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Abstract. We describe the set of all translation invariant Gibbs states in the
g-state Potts model for the case of g large enough and the other parameters to
be arbitrary.

Introduction

The aim of this note is to describe the set of all translation invariant Gibbs states in
the g-state Potts model. We consider only the case of g large enough, assuming the
other parameters of the model, i.e. the temperature and the space dimension v =2,
to be arbitrary. Let Z* be v-dimentional lattice, v=2. The distance between
any two points x,y€Z’, x=(xy,...,x,), Y=y ...,»,), is defined as

d(x,y)= Y |x;—y;|. We assume that the spin ¢(x), x € Z*, in the model under
i=1

consideration takes values in the finite set Q={1,...,q}, and the formal
Hamiltonian is written as follows:

H=— <Z> 5(p(x),¢(y) s <P(x), (P(y)e Q s (1)
X,y

where the sum is taken over all the pairs of nearest neighbors x, y on the lattice and
d is the Kronecker symbol. By g(B, q) [respectively by g®¥)(B, q)] is denoted the
class of all (respectively of all translation invariant) Gibbs states with f parameter
and the Hamiltonian (1).

By using reflection positivity Kotecky and Shlosman [1] have proved the
coexistence of ¢+ 1 phases at some f(q) (critical inverse temperature) for g large
enough. Another approach to the solution of this problem, based on the contour
technique, was offered by E. Dinaburg and Ya. Sinai [2] and independently by
Bricmont et al. [3]. Everywhere below we mean that the value of f(q) is defined
namely as in [2], although the next theorem shows that f(g) is to be unique.

Now we formulate the main result of this paper.

Theorem. For any v=2, q,(v) may be found so that for all > q,(v) the following
statement is true. There exists such a value f=f.(q) of inverse temperature, that
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i) when B=B.(q) the class g""V)(B, q) contains exactly q+ 1 extreme points P?,
PW_ . P@ i e.any translation invariant Gibbs state P € g™(B, q) is expressible as

P=0gP®+o,PV+ .. +a, P9, 0,20Vi, Xo=I,

ii) foreach p> B.(q) one may constructed q Gibbs states P, PP, ..., P so that
any translation invariant Gibbs state P € g®™(B, q) is expressible as

P=o, P+ ...+, PP, 0,20V, Yo=1,

iii) when B < B.(q) a Gibbs state is unique in the class g“(8, q) of all translation
invariant Gibbs states.

Remarks. 1) when f§ < (q) one can prove the uniqueness of the Gibbs state in the
class of all Gibbs states, but we omit the proof of this fact, ii) by a quite different
method Laanait et al. [4] have received the similar result in the case v=2.

1. The Basic Definitions and Notations

In this section we make use of the definitions and notations of [2]. Given any set C,
denote by |C| the number of points in C. Let VCZ". Let 0V = {x € V| there exists y
¢ Vsuch thatd(x,y)=1},and 0,V = {x ¢ V| there exists y € V such that d(x, y)=1}.
The mapping ¢:Z*—Q will be called a configuration. The restriction of the
configuration ¢ to the set V CZ" is denoted by (V). This ¢(V) is sometimes called
a configuration on V. If ¢ is a configuration and xeZ®, we put a(x, @)= {the
number of y, for which ¢(y) =+ o(x), d(y, x)=1}.

Definition 1.1. Let ¢ be an arbitrary configuration. We shall say that ¢ is in the
phase 0 at the point xeZ®, if ¢(y)+¢(x) for all y such that d(x,y)=1. If
o(y)=p(x)=p (1 Zp=q)forall y, satisfying condition d(x, y) =1, we shall say that
@ is in the phase p =0 at the point x. If at the point x € Z” the configuration ¢ is in
none of the phases 0,1,...,q, then x will be called an incorrect point of the
configuration ¢. The union of all incorrect points of the configuration ¢ is called
the preboundary of ¢ and denoted by B*(p). The set {x|d(B*(¢), x)< 1} is called
the boundary of the configuration ¢ and denoted by B(¢). We consider only the
configurations for which |B(¢)| < 0. A set X CZ" is called connected if given any
x’,x” e X there is a sequence x4, ..., X, of points x;e X, i=1, ..., n, so that x; =x,
x,=x", and d(x;,x;4,)=1, i=1,2,...,n—1. Let B(¢)=uUB(p) be a decompo-
sition of B(¢) into its maximal connected components. Each of the sets dB,(¢) is in
turn the union of its connected components. One of them is external and denoted
by 0B{**(¢), and the others are the boundaries of some bounded domains O,
(they will be called internal domains) and denoted by dB{}"(s=1, ..., r(i)), where
r(i) is the number of these domains. At each point of 0B;(¢) the configuration ¢ is
in some phase. At different points of the same connected component of B{*" or of
dB{" this phase is the same and coincides with the phase in which ¢ is at the points
that are at distance 1 from this component and belong to the complement of B,(¢).

