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Translation Invariant Gibbs States
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Abstract. We describe the set of all translation invariant Gibbs states in the
g-state Potts model for the case of q large enough and the other parameters to
be arbitrary.

Introduction

The aim of this note is to describe the set of all translation invariant Gibbs states in
the g-state Potts model. We consider only the case of q large enough, assuming the
other parameters of the model, i.e. the temperature and the space dimension v ̂  2,
to be arbitrary. Let TL? be v-dimentional lattice, v^2. The distance between
any two points x,yeZ\ x = (x1? ...,xv), y = (yl9 ...,3θ> ^s defined as

V

d(χ,y) = Σ l*i~ >Ί | We assume that the spin φ(x), XG%V, in the model under
i = l

consideration takes values in the finite set Q = {!,...,q}9 and the formal
Hamiltonian is written as follows:

H=- Σ δφ(X).φ<y), φ(x),ψ(y)eQ, (1)
<*,y>

where the sum is taken over all the pairs of nearest neighbors x, y on the lattice and
δ is the Kronecker symbol. By g(j8, q) [respectively by g(ίnv)(β, q)] is denoted the
class of all (respectively of all translation invariant) Gibbs states with β parameter
and the Hamiltonian (1).

By using reflection positivity Kotecky and Shlosman [1] have proved the
coexistence oΐq + l phases at some βc(q) (critical inverse temperature) for q large
enough. Another approach to the solution of this problem, based on the contour
technique, was offered by E. Dinaburg and Ya. Sinai [2] and independently by
Bricmont et al. [3]. Everywhere below we mean that the value of βc(q) is defined
namely as in [2], although the next theorem shows that βc(q) is to be unique.

Now we formulate the main result of this paper.

Theorem. For any v^2, qQ(v) may be found so that for all q>q0(v) the following
statement is true. There exists such a value β = βc(q) of inverse temperature, that
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i) when β = βc(q) the class cj(inv)(/?, q) contains exactly q+ 1 extreme points P(0),
P(1), . . . , P(q\ i. e. any translation invariant Gibbs state P e g(mv)(j8, q) is expressible as

p = α0P<°> + αιP
(1) + . . . + aqP

(q) , α, ̂  OVi , Σ α£ = 1 ,

ii) /or eflc/z /? > /?c(#) one may constructed q Gibbs states Pft\ Pf\ . . ., P^} so that
any translation invariant Gibbs state P e g(inv)(/?, q) is expressible as

iii) wΛen β < βc(q) a Gibbs state is unique in the class g(ίnv)(jδ, q) of all translation
invariant Gibbs states.

Remarks, i) when β < βc(q) one can prove the uniqueness of the Gibbs state in the
class of all Gibbs states, but we omit the proof of this fact, ii) by a quite different
method Laanait et al. [4] have received the similar result in the case v = 2.

1. The Basic Definitions and Notations

In this section we make use of the definitions and notations of [2]. Given any set C,
denote by \C\ the number of points in C. Let FcZv. Let dV= {x e V\ there exists y
φ Fsuch that d(x, y) = 1}, and dίV={xφV\ there exists y e Fsuch that d(x, y) = I}.
The mapping φ:Zv->g will t>e called a configuration. The restriction of the
configuration φ to the set Vcϋv is denoted by φ(V). This φ(V) is sometimes called
a configuration on V. If φ is a configuration and x e Zv, we put α(x, φ) = {the
number of y, for which φ(y) Φ φ(x), d(y, x) = 1}.

