing that, near points
aeΩ ~ Z, this normalized integral decays like a positive power of r, as r -»0. Local
Holder continuity of n on Ω ~ Z then follows by Morrey's lemma, and the higher
regularity is established in 2.6.

A few words about the proof of Holder continuity may be appropriate. In 2.3, an
integral estimate is used to reduce the question of energy decay to estimating a
normalized L2 norm, a quantity more readily controlled under the "blowing-up"
process. An analogous inequality was employed similarly for excess decay in [Jf/L].
A suitable integral estimate may be obtained from a construction of R. Schoen and
K. Uhlenbeck, [SU,4.3]. However, here for completeness and the reader's
convenience, we give a short proof of a slightly stronger estimate taken from [HL3].

It is interesting to note that, in our proof by contradiction of energy decay, the
constraint \n\ = 1 implies that the image of any blow-up limit function υ lies in a two
dimensional plane. (This observation and the use of 2.3 seem to simplify somewhat
the regularity theory of harmonic maps as well [SU,SU2,GG].) Moreover, this υ
satisfies an elliptic system with constant coefficients, even though, unlike the
situation with harmonic maps, the original minimizing problem is not necessarily
elliptic.

In the presence of an electric field, one generally accounts for the effect of
polarization, unlike the common assumption with magnetic fields. As a conse-
quence, the electrostatic energy depends on an unknown electric field potential
which competes with the bulk energy W. In Sect. 4 we show, in a typical problem,
how one obtains not only the optical axis n but also the electric field potential.

In all of these problems, the set Z defined above will be a compact subset of Ω
having one dimensional measure zero. The solution is regular on Ω ~ Z, and,
indeed, on Ω ~ Z when given smooth boundary data (Sect. 5). For minimizing
harmonic maps from Ω to §2 (the special case κ1 = κ2 = κ39κ4 = 0) the work of
R. Schoen and K. Uhlenbeck ([SU, SU2]), using the monotonicity in r of the
normalized Dirichlet integral (0.3), shows that Z is just a finite subset of Ω.
Moreover, here the asymptotic behavior of a minimizer near a point of Z is
describable [GW] by the work of [Si] and the elementary classification of harmonic
maps from S2 to S2. However the precise nature of Z is not well understood. Brezis,
Coron, and Lieb [BCL, B] have begun a study of questions related to point defects
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and the stratification of their levels. For the liquid crystal problem, E. MacMillan
obtained an existence result in [Ma] by assuming the κ{ satisfy certain inequalities to
guarantee coercitivity of if. He also treated regularity of planar solutions.

The study of stationary, not necessarily minimizing, harmonic maps is quite
challenging. For two dimensional domains, R. Schoen [S] has shown the complete
regularity of stationary points while Brezis and Coron [BC] have established the
existence of "large" solutions. For higher dimensions, G. Liao [L] has shown the
removability of an isolated singularity of a small energy stationary harmonic map.

Our partial regularity results for minimizers carry over to higher dimensions
(where J4?dιm Ω~2(Z) = 0) for mappings between manifolds which minimize, e.g., the
elliptic integrands treated in [GG]. This topic is not pursued here.

1. An Existence Theory

To simplify technical aspects of our presentation we shall assume some smoothness
of the domain and the boundary data. Henceforth, let Ω be a bounded region in [R3

with smooth boundary dΩ and outward unit normal v. To demonstrate the
existence of a solution by direct methods, we are obliged to show that the Oseen-
Frank energy functional (0.1), (0.2) has some lower semi-continuity and coerciveness
properties.

To begin, we consider, in H1(Ω, R3), the closed subset

Hl(Ω,S2) = {ueH\Ω, R3): u\ = 1 almost everywhere in Ω}.

Note, in particular, that the fuction x/\ x belongs to Hί(Ω9 S2). This example may be
used to illustrate how H1(Ω,S2) may be larger than the H1 closure of smooth
functions mapping Ω into S2 [SU2,p. 267].

1.1. Lemma. I f n Q : dΩ ->§2 is Lipschitz, then the family

J2φo) = {ueHl(Ω, §2): rc0 = trace of u on dΩ}

is nonempty.

Proof. If Ω has any handles, then we can choose a smooth embedded closed disk
B c= Ω so that B n dΩ = dB, B is orthogonal to dΩ, and B crosses transversely at one
point some generator oϊΠ^Ω). Using two distinct copies £_ and B+ of B, we may
form a new Lipschitz 3 manifold with boundary, (Ω ~ β) u β _ u £ +, which has one
less handle than Ω. Since n01 dB is nul-homotopic in S2 we may extend n0 to B _ and
B+. Continuing, we eventually reduce to the case where Ω is bilipschitz
homeomorphic to a closed ball. Then an elementary calculation shows that
homogeneous degree 0 extension gives the desired finite energy extension. Π

This is only a special case of a general result of B. White [W] on the existence of
finite energy extensions. Moreover jtf(n0) is nonempty even for n0εHίl2(dΩ, §2) by
[HL3]. It is also interesting that the strong H1 closure of the continuous functions in
j/(n0) may be strictly smaller than jtf(n0) even when n0 has degree 0 [HL2].

In most discussions of the liquid crystal equations, the last term in W is set to
zero, namely κ4 = — κ2. This is because it is (in a formal sense) a divergence,

tr (Vw)2 - (div u)2 = div [(Vu)u - (div φ],
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and thus does not contribute to the equilibrium equations. It is sometimes called
a surface energy. As Oseen, and independently, Ericksen [E, p. 238], cf. also [E2],
have observed, it is a surface energy in the strictest sense, for the expression
[(Vw)w — (divφ] v depends only on u\dΩ and its tangential derivatives.

1.2. Lemma. For any Lipschίtz function n0: dΩ -»S2, there is a number ^(n0) such
that

ίe(n0) = i J [tr (Vw)2 - (div w)2] dx far all
Ω

Proof. First suppose ue^(nQ)n(^1(Ω). On dΩ we define

V t a nw = Vu — (Vw)v (x) v,

and easily verify that V t a nw depends only on n0. Noting that, on dΩ,

[(Vu)w - (div u)u] - v - [(Vtanu)u - tr(Vtanφ] v = [(Vw)(v ® v)u - tr (Vu v (x) v)u] v

= Σ; ,,-X/WvVv' - wi/WvVv* = 0,

we deduce from the divergence theorem that

0)= ί [(Vu)u-(divφ] v<fcr2 = J C(Vtanφ-tr(Vtanφ] vd^2,
dΩ dΩ

which depends only on u\dΩ = nQ.
For an arbitrary we jtf(n0)9 one may check by the standard device of straightening

dΩ locally and applying Fourier transforms, that the latter expression for «9^(n0) is
well-defined and depends only on n0. Π

For a given choice of positive constants κί9 κ29 and τc3, let

c1,κ;2,κ:3}, β = 3(κί + κ2 + Kι\ and i^(u)=\
Ω

where

2W(Vu, u) = 2W(Vu, u) + (α - κ2 - κ4) [tr (Vu)2 - (div w)2]

= κ1(divw)2 + κ:2(w curlw)2 + κ ; 3 | u x c u r l w | 2

+ α[tr(Vw)2 - (div u)2~] for ueH^Ω, S2).