Definition 1.2. A contour y% is a pair (P, p (b)), where b is a connected
component of B(g) for some configuration ¢, which is in phase p (p=0, 1, ..., g) at
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the points of (0b?)©", and y(b?)) is the restriction of this configuration to ). The
set b'? is called the support of the contour y® and denoted by suppy?. The union
of all internal domains O is called the interior of y® and denoted by inty®. Put

V(y?)=suppyPuinty®,  Ext(y")=Z"V(y").

The outer contours are defined as usual [5]. Given fixed VCZ", |V|< o0, denote
by APV, o), p=0, 1, ..., g, the set of all configurations that are in phase p at each
point of ¥ and coincide with the configuration ¢, on 0, V. Here ¢4(x)=p for all
x€0,V,if p+0,and ¢y(x)+ @q(y)forall x, ye 0, V,such thatd(x, y)=1at p=0. We
shall consider only such boundary conditions without mentioning it further.
Introduce the following partition function

EPVi00B)= % Jexp{—fHy(9)}, (1.1)

0eUAP)(V, 9o

where

Hy(p)= Y o + > 1) .
V((p xScv @(x), p(y) (oyd rxeV eV 0(x), 9(»)

Fix p, 0Sp<q, and consider the arbitrary collection P’ =(b®, (b)),
i=1,2,...,n, of pairwise outer contours. Let V(3!?)CV, i=1,2,...,n, for some V.
Denote by AP({yP1, V, @,) the set of all configurations ¢(Vud, V) such that both
©(0,V)=,(2,V) and the set of contours y{"(i=1,2, ..., n) coincides with the set of
all outer contours of B(¢). Introduce the partition function

EOWVIPY 1, B, 00)=EPV, B, 00) ™! > ) exp{—BHy()},(1.2)

QAP (P, V, 90

and put
EP((PYi- 1, f= Jim EPVI{PYi- 1 B, @o) s (1.3)

where V— oo in the Van Hove sense. Z@(y®, B) will be called a crystallic partition
function. Given any WCZ', |W|< co define the dilute partition function

EO(W, f) = > EP({y"}- 1, B), 14)

0P, ..y ew

where the sum is taken over all such collections of outer contours {y#}7_,, that
V(@)W Vi and d(0W, UV (y;))>1. Let WV, |V|<oo. We consider also the
dilute partition function
EP(VIW, B, 9o) = o z } EOWVIY =1, B 900) » (1.5)
)’1

P,y

where the sum is taken, as above, over all such collections of outer contours ¥,
i=1,...,n, that V(3")CW and d(0W, UV (y;))> 1. It is not difficult to see that

E"’)(VIV("), ﬁ’ q)o)z Z exXpy — é Z OC(X, QD) s (1~6)
@eAP)(y(P), ¥V, po) 2 xeV

when p =0, where a(x, @) =0 for all x ¢ V' (y?) and partition function (1.6) does not
depend on V. In particular from this one can get both the existence of the limit (1.3)
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for p+0 and the formulas
EQGD, B)=EPVY®, B, ¢o) » (1.7)

EPGPY 1 )= TT Z60, ). (19)

i=1

For p=0 the existence of the limit (1.3) is obtained in [2]. Finally, let us formulate
the results of E. Dinaburg and Ya. Sinai [2], which will be helpful for us later on
(see also [3]).