Definition 1.1. Let φ be an arbitrary configuration. We shall say that φ is in the
phase 0 at the point xeZ v, if φ(y) + φ(x) for all y such that d(x,y) = l. If
φ(y) — ψ(x) — P (1 = P = <ϊ) f°r aH y? satisfying condition d(x, y) = 1, we shall say that
φ is in the phase p + 0 at the point x. If at the point x e TLV the configuration φ is in
none of the phases 0,1, ...,g, then x will be called an incorrect point of the
configuration φ. The union of all incorrect points of the configuration φ is called
the preboundary of φ and denoted by B*(φ). The set {x\d(B*(φ), x) ̂  1} is called
the boundary of the configuration φ and denoted by B(φ). We consider only the
configurations for which \B(φ)\ < oo. A set Xc%v is called connected if given any
xx, x" eX there is a sequence x1? ...,xn of points xteX, i = l, ...,n, so that x1 = x/,
xn = xx/, and d(xί5xί + 1)=l, i= 1,2, ...,n— 1. Let B(φ) = uBi(φ) be a decompo-
sition of J3(φ) into its maximal connected components. Each of the sets dBt(φ) is in
turn the union of its connected components. One of them is external and denoted
by d£[ext)(φ), and the others are the boundaries of some bounded domains Ot s

(they will be called internal domains) and denoted by 35^t)(s= 1, ...,r(i)), where
r(ϊ) is the number of these domains. At each point oϊdBt(φ) the configuration φ is
in some phase. At different points of the same connected component of dB[ext) or of
dBf"t} this phase is the same and coincides with the phase in which φ is at the points
that are at distance 1 from this component and belong to the complement oϊB^φ).

Definition 1.2. A contour y(p} is a pair (b(p\ψ(b(p}J), where b(p} is a connected
component of B(φ) for some configuration φ, which is in phase p (p = 0,1,..., q) at



g-State Potts Model 283

the points of (db(p))(exi\ and ψ(b(p}) is the restriction of this configuration to b(p\ The
set b(p) is called the support of the contour y(p) and denoted by suppy(p). The union
of all internal domains Os is called the interior of y(p) and denoted by inty(p). Put

The outer contours are defined as usual [5]. Given fixed 7c^v, |7| < oo, denote
by 2Ϊ[)P)(7, <p0), p = 0,1,..., q, the set of all configurations that are in phase p at each
point of 7 and coincide with the configuration φ0 on 317. Here φQ(x) = p for all
x e d1 V, if p φ 0, and φ0(x) Φ φQ(y) for all x, y e d17, such that d(x, y) = 1 at p = 0. We
shall consider only such boundary conditions without mentioning it further.
Introduce the following partition function

where

Hv(φ) = Σ

Fix p, Q^pί^q, and consider the arbitrary collection y(f} = (b(f\ ιp(b\p)J),
ί = 1 , 2, . . . , n, of pairwise outer contours. Let F(y|p)) c ̂  i = 1 , 2, . . . , n, for some K
Denote by 91(p)({yίp)}5 7, φ0) the set of all configurations φίϊΛjδ! 7) such that both
φ(51 7) = Φ0(^ι ̂ ) an<i the set of contours y[p)(z = 1, 2, . . ., π) coincides with the set of
all outer contours of B(φ). Introduce the partition function

and put

}«= ls y9, φ0) , (1.3)

where 7-> oo in the Van Hove sense. Ξ(p\y(p\ β) will be called a crystallic partition
function. Given any VFcZv, |l/F|<oo define the dilute partition function

ι^), (1.4)

where the sum is taken over all such collections of outer contours {y^l^i, that
V(y(?}}tW Mi and d(dW, u7(yf))> 1. Let J7C7, |7|<oo. We consider also the
dilute partition function

Ξ<*\V\W, β, φ0) = Σ ΞM(V\{y^}n

i=ί,β, φ0) , (1.5)

where the sum is taken, as above, over all such collections of outer contours y\p\
i= 1, ..., n, that 7(y[p))C W and d(dW9 u7(^))> 1. It is not difficult to see that

3<*\V\y<*\ β, φ0)= Σ exp - Σ α(x, φ) , (1 .6)
φe<Ά(p)(γ(p),V,φ0) ( 2, jceF J

when p Φ 0, where α(x, φ) = 0 for all x φ V(y(p}} and partition function (1.6) does not
depend on V. In particular from this one can get both the existence of the limit (1.3)
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for pφO and the formulas

Ξ<»W\β) = Ξ<ι>W>\β,φ0), (1.7)

sω({yίp)}?=1^)=Πs(^p),jS). (1.8)
i = l

For p = 0 the existence of the limit (1.3) is obtained in [2]. Finally, let us formulate
the results of E. Dinaburg and Ya. Sinai [2], which will be helpful for us later on
(see also [3]).