1.3. Corollary. For any Lipschitz function n0: dΩ -^S2 and nej^(n0),

n minimizes iff in J#(n0) if and only ifn minimizes ffi in jtf(nQ).

Proof. For any ue<8/(n0)9 one sees from 1.2 that

τT(tt) - τT(w) = iT(u) + (α - κ2 - κ4W(nQ] - \W(n) + (α - κ2 - /c4)^(n0)]

- τT(tt) - τT(n). D

The following indicates the reason for the particular choice of the coefficient
i(α — κ2 — κ4) in the definition of W.

1.4.Lemma.iα|Vw|2^ W(Vu,u)^ β\Vu\2 for ueH^Ω.S2). Moreover, if is lower
semicontinuous with respect to weak convergence in H1(Ω,S2).
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Proof. For uεHl(Ω, §2), we have the identity | Vu\2 = tr(Vw)2 + |curl w| 2. To verify
this, note that for any square matrix A,\A\2 = iΐ(AAl) = tτ(A2) + %\A - Al\2. By the
above identity and the definitions of α and β,

α | V w | 2 ^2W(Vu,u)

= (κ1 — α)(div u)2 + κ2(u-cuή u)2 + κ3 \ u x curl u \ 2 + α tr(Vw)2

Letting y = min{κ2,/c3}, we may write

-7)1 w x curl w | 2 +iα |Vw | 2 for

Since each term has a non-negative coefficient, the lower semicontinuity of ffi on
j/(n0) follows from the strong convergence in L2 of any weakly convergent sequence
in H1. Π

1.5. Theorem. For any Lipschίtz function n0: <3ί2 ->S2, ί/zerβ exists an ne^(n0) such
that W(n) = inf τT(tι).

we^(n0)

Proo/ Let nfc be a minimizing sequence in j/(n0) for the functional ffi defined above.
By 1.4, this sequence has bounded H1 norm and so possesses a subsequence, weakly
convergent to a limit neH1(Ω, (R3). From the strong convergence in L2 and H1 trace
theory, ne<stf(n0). Finally by the lower semicontinuity 1.4, i^(n)= inf ^(u\ and

uejtf(n0)

the theorem follows from 1.3. Π
A cholesteric liquid crystal [E, p. 246] has an energy density of the form

,iesteric(Vw, w) = κl(divn)2 + κ2\_(n'Cuήn) + τ]2 + JC 3 |« x curl«|2

+ (κ2 + /c4)[tr(Vn)2-(divn)2]

= 2W(Vn, n) + 2/c2τ(rc curl n) + /c2τ
2

for some real constant τ. Unlike with nematic liquid crystals, a constant vector field
is not a minimizer of the cholesteric free energy. When κ2 + κ4 = 0, this role is
played, for example, by a mapping of the form

n(x) = (cos τx3, sin τx3,0).

For a given smooth divergence free vector field H, representing a magnetic field,
the contribution to energy may be described by adding to W or P^choiesteric a term of
the form

F(Vιι, u) = X [fl/wtiiX + MV + cXl

where 0^, ft^, and c7 are bounded (or sufficiently integrable) functions on Ω. In
general, let

for ueH\Ω, §2).
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1.6. Theorem. For F as above and n0 : dΩ -> §2 Lίpschitz, there exists an ne^(n0) such
that (HT + &)(n) = inf ("MT +

Proof. The proof is virtually identical to the previous one. With ffi defined as before,
note that

iα J I Vu\2dx ^(& + &)(u) + J \F(Vu, u)\dx.
Ω Ω

By Cauchy's inequality and the L°° bound on M, a minimizing sequence for HT + J*
remains bounded in H1. Moreover J^ is continuous under H1 bounded weak
convergence. Π

We complete this section with a discussion of the Euler-Lagrange equations
satisfied by a stationary point of Of. These will be helpful in studying the blow-up
limits of the next section.

Consider a stationary point n of HT in

δ J W(Vn, n)dx = 0.
Ω

To simplify the explanation, we shall proceed formaly, introducing a multiplier
-iλ(|u|2-l).Then,

δ J {P^(Vπ, n) - ^λ(\n\2 - l)}dx = 0
Ω

for w = n0 on ^/2, but otherwise unconstrained, or

Ω

3for CeHj(β,R3)nL°°. Thus

f{W;(Vn,/ι) VC+»y ι < (Vn,π) ζ - λ f i ζ}dx = 0, (1.1)
β

where /I is an unknown function. The (weak) equation

- div { Wp(Vn, n) } + Wu(Vn, n) = λninΩ, n = n0 on dΩ,

with the unknown multiplier λ is useless to us as it stands. The multiplier may be
found by choosing ζ = ηn in (1.1) where η is a smooth cut-off function. This gives that

We now write W(Vn,n) = ^u\Vn\2 + V(Vn,ri)9 where α = min{/c1,?C2,κ:3}, so
Wp(Vn,n) = (x,Vn+Vp(Vn,ri). Then, since | w | = l and nVn = 0 a.e., we have that
nWp(Vn, n) = nVp(Vn, n\ hence,

Wp(Vn, n) n®Vη = n Wp(Vn, n)-Vη = n Vp(Vn, n) Vη.

Deleting now the arguments in the symbols Wp(Vn,n), Vp(Vn,n)9 Wu(Vn9 n), and
integrating by parts, we find that (in a weak sense) λ= — div (nVp) -f Wp- Vn + Wu n,
hence,

- div WP+WU = [-div(n7p)]n + (H^ Vφ + (Wu n)n.
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It is convenient to compare the first term on the right with div(n®nVp\

[-div(nVp)]n = div(n®nVp) - Vn(nVp).