1.1. Interacting Contour Models

Let I'={y,...,y,} be a finite collection of the contours, such that suppy;
nsuppy;=0 for all i%j and I"CI. I is called the maximal permissible
subcollection of I', if given any two contours y3, y; € I'’, neither of them is inside of
one other, there does not exist such a contour y € I', such that suppy’ Cinty, suppy,
CExty, and it is impossible to extend I, keeping the above mentioned properties.
It is supposed that contour Hamiltonian is written as

H(F)=V§FF()))+G(F), (1.9

where G(I') is the interaction energy of contours of I' and has the special form
G(H= 2 ¢, |I">1, (1.10)
rcr

and the sum is taken over all the maximal permissible subcollections I'* of the
collection I'. Then G(I") and F(y) are supposed to be invariant with respect to any
shift of the lattice. It is supposed, moreover, that the estimates

> exp(—F(y)=exp(—k[C] (1.11)

yisuppy=C

hold with some constant k> 0. Other properties of the interacting contour models
wouldn’t be immediatly used in this paper, that is why we omit them (see [2]). We
shall write I'CV, if suppyCV for any yeI. Let VCZ’, |V|< co. Dilute (contour)
partition function in V is written as follows:

Z(VIF,G)= F;V exp(—H(I),
and
Z(yIF,G)= FC%W exp(—H(youl)

is called the crystallic partition function of the contour 7.

1.2. The Interaction G for the Potts Model

Let VCZ',|V|< oo and let y{9 = (b{?, p(b{?)), i=1, 2, ..., n, be such pairwise outer
contours, that V(p{®)CV for any i=1,2,...,n. Then the functions

GO ) =InENHOY- 1, f)— X mEQH, p), (1.12)
i=1

GON=1: Vs 00) =InECWVI{O}=1, B, 0o)— T MEOWVPO, B, 00)  (1.13)
i=1
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don’t depend on f. Let us mention the connection between (1.10) and (1.12). If the
collection I' of contours satisfies the condition of point 1.1, then

G- )=6I"D),

where I =(y(?, ...,7{?) is the set of all outer contours of the collection I

1.3. Description of Gibbs States, Some Estimates
There exists ¢q(v)>0 such that for all g>gq(v), one finds p.(q)>0

1 . . .
<ﬁc(q)= *nvg +O(q‘1)>, the contour functional F9, the interaction G and q

contour functionals F®, p=1,2,...,q, so that

FOHO, B(q)=ZHOF®, G©), (1.14)
OGP, B(q)=ZGPIF?),  p=1,....q. (1.15)

Moreover
ym:supwmrceXp(—F"”I(v"”)) <exp(—k(@IC), p=0,....q, (1.16)

where k(g)—0 when g— 00. Note finally that based on the contour definition one
can prove the existence of the constant c¢(g), such that the estimate

FO(P)<c(q) Isuppy®) (1.17)
holds when f=f.q).

2. Construction of Pure Phases in the Case f ¥ f.(q)

All constructions in the case f= f(¢q) are based on some inequalities which are
similar to that of R. Minlos and Ya. Sinai [6] for the Ising model.

Definition 2.1. The point xe Z" is called a stable point of the configuration ¢
under either of the following conditions:
i) B>PB.q), ¢ is in phase p=0 at the point x,
ii) f=P.q), ¢ is in phase p, p=0, 1, ..., g, at the point x,
iii) f<p.q), ¢ isin phase 0 at the point x. In all other cases the point x is called
the unstable point of the configuration ¢.

Lemma 2.1. For any v=2 there exists q,(v)>0 such that for each q>q,(v) and
B=B.(q) one can construct q contour functionals {FP(y®, B)}, p=1,...,q, so that

EOGP, p=Z{HPIFP-,f},  p=1,...4. 21

Moreover, for both arbitrary fixed p, 1<p=<gq, and contour y\P), the function
FP®® B) is monotone increasing with respect to B when B= B.(q).

Proof. Let p+0 and let AP(yP) be the set of configurations that have only one
outer contour y?. Applying the relation (1.6) we get

(Zamo)en( -5 2una). @2

0
— __ m0) () By =
g = 0 h) (,,sz)wm)z(x
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As far as a(x, @) =0 for x¢ V(y®), and 0<a(x, @) <2v for all other x, we have

[% InE0GO, B vV ). 2.3)
Then
Zevwp= 1 (£ Zwnswpp) f159000
-3, [5% InE0, ﬁ)] EOGD, EV\V D, B (2.4)
Choose now ky(v) so that
5 V©)exp(—kolCh <2, 2.5)

where the sum is taken over all connected sets C, containing the point 0, V(C)=C
vintC, C#+0. Based on relation (1.16), choose q,(v) so that for all g>g,(v) the
inequalities