1.1. Interacting Contour Models

Let Γ = {y1? ...,yn} be a finite collection of the contours, such that suppy t

nsuppyy = 0 for all z'Φj and Γ'CΓ. Γ' is called the maximal permissible
subcollection of Γ, if given any two contours yί, y'2 e Γ', neither of them is inside of
one other, there does not exist such a contour γ E Γ, such that suppy^ Cinty, suppy'2

cExty, and it is impossible to extend Γ', keeping the above mentioned properties.
It is supposed that contour Hamiltonian is written as

(1-9)
γeΓ

where G(Γ) is the interaction energy of contours of Γ and has the special form

G(Γ)= Σ G(Γ'\Γ), \Γ'\>1, (1.10)
Γ'CΓ

and the sum is taken over all the maximal permissible subcollections Γ' of the
collection Γ. Then G(Γ) and F(y) are supposed to be invariant with respect to any
shift of the lattice. It is supposed, moreover, that the estimates

Σ exp(-F(y))^exp(-fc|C|) (1.11)
y: suppy = C

hold with some constant k> 0. Other properties of the interacting contour models
wouldn't be immediatly used in this paper, that is why we omit them (see [2]). We
shall write Γ C V, if suppy C V for any y e Γ. Let Vc TL\ \ V\ < oo . Dilute (contour)
partition function in V is written as follows:

Z(V\F,G) = Σ
rev

and
Z(γ\F,G)= Σ exp(-#(yuΓ))

ΓCinty

is called the crystallic partition function of the contour y.

1.2. The Interaction G for the Potts Model

Let V C 1\ I V\ < oo and let y[0) - (fe|0), φ(6|0))), i = 1 , 2, . . . , n, be such pairwise outer
contours, that F(y[0))cFfor any i= 1,2, ...,«. Then the functions

0, (1.12)

,/?,φ0) (1.13)
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don't depend on β. Let us mention the connection between (1.10) and (1.12). If the
collection Γ of contours satisfies the condition of point 1.1, then

G<0)({yί0)}?=ι)=G(Γ'|r),
where Γ/ = (\ ...,y^0)) is the set of all outer contours of the collection Γ.

1.3. Description of Gibbs States, Some Estimates

There exists g(v)>0 such that for all q>q(v), one finds βc(q)>§

( &(#)= t-^O?" 1))> the contour functional F(0\ the interaction G(0) and q
\ v J
contour functional F(p\ p= 1,2, ...,g, so that

Ξ(0)(y(0), βc(q)) = Z(y(0)|F(0), G(0)), (1.14)

2(p)(y(p), βc(q)) = Z(y(p}\F(p}), p = 1,..., q. (1.15)

Moreover

p = 0 , . . . , ή f , (1.16)

where k(q)-*Q when g-*oo. Note finally that based on the contour definition one
can prove the existence of the constant c(q), such that the estimate

\ (1.17)

holds when β = βc(q).

2. Construction of Pure Phases in the Case β Φ βc(q)

All constructions in the case β φ βc(q) are based on some inequalities which are
similar to that of R. Minlos and Ya. Sinai [6] for the Ising model.

Definition 2.1. The point xeZ v is called a stable point of the configuration φ
under either of the following conditions:

i) β > &(#)? 9 is in phase p φ 0 at the point x,
ii) β = βc(q), φ is in phase p, p = 0, 1, ...,#, at the point x,

iii) /? < j8c(^), φ is in phase 0 at the point x. In all other cases the point x is called
the unstable point of the configuration φ.