We finally arrive at the weak equation

-div(Wp-n®nVp) + (^-n®n)Wu-Vrι(nVp)-(Wp'Vn)n = QmΩ. (1.2)

This system may be abbreviated by writing

-div(Wp -n®nVp) + 7(Vn, n) = 0 in ί2, (1.3)

For example, in the special case W(Vu9u) = ^\ Vu\2, the equilibrium equation is

Δu + \Vu\2u = QinΩ.

But in general, λ involves the influence of second derivatives, and it is not clear that
(1.2) is elliptic for every choice of the constants κt.

2. Partial Regularity of Minimizers

We first discuss scaling. For any n that minimizes ̂  in the class jtf(n0) and any ball
Bκ(α) c= ί2, the formula,

nRta(x) = n(Rx + α) for x e B = IB ί (0),

defines a function in //*(B, §2) which is 'W minimizing in B with respect to its trace
on 5B. We shall study "small energy" minimizers of ^Γ in H^^S2). For
MGH^B, S2) and 0 < r < 1, we define the normalized Dirichlet energy in B, = BΓ(0)
by

= r"1 $\Vu\2dx.
Br

Note that

Our regularity theorem is based on the behavior of blow-up sequences, obtained
through rotation and scaling, and a "hybrid" integral inequality involving the L2

norms of a minimizer and its gradient.
First we describe a few properties of interest concerning blowing-up. For any

sequence uiEHί(E9§
2)9 the associated normalized sequence

v^E^UiΓ^Ui-ΰt) (where ΰί = ̂ uidx = \E\~^uidx)
B B

satisfies || vt \\Hι ^ 1 + c^2 . Here CB is the best constant for the Poincare inequality for
B,

J | w - ΰ\2dx ^ cBJ| Vu\2dx for we/f X(B, [R3).
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A subsequence of vt converges weakly in H^B), strongly in L2(B), and pointwise
almost everywhere to a function in H1(E, IR3). We will say that a sequence
M ίe/f1(B,S2) is a special blow-up sequence if

ΰ{ = (0, 0, λi) for some λ{ ^ 0, and, as i -> oo ,

εf = E^t/J-^O and vt = εf H"* ~~ "«) converges weakly in H1(B).

Then t; = lim^ is called the blow-up limit function for ut.
i-» oo

2.1. Lemma (blow-up of constraint). The image of any blow-up limit function v lies
essentially in the X-Ύ plane.

Proof. Note that,

B B

by the Poincare inequality. Thus, as i -» oo ,

and for a subsequence of {z},

εΓ Hi -I "/!)-»<* ̂ 0 and w -^e = (0,0, 1).

Observing that, almost everywhere,

|u£ |2 + 2εf ^/-"ί + fiΓ2l«il2 = lyί + £Γ ̂ J2 = |e«" ̂ il2 = εf2,

εί|ι; i|
2 + 2t;ί ΰί = βΓ 1(l- |« ί l

2) = (l + l« ί l )βΓ 1 ( l- |ϋ ί lλ

we pass to the limit as ΐ-»oo, strongly in L1, to conclude that 0 + 2ϋ e = 2d almost
everywhere in B.

Moreover, d = j^vedx = lim ί . e = 0. Π
e i -» oo

2.2. Lemma (blow-up equation). For any blow-up limit v = ( v ί , v 2

9 Q ) of a special
blow-up sequence of Of minimizers, v' = (v1, v2), is a solution of the constant coefficient
elliptic system

where W'p denotes the first two rows of the matrix Wp. In particular, there is a positive
constant c0 (depending only on κί9 κ2, and κ3) such that

f \v\2dx^cQr2\\v\2dx forQ^r^l. (2.1)
Br B

Proof. In view of 1.3 and Eq. (1.3),

ί{[^(Vt^-^®t^B

for any ζeH&B, fR3)nL°°. Substituting Vut = BtVvi9 dividing by εh and letting i-> oo,
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we obtain

J [flfyVϋ.e) - e® eVp(Vv,e)] Vζdx = 0
B

because Ϋn(Vuί9Uι) is quadratic in Vui9

Ui-+e strongly in L2, | w f | = 1 almost everywhere,

Vvt -> Vi; weakly in L2, and sup£ || Vvt \\L2 < oo .

Moreover, by choosing ζ with ( e = 0 [i.e., ζ = (C1, C2, 0)], the equation simplifies to

because

(e®e)P,(Vι;,e) Vί = [̂

Thus υ' = ( v 1

9 υ 2 ) is a weak solution of the system of two equations in two
unknowns - div W'p(Vv'9 e) = 0. This is elliptic because, writing WptJ(ξ, e) =
ΣhtkAijhkξhk9 we have the inequality Wp(ξ,e)'ξ^u\ξ\2 for all ξ = (ξ^ which
implies, in the special case of ξ with vanishing third column, that

Σ Σ Aκtjξι*ξtj**\ζ\2

i , f c = l , 2 j , / c = l , 2 , 3

Finally since ϋ = 0, the L2 estimate follows from standard linear elliptic theory (see
e.g. [F, 5.2.5]). Π

2.3. Lemma (Hybrid inequality). There exists a positive constant c (depending only on
/c l 5 fc2, and τc3) so that ifO<λ<l and if u is a minimizer ofi^ in H1(B, S2), then

E1/2(u) ^ λE^u) + cλ~ ^ J I u - u\2dx.
B

Proof. For an increasing fuction η on [0, 1],

has Lebesgue measure ^1/8. In particular, there is an reQ, 1] such that

2dx, f \u-u\2dJ^2^S^\u-u\2dx. (2.2)
dBr B

(A slightly weakened version of 2.3 (resulting from replacing λ~ 1 by λ~q for some
positive q, and assuming EX(M) sufficiently small) may now be easily derived from
[SU,4.3]. The argument given below is taken from [HL3].)

We claim that there exists a function weH1(Er,§>2) satisfying

and J|Vw|2dx^32( J \Vtanu\2dJ^2)1/2( J \u-u\
Br dBr dBr

(2.3)
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With such a comparison function w, we may use 1.4 and the ifr minimality of u \ Br to
infer that

and then obtain the desired hybrid inequality by employing (2.2) and Cauchy's
inequality A B^%δA2+%δ~lB2 with δ = λ/512j8α~1.