Y exp(=FP0", p))sexp(—ko()IC), p=1,....q, (2.6)

y:suppy=C

hold at the point f=p.q). Suppose f=pB.(q). Let y be a contour and O,,
(m=1,2,...,r) be connected components of the set inty®. Put

FPGP, f)= 3 InEV(0,, f)~InEPGP,f). )
m=1

Suppose that for some f,= f§, the inequalities

FOGP, Bz FPGP, B),  p=1,...q, (2.8)
hold. From the condition (2.8) and from (2.2)«2.4) one can get, in a standard
fashion (see [6]), that for f=f,,

% InEP(WV, By, =a(FP(-, Bo)) [V +b(OV, FP), 29)

where [a(FP(-, B)) <3, |b(0V, FP)| < L|oV|. Let y?) = (b, p(bP)) be a contour.
Given any configuration ¢ € AP(y®), denote by 0™(¢p) the largest connected
subset of unstable points such that b5®~0®(¢p)=+0. The complement of 0% (¢p)
with respect to V'(y®) =V (yP)\o“Vp®P is split into the connected components
0%)(p), n=1,...,7(¢p), where p,=+0 is the value of the phase on d0%"(¢p). Then

Tt

EOGP) = 3 exp(—é > olx, q))> ]—(’f ge)(Gen gy, (2.10)

QeU(y(P)) xe0™)(p) n=1

Inserting this expression in (2.7) and computing the derivative P FP@®_p)at the
point f,, we have B

0
%F(p)(y(p), ﬁ)|ﬂ=/30 =0,
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provided

o)

® 0 ~ 0
— — InE@r(Olew — lnE® >0.

xe0®) (@) n=
By virtue of the symmetry of the Potts model
2OV, p=E"(V. )

holds for VCZ’, |V|<oo and any p’, p’, 1 =p’<q, 1 <p” <q. From this and also
from representation (2.9) and the inequality o(x, ) = 1 that holds for all x € O(¢), it
is not difficult to make sure that the latter inequality holds for all configurations
@ € AP(yP), Since this discussion is valid for f=f,, it remains valid for all > g,
Q.ED.

Lemma 2.2. Given any v=2 q,(v)>0 may be found such that for all > q,(v) and
B < B, one can construct the contour functional {F®(y©, B)} and the interaction G©©
so that

OO, B)=Z(yO|F©), GO). (2.11)

Here the function G'© does not depend on f, and FO(y©, ) is monotone decreasing
with respect to B provided < p,.

Proof. The proof of this lemma differs only a little from the previous one. Let us
mention the distinctions between them. First of all choose GO({y{?}~_ ,) according
to (1.12) and note that G does not depend on . Comparing this with (1.13) we
obtain

n

0. n 0.
B InEOVIHY-1, B, @o) = P o InEOWVHE, B, 9o) -

Denote by

EOV|{yOr_ B,
Py(U({y V=1, V. 00)lB) = é(olé%[/}[\/l‘_ﬁ (p‘b;)(pO)

the probability distribution Py(- |§) on the set of all A({y{¥}1_, ¥, ¢,) such that
supp ‘¥ C W. Taking into consideration this notation and the previous equality we
obtain [just as in demonstration of (2.4)]

0
=(0)
FUERGUTAD

)
= X [% InEO(VH?, g, @o):l Py (¥ e (V= 1, V. 00)lB) -

suppyCW

Note that the probability Py (7 € ) of y@ to be an outer contour, arising here,
satisfies the Peierls’ [2, 3] inequality

Py (7 e WY1, V. 00)IBo)

<exp { —FOG9, B(q)+0 (é) Isuppv“”l} (2.12)
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when = B/q). Then, obviously,
J . -
EPV; o) - % InEOV Y, B, po)

[v_ o 9)

= > > ] exp{—BHy(¢)},

@eAO(y(0),V, pg) xeV

and since a(x, ¢)=2v for all x¢ V' (y'?), we obtain

0
’— InEOWVY, B, o)l SvIV V). (2.13)

ap
Put as in (2.7)

FOGO,p)= ¥ IE(0,, )~ ).
m=1

Since the estimates (2.12) and (2.13) are uniform with respect to all ¥ and ¢,, we are
able to repeat the reasoning of the previous lemma. This proves that F©O(y@, B) is
monotone decreasing when B =< .(q).