Lemma 2.1. For any v^2 there exists #ι(v)>0 suc^ that for each q>q^(v) and
β^βc(q) one can construct q contour functional {F(p\y(p\ β)}, p=l,...,q, so that

SCp)(7(p),j8) = Z{7(p>|F^(.,j8)}, p= !,...,«. (2.1)

Moreover, for both arbitrary fixed p, Irgp^g, and contour y(p\ the function
F(p\y(p\β) is monotone increasing with respect to β when β^

Proof. Let p Φ 0 and let W(p\y(p}) be the set of configurations that have only one
outer contour y(p\ Applying the relation (1.6) we get

(2.2)
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As far as α(x, φ) = 0 for xφ V(y(p}\ and 0^α(x?φ)^2v for all other x, we have

— \nΞ(p\y(p\β) ^v\V(yt)\. (2.3)

Then

^ &>\V, β) = ̂  Σ ^ } (̂ Σ ^ lnΞ(p)()4p), βϊ) Π Ξ(p)(7ίp), jS)

Γ a m(p) (p) Ί ^(p) (p) ,̂, (p)

Choose now /c0(v) so that

Σv|7(O|exp(-fc0 |C|)<i, (2.5)
OeC

where the sum is taken over all connected sets C, containing the point 0, F(C) = C
uintC, CΦ0. Based on relation (1.16), choose <?ι(v) so that for all <2><?ι(v) the
inequalities

p=!,...,«, (2.6)
y:suρpy = C

hold at the point β = βc(q). Suppose β^βc(q). Let γ(p} be a contour and Om

(m= 1,2,..., r) be connected components of the set int/p). Put

F(p\y(p\β)= Σ lnS^(Ow,)S)-lnS^(y^j8). (2.7)
m = l

Suppose that for some β0 ̂  j8c the inequalities

F(p\y(p\ β0) ^ FM(γ<*\ βc)9 p = 1,...,«, (2.8)

hold. From the condition (2.8) and from (2.2)-(2.4) one can get, in a standard
fashion (see [6]), that for β = /?0,

^lnΞ^(F^)|, = ,0^α(F^(.9JS0))|F| + ft(3KF^)9 (2.9)

where \a(F(p\ - , j80))| < i |6(57, F(p))| < $\dV\. Let y(p)-(b(p\ ψ(b(p))) be a contour.
Given any configuration φ e 9I(p)(y(p)), denote by 0(u\φ) the largest connected
subset of unstable points such that b(p)nO(M)(φ)Φ0. The complement of 0(u}(φ)
with respect to V'(y(p}) = V(γ(p))\d(ext)b(p) is split into the connected components
0(pn\φ), n=\, ...,f(φ), where p«φO is the value of the phase on dO(pn\φ). Then

/ β \ ^)
exp -f J α ( x , φ ) Π 2^(0^/0. (2.10)

\ Z jceO(")(^) / «=1

Inserting this expression in (2.7) and computing the derivative — F(p\y(p\ β) at the
point jS0, we have ^
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provided
Ύ(VΪ d fl

Σ *(x,φ>- Σ ^lnΞ^\Oi""\β)+Σ^nΞ^(O
xeθM(φ) n=l Op m Op

By virtue of the symmetry of the Potts model

holds for FcZv, \V\ < oo and any /?', p", l^p'^q, \^p" ^q. From this and also
from representation (2.9) and the inequality α(x, φ) ̂  1 that holds for all x e 0(φ), it
is not difficult to make sure that the latter inequality holds for all configurations
φ e 2ϊ(p)(y(p)). Since this discussion is valid for β = βC9 it remains valid for all β > βc,
Q.E.D.

Lemma 2.2. Given any v ̂  2 q2(v) > 0 may be found such that for all q > q2(v) and
β<βc one can construct the contour functional {F(0)(y(0), β)} and the interaction G(0)

so that

Here the function G(0) does not depend on β, and JF(0)(y(0), β) is monotone decreasing
with respect to β provided β^βc.