To obtain a function w satisfying (2.3), we first choose the harmonic function
h'Mr-» 1R3 with h\dHr = u\dBr. Using the divergence theorem, Schwarz's inequality,
and the harmonic fuction identity

= \\Vh\2dx + r J \dh/dr\2dJf 2,
dBr Br dBr

we obtain the desired inequality with w replaced by h,

$\Vh\2dx=$\V(h-ΰ)\2dx = J
Br Br OBr

^( J \h-ΰ\2d^2}ll2(
dBr dBr

g ( J |M - «|2dJf 2)1/2( J I V tanu| W2)1/2. (2.4)
aer dBr

Unfortunately, the image of A probably does not lie in §2 (although it does lie in BjJ.
To correct this we consider, for 0eB1/2, the projection

ΠJίx) = (x-a)/\x-a\9

and note that, by Sard's theorem, the composition Πa° h^H1(Br, S2) for almost all a.
Using Fubini's theorem, we estimate

J $\V(Πa°h)(x)\2dxda^2$\Vh(x)\2 j \h(x)-a\~2dadx
B1 / 2B r Br B1/2

g 2 J I V/φc) 1 2 1 1 j; Γ 2dydx = 8π J | Vh(x) \ 2dx.
Br B! Br

Thus we may choose αeB1 / 2 so that $\V(Πa°h)(x)\2dx ^ 8 J|V/z(x)|2dx. Letting
Br Br

w = (/7β |S2)"1o7Iβoft> we conclude that wl3B r = w|aB r and that

Br Br Br

which, along with (2.4), implies (2.3). Π

2.4. Theorem (Energy improvement). There are positive constants ε and θ < I
(depending only on κί9 κ2, and κ3) so that ifu is a minimizer ofW in Hl(B, §2) with

< ε2, then
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Proof. Were the theorem false, there would be, for each θ with 0 < θ < 1, a sequence
M! , M 2, . . . ,of i^ minimizers so that ε2 = E^ ) -> 0 as f -> oo and Eθ(wt ) > 0εf for each i.
Passing to a subsequence, we may assume that vt — ε^ l(ut — M f) converges weakly in
H 1 to a function i e/f ^B, (R3). Moreover, by choosing rotations Qt of IR3 so that the

vectors Qfiui are proportional to e, and by replacing ut by Q μ^ we see that the u{ now
form a special blow-up sequence (as considered in 2.1 and 2.2).

For $ ̂  r rg 1, and i sufficiently large (depending on 0),

For such ί, it follows from (2.1) that

r2εf (2.5)

whenever θ ̂  r ̂  1. For each i, we may also apply the hybrid inequality 2.3 to the
normalized function (1^)20,0 to obtain

Choosing the positive integer k = k(θ) for which 0 < 2kθ ^ 1, we iterate k — 1 more
times and apply estimate (2.5). to obtain

7=1 B2/β

^ - - g 2^ε? + 2c0cA- 1 Σ '̂~ 1(2 /θ)2εf
j = ι

^ 2[/ίfc + (1 - 4A)- 1c0^-2θ2]ε2,

for i sufficiently large (depending on θ and λ). Letting λ = θ3/fc, we see that λ ̂  1/8.
Finally, since fc-> oo as θ-»0, we may fix θ < 1/4 small enough to guarantee that

!6c0cθ<θ6/\

and conclude that, for ί sufficiently large,

Eθ(Ui) < [2Θ3 + 2 2 (l/16)θ]εi

2 ^ (1/40 + l/4θ)ε2 < θε?,

contradicting the choice of w f . Π

2.5. Corollary (Energy decay). IfneH1(Ω,S2) is a mίnίmίzer ofϋ^ (as in Sect. 1\ if

BR(a) c Ω, and if J | Vn\2dx ^ ε2R, then
BR(a)

j |Vn 2dx^θ~2R~1ε2r2 for 0 ̂  r ̂  R,
Hr(a)

where ε and θ are as in 2.4.

Proof. Apply 2.4 with u(x) = nR^a(x) = n(Rx 4- a\ then with
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to infer inductively that

(Θ'RΓ1 f \Vn\2dx = Eί(nθkR,a) = Eθ(nθk-^a)
BθkR(a)

^ΘEl(nθkR,a)^θ θk-iE1(nR,a) = θkε2

for k = 1, 2, 3, . . . . Given 0 < r ̂  #, choose fe so that θk+1R<r^ θkR to conclude
that

1 J IVnl^xgθ"1^2^^"2/?"^2^ D

2.6. Theorem (Interior partial regularity). IfneH1(Ω, S2) is α minimizer ofH^ (as in
Sect. 1\ then n is analytic on Ω ~ Z/or some relatively closed subset Z ofΩ which has
one dimensional Hausdorff measure zero.

Proof. Let

Z^αeβilimsupr' 1 J \Vn\2dx>0}.

Since J \Vn\2dx < oo, an elementary covering argument [F, 2. 10. 19(3)] shows that
Ω

Z has one dimensional Hausdorff measure zero.
Fix a point aeΩ ~ Z and choose R > 0 so that B2R(a) ^ Ω ~ Z and

R-1 J \Vn\2dx^ε2.
B2Λ(α)

Then for any

T^'1 j |Vn| 2 Jx^ε 2 ,
BR(b)

and so, by 2.3.

J \Vn\2dx£θ-2R-lε2r2 iorO^r^R.
Br(b)

Thus BR(a) c: Ω ~ Z. We conclude that Z is relatively closed in ί2, and, by Morrey's
Lemma [M, 3.5.2], that πGC°'1/2[BΛ(α)].

To infer the higher regularity of n near α, we assume that n(0) = e = (0, 0, 1) and
choose 0 < s < R so that n[Bs(0)] is contained in §2 n B1/2(e). With n = (n1, n2, n\
we may, in Bs(α), substitute

- (n1)2 - (n2)2,

in the weak Eq. (1.3) with ζ = ( ζ 1 , (2,0) to infer that (w1, n2)\Bs(a) is a critical point for

J J(Vu,u)dx where, for p = (p1,p2)e(R2)2 and M = (u1,M2)eR2,

Note that J is analytic on {(/?, u): u\ < 1} and that J( ,«) is a quadratic polynomial
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for each u. Moreover, by 1.3,

J(P,0)= «T(p,0),e] ^έα|p|2 for all

Then, for some positive δ<%9 J(p,u)^^a\p\2 on {(p,w): | t t | < δ}. Choosing, by the
continuity of n at α, a positive ί so that n[Bf(α)] is contained in B^e), we conclude
that (nl,n2}\Et(ά) satisfies a strongly elliptic system with analytic coefficients. By
[M, 6.7], (n1, H2)| Bf(α), and hence n\ Bt(a), is analytic. Π

3. Partial Regularity with the Modified Functional

Let F and 2F be as in 1.5, and let

+ΣJk\bjtk +Σj\cs\.
Ω

Our discussion of partial regularity will closely follow Sect. 2.