3. Proof of Theorem

In the case = ., the proof of the theorem is similar to that for the Ising model [7].

Let B+ .. We shall study the properties of the Gibbs state in V with the
boundary conditions ¢, on 0, V, assuming that ¢q(x)=* ¢@,(y) for any x,yed,V,
d(x,y)=1 if f>p, and demanding of the boundary conditions ¢, that
©o(01V)=p, 1=p=q in the case f<fi.. The passage to the case of arbitrary
boundary conditions is simple enough (see, for example, [8, 9]), so the assumptions
about the boundary conditions discussed above are to be fulfiled later without
mentioning it.

Let VCZ’, |V|< oo, be a connected set. Consider the configuration ¢, the
restriction of which to 0,V has the properties mentioned at the beginning of this
section. The connected component of the set of unstable points of the configu-
ration ¢ in Vud,V, containing 9, V, will be denoted by V*(¢). Put

A= {p(VLd, V)|p(0,V)=0o(0,V), V¥ (p)| =N}
for NeZ™ and consider the partition function
EONV|B, ¢o) = Zﬂ exp{—BHy(¢)}, p=0,1,....q. (3.1
QAN

Here it is supposed that p=0 when > f.(g), and p=1, ...,q when f<f.(q). The
proof of the theorem follows from the estimate (see [8, 9])
EONVIB, ¢o)
EP(VIB, @o)

which is of main importance in this paper. To establish the inequality (3.2) we
consider the set of contours y, which has the properties

sexp{—c(B)N+c,()laV1]}, (3-2)
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i) suppyCV,

ii) the restrictions of the configuration ¢ on 9%y and on 0y are in the
opposite phases (i.¢. in the case > f, the points of the set 8"y are in phase 0, and
the points of the set 0%y are in either of the phases 1,2, ..., g, and vice versa in the
case < f3,). Let us choose in this class of contours the contour y with the largest
[inty], and denote it by y,. It is clear that

EP(VIB, 9o) ZEV(VIB. 1, 0o)- (3.3)
Let
V\P (@) =V ()u...uV(p) 34

be the decomposition of the set V\V®(¢) into connected components. Note that
for any m=1, ..., k all points of the set V,*)(¢) are in phase 0 if f < f,, and are in
phase p,, 0 if f> f,.. Taking this into account we rewrite the partition function
EONWV, B, ¢o) as

EPNVIB, 9o)
k
= 2 oxp{=fH(pyw)}x 11 EGVN\V, B, 0 (@V,)

QAN

k
- T1 BP0V, B, 0(0V,)) (3.5)

m=1

where
H(q)V(“)) =- <Z> 5(p(.x), o) (36)
X,y

and the sum in the latter relation is taken over all the pairs of nearest neighbors,
such that either {x, y> CV¥(@)nV or x e V¥(p)nV, y ¢ V¥ ()N V. The remaining
calculation will be carried out only for the case f < f8.. The case > f. is similar. So
let p=£0, @o(0V)=p and f<f.. From (3.3) and (1.17) it follows

EONVIBe, o) . EP(VIB.s 90)
E‘P)(Vlﬂc, q’o) - E“”(Vl)’v, ﬂca (Po)

Having applied (3.5) for Z2(V|yy, B, ¢,), we obtain

EO-NWVIB, o)
EO V1, B, o) — ot P LV 0N 38

Sexp(ca(q)1oV]). (3.7

where

o)=L > eame)-L ¥ v—atxe)

2 i) 2 xev\Virw)
k
+ X InEOVNV,Y, B, (0V,)
m=1

—InE(inty\d {inty @}, B, (0 {inty})) + wi?(@).
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Here
k
o (@)= Zl InEQ(VN\V,2, 0(0V,”)

—InEQ(inty\d {inty*}, ¢(0 {inty*}))

does not depend on . From (3.8) and the considerations of previous section it
follows (see Lemma 2.2), that for every configuration ¢ € AN(V, ¢,),

0 1 1
350 pZ IN= TNV Iz g N=cs) oV,

op
if g>q,(v) and f<B.(q). Hence
0P, B)~ (@, ) < —5(B.~ PN +c3(v) (B.— B)10V]. (3.9

Choosing c()=3(B.— ), c1(B)=ca(q) +c3(v) (B.— ), from (3.3), (3.7)-3.9) we
obtain the estimate (3.2). The theorem is proved.
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