Proof. The proof of this lemma differs only a little from the previous one. Let us
mention the distinctions between them. First of all choose G(0)({y[0)}"= ̂  according
to (1.12) and note that G(0) does not depend on β. Comparing this with (1.13) we
obtain

Denote by

v(on»

the probability distribution Pw( \β) on the set of all SI({yί0)}"= i, K, φ0) such that
suppy[0) C W. Taking into consideration this notation and the previous equality we
obtain [just as in demonstration of (2.4)]

~\nΞ

Note that the probability Pw(y(0} e 2I|/J) of y(0) to be an outer contour, arising here,
satisfies the Peierls' [2, 3] inequality

, βc(q)) + 0 |suppy<°>| (2.12)
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when β — βc(q) Then, obviously,

and since α(x, φ) = 2v for all x φ F(y(0)), we obtain

Put as in (2.7)

r

m = l

Since the estimates (2.12) and (2.13) are uniform with respect to all Fand φ0, we are
able to repeat the reasoning of the previous lemma. This proves that F(0)(y(0), β) is
monotone decreasing when β ^βc(q).

3. Proof of Theorem

In the case β — βc, the proof of the theorem is similar to that for the Ising model [7].
Let β φ βc. We shall study the properties of the Gibbs state in F with the

boundary conditions φ0 on ^F, assuming that φ0(x)φφ0(y) for any x.yed^V,
d(x,y)=l if β>βc, and demanding of the boundary conditions φ0 that
φ0(31F) = p, l^p^q in the case β<βc. The passage to the case of arbitrary
boundary conditions is simple enough (see, for example, [8, 9]), so the assumptions
about the boundary conditions discussed above are to be fulfiled later without
mentioning it.

Let FcZv, |F|<oo, be a connected set. Consider the configuration φ, the
restriction of which to ^Fhas the properties mentioned at the beginning of this
section. The connected component of the set of unstable points of the configu-
ration φ in Fut^F, containing d^V, will be denoted by V(u\φ). Put

for N eZ+ and consider the partition function

0)= Σ πp{-βHv(φ)}9 p = 0, 1, ...,«. (3.1)

Here it is supposed that p = 0 when β > βc(q), and p=l,...,q when β < βc(q). The
proof of the theorem follows from the estimate (see [8, 9])

(3.2)

which is of main importance in this paper. To establish the inequality (3.2) we
consider the set of contours y, which has the properties
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i) suppyCK
ii) the restrictions of the configuration φ on <3(ίnt)y and on δ(ext)y are in the

opposite phases (i.e. in the case β > βc the points of the set <9(ext)y are in phase 0, and
the points of the set δ(int)y are in either of the phases 1,2,.. ., q, and vice versa in the
case β < βc). Let us choose in this class of contours the contour γ with the largest
|inty|, and denote it by yv. It is clear that

Ξ*\V\β, φo) ̂  Ξ^(V\β, y(

v

p\ φ0) . (3.3)

Let

V\V(u\φ) = Fi(s)(φ)u . . . u Vk

(s\φ) (3.4)

be the decomposition of the set V\V(u\φ) into connected components. Note that
for any m = 1 , . . . , k all points of the set dV^\φ) are in phase 0 if β < βc, and are in
phase pm φ 0 if β > βc. Taking this into account we rewrite the partition function

= Σ

k

m=l

where

(3.5)

H(φv(u))=- Σ δφ(χ),φw> (3 6)

and the sum in the latter relation is taken over all the pairs of nearest neighbors,
such that either <x, y> C F(M)(φ)n V or x ε V(u)(φ)n V,yφ V(u\φ)r\ V. The remaining
calculation will be carried out only for the case β < βc. The case β > βc is similar. So
let pΦO, φ0(dV) = p and β<βc. From (3.3) and (1.17) it follows

Having applied (3.5) for Ξ(p\V\yV9β,φQ), we obtain

where

,φ)=ir Σ (2v-«(x,φ))-
xeV\V(γv)
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Here

o>V\<P)= Σ In^WWWW*))
m=l

-lnΞ(

0

0)(inty(0V{intγ(0)}?φ(δ{inty(0)}))

does not depend on β. From (3.8) and the considerations of previous section it
follows (see Lemma 2.2), that for every configuration φ 621^(7, <p0),

if q>q2(v) and β<βc(q). Hence

(3.9)

Choosing c(β) = $(βe-β), Cι(β) = c2(q) + c*(v)(βc-β)9 from (3.3), (3.7)-(3.9) we
obtain the estimate (3.2). The theorem is proved.
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