3.1. Scaling. If n is a minimizer for the functional W + 2F in H1(Ω, §2), then, for any
ball B,.(α)eί2, the scaled function nr^a (considered in 2.1) now minimizes i^ + ^%)fl,
where the coefficients of the corresponding integrand Fra are defined, for xeB, by
the expressions

rajkl(rx + a\ r2bjk(rx + a\ r2Cj(rx + a).

Note that [FΓfJ g r[F]. We shall study "small energy" minimizers of W + J^ in
H^BjS2) where [F] is small.

3.2. Lemma (blow-up equation). Suppose v = (t;1, ι?2, 0)e/f ^B, S2) is a blow-up limit
for a special blow-up sequence ui (as in 2.1) where each ut minimizes some functional
*W + J^i so that the integrand Ft corresponding to ̂  \ satisfies

Then, as in 2.2, υ' = (v ί , ι;2) αgfαiπ satisfies the elliptic system — div W'p(Vv', e) = 0 in B,
(and /zence ί/ie L2 estimate of 2.2).

Proof. With C = (C1»C2

Ϊ0) as in 2.2, we again substitute Vw f = e^V^ in the weak
equation for κt and divide by ε f. The new terms are

Kv^ζ + εf x (tt^K JJ + εf ̂ j A* [("̂ k +

where £f = (ΐ — ut®u^ (Vζ)t = (H - W f O w J V C , and αjw, &#, and c^ are the coeffi-
cients of Fj . The integral of these terms approaches 0 as i->oo because of the
assumption on [FJ. Π

One may check that Lemma 3.2 remains true without the hypothesis

lim [FJ/εf = 0 in case the Ft all come from a single cholesteric energy function.
i->00

3.3. Lemma (Hybrid inequality). There exists a positive constant c (depending only
onκί9κ2, and κ3) so that ifQ<λ<l,Fis as in 1.5 with Ω = B, and u is a minimizer of
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W -f 2F in H^B, S2), then

E1/2(w) ̂  AE^w) + c A ~ 1 j I u - ΰ\2dx + cA"2[F]2.
B

Proo/ To verify this, we argue as in 2.2 (with λ replaced by A/2) and use again the
function w as a comparison function. We now have various additional terms arising
from F(u) and F(w). To handle these, note that Er(w)'^cλ~1E1(u). Thus we may
employ the inequality \Σj^lajkln

i

Xhn^ \ ̂  μ| Vn | 2 4- (2μ)~2[F]2 with n = u or n = w
and with μ being a suitable multiple of A2 to guarantee that the square gradient terms
may be absorbed as contributions to AEr(w). The remaining terms coming from F(u)
and F(w) all can be bounded by cA~2[F]2 because | w | = |w | = l almost
everywhere. Π

3.4. Theorem (Energy improvement). There are positive constants ε, η, and θ < 1
(depending only on κ±, κ:2, and κ3) so that if u is a minimizer ofitr + &: in H1(B, S2)
with EJ(M) < ε2, then

Proof. We argue as in 2.4. If the theorem were false, then, for any fixed 0 < θ < \,
there would exist ̂  \ as in 1.5 as well as minimizers u{ of *W + ̂ i for which ε2 =
E^w^-^O and Eθ(ui)/θ[Fi']

2 -» oo as i-> oo while Eθ(Mf) > θεf for each i. In particular,
lim [F J/ε,- = 0, because ε2 = E^M^ ̂  ΘEβ(Mf). A blow-up limit function v, chosen as in
i-» oo

2.4, now satisfies the conclusions of both 2.1 and 3.2. Using the same L2 estimate for v
and choosing fe, θ, and /I as before, we deduce that

for i sufficiently large, contradicting the choice of w t . Π

3.5. Corollary (Energy decay). IfneH1(Ω, §2) is α minimizer ofϋ^ + ̂  (as in 7.6), i/

BΛ(a) c= Ω, and if J | Vn\2dx ^ ε2R, then
BR(a)

2}^-1r2 for 0 < r < R.
B,(α)

Proof. Recalling from 3.1 the scaling estimate for [F], we iterate 3.4 as in 2.5 with ε2

replaced by max {ε2, η\_F]2R2}. Π

3.6. Theorem (Interior partial regularity). If the coefficients of F belong to <&\£.(Q\
where /ce{0, 1, . . . , oo, ω] and 0 < μ < 1, then each minimizer nofl^ + 3? belongs to
y>\Qc(Ω ~ Z, S2) for some relatively closed subset Z of Ω which has one dimensional
Hausdorff measure zero.

Proof. Taking Z as in 2.6, Holder continuity on Ω ~ Z again follows from Morrey's
Lemma. The argument for higher regularity using elliptic theory continues to hold
in the presence of the additional lower order terms whose coefficients are locally
bounded in ^k'μ norm. Π
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4. Electric Fields

An electric field E impressed on the liquid crystal gives rise to a polarization density
P = ελE + εa(E-u)u in Ω for some constants ε± and sa. For a positive constant ε0, the
displacement vector is given by D = ε0E + P in Ω, and contributes the term —^DΈ
to the energy of the system. In the absentee of free charge and in static equilibrium,
Maxwell's equations for D and E are div D = 0 and curl E = 0. Because of the second
equation, it is reasonable to consider an electric potential function φ for E, E =
— Vφ. The field E, or, for our purposes, the potential φ, will be regarded as another
dependent variable in the problem, unlike the case of a magnetic field, cf.
[DeG,p.99] or [HK].

In order to simplify notation and to avoid confusion, we set α0 = ε0 + ε± and
ua = εa. Then

D = D(Vφ, n)= - [α01 + α

A(Vφ9 n) = %D - E = - \ [α0H + aan (x) n)Vφ Vφ.

Assuming further that | αα | < α0 , we obtain the coerciveness condition A(ξ,u)^.λ\ξ\2

for £e(R3, where λ depends only on αfl and α0. The total energy of a virtual director

configuration u and field potential φ is $*(u,ψ) = J [W(Vu,u) — A(Vψ,u)^dx. This
β

functional is not bounded below because the two energies complete. Nevertheless,
we can obtain critical points by imposing Gauss's law as a constraint. We may then
extend our partial regularity theorem to this case.

As a typical problem, we shall consider given fixed functions n0 : dΩ — > S2 and φ0 :
δί2->R, where n0 is Lipschitz and φ0eHll2(dΩ). (Other boundary values and
boundary value problems may be treated.) Let

^*(n0) - j/(n0) x {ψεH^Ωy.ψ - φ0 on dΩ}.

We wish to find a critical point (n, φ)ej/*(π0) of <ί*, i.e., a solution of δ<f>*(n, φ) = 0.
For any u€H\Ω9B

2)9 the Dirichlet problem

— div (α0H + aau ® u)Vψ = 0 in ί2, ψ = φ0 on dΩ,

has a unique solution which we denote by Φ(u) [or by Φ^0(w) to indicate the
dependence on the boundary values φ0]. Thus Φ(w) is the unique minimizer of

J A(Vψ,u)dx among φEHί(Ω) with φ = φ0 on 3ί2. Then, if φ is some fixed H1

Ω
extension of φ0 to Ω, we have the obvious estimate

(4.1)
Ω Ω Ω Ω

For UEH1(Ω,S2) we now let <f(w) [or Sφo(u) to indicate the dependence on φ0]
denote the energy

g(u) = g*\u, Φ(u}-} [i.e. #» = (f *[M, Φ»]]. (4.2)

It is worthwhile noting immediately that the potential contribution φ = Φ(n) will
not impede the partial regularity of n (obtained below) because this contribution
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occurs through Vφ and, owing to the De Giorgi-Nash theorem,

J I Vφ\2dx ^ Crl+μ for aeΩ and r sufficiently small. (4.3)
Br(a)

For our existence theory, we shall obviously minimize $ (u) in .S/(HO), but first let
us verify that this gives the correct result.

4.1. Theorem. A pair (n,φ) is a critical point of$*(u,ψ),

δ£*(n,φ) = Q on rf*(n0), (4.4)

if and only if φ — Φ(n) and

δf(n) = Q on j/(n0). (4.5)

In this case, (n,φ) is a (weak) solution of the field equations [see (1.11)]

-ά\\{Wp-n®nVp} + Y(Vn, n) + (H - n ® n)Au(Vφ, n) = 0, (4.6)

) = 0, (4.7)

subject to n = n0 and φ = φQ on dΩ.
First we prove the following lemma.

4.2. Lemma. Let γeHί/2(dΩ) and let a(x,t) = \aij(x,t)'] be a square matrix-valued
function on Ω x R which is uniformly positive definite, a(x, t)ξ-ξ^ λ \ ξ \ 2 for (x, t)εΩ

x [R and all ξ, measurable for xe/2, and Lipschitz for ίeR. Let ψt and Ψ denote the
solutions of the problems

— div [α( , ί)V^,] = 0 in Ω, ψt = y on dΩ, and

-div[β( ,0)VΨ] = -divl(da/δt)('90)Vφo] in Ω, Ψ = ΰon dΩ. (4.8)

Then,

[.Ψt-Ψto']/t-*Ψ inHl(Ω) ast^Q.

Proof. For any

=- J [fl(x,i)-fl(
Ω Ω

Choosing η = ψt — ψ0 and applying Schwarz's inequality, we find that

Aj|V(^-ιAo)l2^lld^
Ω

hence,

We conclude that (ψt — ψ0)/t -> Ψ weakly in H1(Ω) as t -> 0 because any limit of an
H 1 weakly convergent subsequence (ψti — ̂ 0)Ai must satisfy (4.8) and hence equal
Ψ.



Static Liquid Crystals 563

To obtain strong convergence in Hl(Ω\ we note that

I(t) = j [α(x,
Ω

Ω
2- 2ί[α(x, f)V(ι/>, - I/O)] V f + ί2[α(x, ί)V ίP ] V Ψ}dx

= j {α(x, t) - α(x,0)]V.A0 V(^ - ψ0)
β

- 2ί[α(x, ί)V(^f - i/Ό)] V y + ί2[φc, ί)V ¥*] V f jdx

We conclude from the weak convergence and (4.8) that, as t->0,

2)
2 ̂  ί " 2/(0^ f [(5α/δί)(x, 0)V(A0 - 2φ, 0)V fP

Proof of Theorem 4.1. The argument for this is standard. One need only account for
the constraint \n\ = 1 and the variation of the field as a function of n, which is the
motivation for Lemma 4.2. For example, let veH1(Ω, (R3)nL°° be given and set

nt = (n + tv)/\n + tv\ and ψt = Φ(nt) for \t\ < l/| |ι?| |L«.

Then

= Of(nt) = J { ̂ p(Vπ, n)Vζ + Pyu(Vn, n)C + Λ(Vφ, n)C + D(Vφ, n)V Ψ}dx.

So (4.5) implies (4.6). Likewise (4.6) and (4.7) imply (4.5).
Similarly, one shows that (4.4) is equivalent to (4.6) and (4.7). Π
The existence of a critical point of <ί* on ^*(π0) is now a consequence of 4.2 and

the following:

4.3. Theorem For n0 and φ0 as above, there exists an ne^(n0) such that

ff(n)= inf ff(u\
uerf(n0)

Proof. Let π t e^(n0) be an ^ minimizing sequence, and set φt= Φ(n^. Using the
energy bound (4.1) and arguing as in 1.5 and 1.6, we obtain bounds

1 1 Vnt\
2dx ^ 2α-1[sup*(nί) + ̂ (n0) + c(Ω,γ) + c, \Ω |]

Ω i

(for some choice of constant c1 in the cholesteric case). Passing to subsequences, we
may suppose that n{ -> πej/(n0) and φt -+φεHl(Ω\ weakly in H1, strongly in L2, and
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pointwise almost everywhere. Now, as before,

J W(Vn, n)dx ̂  lim inf J W(Vnh nt)dx.
Ω i -» oo Ω

On the other hand, since φ{ is the solution of a minimum problem,

Ω Ω

By the uniform bound, \nt\ ^ 1, and Lebesgue's theorem,

lim J A(Vφ, n^dx = J A(Vφ, n)dx.
i->oo Ω Ω

Thus

lim sup J A(Vφh nt)dx ^ J A(Vφ, ri)dx,
i -+ oo Ω Ω

and

δ(n)= inf δ(u\ D
ue.s/(n0)

We now turn to the partial regularity of a critical point (n, φ\ obtained by
minimizing $. To simplify technical aspects, our attention is confined to the nematic
case. We first discuss scaling. Suppose that φ = Φ(n\ where n is, as above, a
minimizer of $ in jtf(n0). For any ball Br(α) c ί2, one may consider the functions φfta

and n r < f l, defined by

φrta(x) = φ(rx + a) and nr,Λ(x) = π(rx + α) for xeB.

Then, with respect to their own boundary values on δB,

, , wr,β m n m z e s .

Note that

J lV^pdx^r- 1 J \Vφ\2dx.
B Br(α)

We shall obtain estimates for small energy minimizers we/ί^B, §2) of $ involving
the quantity

as well as on E^w).

4.4. Lemma (blow-up equation). Suppose D6//1(B, S2) is a blow-up limit for a special
blow-up sequence uh where each ut minimizes some functional $ { — $yι [see (4.2}~\ with
fte//1/2(5B) and where lim || VΦ^ )!!2^ - 0. Then, as in 2.2, ι/ '= (v\v2) again

i = oo

satisfies the elliptic system

-divfl^,(Vi/,e) = 0 in B,

(and hence the L2 estimate of 2.2).
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Proof. The function ut satisfies the weak form of Eq. (4.5) with φ replaced by
φ. = Φ(u^). Using a test function ( = (ζ^ζ^O) as in 2.2, we again substitute Vut =
SjVVi and divide by ε( . The integral of the new term ε/~ M^V^, M, + ε^ C approaches
0 as i — >oo because of the assumption on | |Vφ ( | |

2 . Π

4.5. Lemma (Hybrid inequality). There exists a positive constant c (depending only on
κί,κ2, and κ3) so that ifO<λ<l and u is a minimizer of$ = $φQ(u) in H1(B, §2) with
φ0e#1/2(<9B), then

B

Proof. First note that u is, by the argument of 1 .3, a minimizer for the corresponding
adjusted energy <? = g - H^ + n^,

<?(M) = f [ W(Vu, u) - A[VΦ(u)9 κ
β

Then choosing re[^, 1], w, and A as in 2.2 and changing c suitably, we may use
the $ minimality of w |B r to infer that

E1 / 2(w) ̂  2Er(w) ̂  4oΓ ̂ (wl Br) g 4α" ^(M B,) + c || VΦ(w) ||2

g 4α~ ̂ (w| B,) + c || VΦ(u) ||2 ̂  4j3α~ 1 J | Vw| 2 r fx + c || Φ(w) ||2

ii2. α
B

4.6. Theorem (Energy improvement). There are positive constants ε, η, and Θ < 1
(depending only onκl, κ2,and κ3) so that ifu is a minimizer of$ = $Ί with yεHi/2(dB)
and Eί(u)<ε2, then Eθ(u) ^ θmax {^(u\η \\ VΦ(w)||2}.

Proof. We argue just as in 3.4 with [T]2 replaced by || VΦ(u)\\2. Π

4.7. Corollary (Energy decay). If n is a minimizer of $ — $ y in H1(Ω,S2) with

yεHll2(dΩ\ifnR(ά)<=:Ω,andif J \Vn\2dx^ε2R, then

J \Vn\2dx^cθ-2max{ε2,η\\VΦ(n)\\2R-ί}R-1ri+μ forO<r<R/2,
Br(α)

for some positive constants c and μ, depending only on the electric field constants ε0, ε15

and εa.

Proof. From the inequality (4.3) and scaling, we obtain the estimate

r'1 J |Φ(n) | 2 dx^c| |Φ(n) | | 2 K-V for 0<r<#/2.
Br(α)

Recalling from 4.3 the scaling estimate for | |VΦ(/?)||2, we now iterate 4.6 as in
3.5. Π

4.8. Theorem (Interior partial regularity). Ifn is a minimizer of $ = $φo in Hl(Ω, S2)
with φ0eH1/2(dΩ), then φ — Φ(n) is locally Holder continuous on Ω, and both n and φ



566 R. Hardt, D. Kinderlehrer, and F.-H. Lin

are analytic on Ω ~ Z for some relatively closed subset Z of Ω which has one
dimensional Hausdorff measure zero.

Proof. The Holder continuity of φ follows from De Giorgi's theorem [D]. Taking Z
as in 2.6, the Holder continuity of n on Ω ~ Z follows from Morrey's Lemma and 4.7.

To verify the higher regularity of n and φ near a point aeΩ ~ Z, we assume, for
convenience, that n(a) = e = (0,0,1). Recalling the argument for higher regularity in
2.5 and using the Euler equations for (n, φ) obtained in 4.2, we readily verify that on a
small neighborhood of a, the triple (w1, n2, φ) satisfies a strongly elliptic system with
analytic coefficients. Thus n and φ are analytic near a by [M, 6.7]. Π

5. Partial Regularity at the Boundary

Suppose n minimizes 'W in the family j^(n0)
 as m Sect. 1. Since n extends to an H 1

function defined in a neighborhood of Ω, the set

r^αeaΩilimsupr- 1 f \Vn\2dx>Q}
r J O Br(α)

has, as in 2.6, one dimensional measure zero. Here, assuming that aedΩ ~ 7,
fee { 1, 2, . . . , oo , ω}, 0 < μ < 1, and both dΩ and n0 are %>k'μ near α, we show that n is
(gk,μ near fl QUΓ discussion below, which involves modifying Sect. 2, can easily be
adapted to handle boundary regularity for the problem of minimizing W + 3?
(Sects. 1.5,3) or for the electric field problem (Sect. 4).

5.1. Scaling. For any ^1 function φ: (R2->(R with ^(0) = 0 = |V^(0)|, let

ί̂  = {(x1,x2,x3)eB2:x3<ι/φc1,x2)}.

For Ω, α, and rc0 as above, there exists a positive number R, a rotation /ze§O(3), and
a function ̂ e^R2), so that

and n0 is (^1 on E2R(a)ndΩ. For 0 < r ̂  R, let ^Γtβ(x) = ψR,a(rx/R). Then, for « as
above, the expression nr>α(x) = n[r/ι(x) + α] defines a function in H^Ω^^ S2) which
is Of minimizing. Its trace on B2 n dΩψfais given by (n0)rt0 (x) = π0[r/z(x) + a]. Note
that

Eι(«r,α) = 'i"1 ί IV"I2^>

We will study the behavior of small energy minimizers of ̂  whose traces on
B2ndΩψ have small Lipschitz norms.

To treat blowing-up at a boundary point, suppose that, for i = 1, 2, . . . ,

( A / : [ R 2 ^ [ R i s ^ 1 with ^.(0) = 0 = |Vi/r f(0)| and

w f belongs to H^β^S2), gi = ui\n2πdΩφi is Lipschitz,
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and, as i -> oo ,

E^u^ f \Vut\2dx^Q and [Lip(M + Lip^/E^^O.
BnΩψι

It is convenient to have ut defined on the whole ball B = Hί by letting

u.(x) = - M ί[x1,x2, -x3 + 2ιAl (x1,x2)] for xeB - β^.

Then

l i m ε f 2 J | V W i | 2 d x = 0 where ε? = f | V W j | 2 d x .
i-*oo

As in Sect. 2, we can compose with rotations and then pass to a subsequence to
insure that

e W f = w f for all i [where ΰt = fadx] f and
B

Vi = ε^ 1(uί — M f)| B converges weakly in ff 1 .

Under all these conditions, we say that u{ is a special boundary blow-up sequence, and
we again call υ = lim vt a blow-up limit.

ί— * 00

5.2. Lemma (blow-up equation). Suppose v is a blow-up limit for a special boundary
blow-up sequence ut of 'W minimizers, as above. Then, for almost all xeB,

u(x) e = 0 and ι;(x1?x2, — x3) = — ι;(x1,x2,x3).

Moreover, v' = (v1, v2) is a solution of the elliptic system

-divfl^(Vι/,e) = 0 on {(x 1 ?x 2,x 3)eB:x 3 >0},

and satisfies the L2 estimate of 2.2.

Proof. The first conclusion was established in 2. 1 . To obtain the second, we note that

lim εί~
2Lip(^ί) = 0 and use the strong L1 convergence of vt to v to verify that

i->oo

for any Ce^°(B,[R3) satisfying C(x1,x2,-x3) = C(λ:ι,x2,X3).
Next we note that a function with support in B n (x3 > 0} has, for ί sufficiently

large, support in Bn/2^.. Using such a function as a variation, we find that, in
{(x1,x2,x3)eB:x3 >0}, v' = (v1

9v
2) satisfies (in a weak sense) the above system.

Moreover, since v'GH1(E,M2) and is odd in x3,ι/ has zero trace on
{(x1,x2,x3)eB:x3 = 0} and so satisfies the L2 estimate of 2.2 by the linear elliptic
boundary estimate [M2,6.3]. Π

5.3. Lemma (Hybrid inequality). There exist positive constants c and q (depending
only onκί,κ2, and κ3) so that ifO < λ < 1, ψ is as in 5.1, Lip(^) ̂  l,uisa minimizer of
Or in H^Ω^S2), g is the trace ofu on BndΩ^, and Lip(^)g c-1/i1/2, then
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Proof. First one may find a universal constant Λ so that, for any re[0, 1] and any ψ:

R2 -> [R with Lip (i/O ̂  1, there exists a bilipschitz map ϊ = Y(r, ̂ ): Br nβ^ -> Br with
supjLip^LipT" 1 } ^Λ. Next we choose reQ, 1] exactly as in the proof of 2.3.

Using the extension G: Ωψ -> S2 of g given by G(xί , x 2 > *s) = #[χι > *2> ̂ (χι > ̂ 2)]' we

define the map ω:δBr->S2 by

We now construct wef/1(B r, S
2) exactly as in 2.3 with κ|δBΓ replaced by ω and ΰ

replaced by ΰ + G, where G = f Gί/x. Note that

Since w°Γ + G and u\Ωφn Br now have the same trace on δ(Ω^n Br), we conclude
from the ̂  minimality of w|β^nB r, Cauchy's inequality, and (2.2) that,

^ 8j8α"M5 J I Vw| 2dx + c J | VG\2dx

f (

Br

J |V tanω|2

dBr

5 f IV^iip
dEf

J l u - w

2 1 / 2

1 J \u-ΰ\2d3e2-]+'cδ-l(Upg)2

for <5 = λ/lQ24βa~lΛ 10 and an appropriate choice of c. Π

5.4. Theorem (Energy improvement). There are positive constants ε, η, and θ < 1
depending only on κl9 κ2, and κ:3) so ί/iαί ι/ι/f is as m 5J, M is a minimizer of if in
H ΐ ( Ω { { / , S 2 ) , g is the trace ofu on Bndβ^, and E1(w)<ε2, then

Eθ(u) ^ θ max {E^M), fy(Lip g + Lip ψ)2}.

Proof. If the theorem were false, then, for any 0 < 0 < 1, there would exist C1

functions φ^ R2 -> [R with φ^O) = 0 = | V^£(0)| and if minimizers ut in H^Ω^S2)
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having Lipschitz traces gt on IB n dΩ[l/ι so that

E0(i/t ) > ΘE^Ui) for all i and, as /-> oo,

E^iiiHO and [Lip^ ) +

As in 2.4, we may, after composing with rotations and passing to a subsequence,
assume that ut is a special boundary blow-up sequence. We define ut on the whole
ball B as in 5.1, and let εt , υi9 and f be as in 5.1 and 5.2. Using 5.2 and repeated
application of 5.3, the argument now proceeds as in 3.3 [with [FJ2 replaced by

^ ) + Lip (#;)]. Since

ε / E ί ( u i ) - > 2 as

we now find that, for i sufficiently large,

the desired contradiction. Π

5.5. Corollary (Energy decay). Suppose Ω is a domain in [R3, aedΩ, n0: dΩ -> §2, and
both dΩ and n0 are both ̂  1 near a. Then, ifR > 0 is sufficiently small (depending on the
^l norms of dΩ and n0 near a) and ifneH1(Ω,S2) is a minimizer of i^ with

n\dΩ = n0 and J \Vn\2dx ^ε2R,
BΛ(α)

then

j \Vn\2dx^θ~2max{ε2,ηR2}R~2r2 forO<r<R.
Br(a)

Proof. Recalling 5.1, one uses 5.4 and argues as in 2.5 or 3.5. Π

5.6. Theorem (Partial regularity at the boundary). Suppose Ω, n0, n, and Y are as in
Sect. 1 and 5.0, Z is as in 2.6, and X is a relatively closed subset ofdΩ such that n0 and
dΩ are ^k'μ off of X for some fce{l,2,...,oo,ω} and 0<μ < 1. Then n belongs to

Proof. To obtain local Holder continuity on Ω ~ X ~ Y ~ Z, we note that trivially

j \Vn\2dx<> J I Vn \ 2dx whenever Br(b) < Br(α),
Br(b)nΩ BR(a)nΩ

and apply 5.0, 5.1, 5.5, and 2.5 as in the proof of 2.6.
To prove higher regularity near a point aedΩ ~ X ~ 7, we assume that

n(a) = (0, 0, 1), and observe as in the proof of 2.6 that, near a, the pair (n1, n2) satisfies
an elliptic system with analytic coefficients on a ̂ k'μ domain and has ̂ M boundary
values near a. The theorem now follows from [M, Sect. 6]. Π
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Note added in proof. Leon Simon has recently informed us that Stefan Luckhaus has found a result
similar to Lemma 2.3.




