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Abstract. This paper studies Loeb solutions of the Boltzmann equation in
unbounded space under natural initial conditions of finite mass, energy, and
entropy. An existence theory for large initial data is presented. Maxwellian
behaviour is obtained in the limits of zero mean free path and of infinite time. In
the'standard, space-homogeneous, hard potential case, the infinite time limit is of
strong L1 type.

1. Preliminaries

This paper considers Boltzmann's equation, a prototype model of rarefied neutral
gases driven by binary collisions. For gases in full space or bounded containers,
various contraction mapping estimates can be used to prove the existence of unique,
smooth solutions converging to an equilibrium with time, if the initial values are
close enough to this equilibrium. Such methods break down, when the initial values
are further away from equilibrium, and so do natural compactness arguments, at
least in the space-dependent case. For another approach, recall that what happens at
distances or within volumes below, say, the scale of elementary particle phenomena,
is an artefact of the model with little direct experimental relevance. In this
perspective, the question whether the model starts from an underlying set of
rationally, really, or infinitesimalίy spaced points, should be decided purely on
mathematical grounds.

In this paper we study the Boltzmann gases on a three-dimensional continuum
filled with a denser set of points than the usual triples of reals, in that a non-standard
extension of the reals is used instead. In such a setting an integrated form of the
actual Boltzmann equation can be solved for arbitrary initial mass distributions
with finite init ial entropy and second moments. Just like all classical computational
models, whatever interesting physical quantities there are, such as moments, they
correspond also in the present context to real-valued integrals of the solutions
multiplied by test functions. Our solutions display a weak form of Maxwellian
behaviour in the small mean free path limit. Globally bounded moments of some



206 L. Arkeryd

order s > 2 imply stronger limiting behaviour. In particular standard space-
independent solutions under intermolecular forces of hard type, converge strongly
in L1 to the relevant Maxwellian, when f-»oo.

The rest of the present section is devoted to a short presentation of the
Boltzmann equation and a truncated solution. In Sect. 2 integrated Loeb solutions
are proved to exist in the unbounded space case, and their large-time behaviour is
analysed. Section 3 demonstrates a limiting Maxwellian behaviour, when the mean
free path tends to zero. The final section is devoted to standard solutions in the
space-homogeneous case, and proves strong L1-convergence to the relevant
Maxwellian, if initially there exist entropy and moments of some order s > 2.

An introduction to non-standard analysis, stressing applications in mathemat-
ical physics can be found in e.g. [AFHL]. For a very brief introduction aiming at a
gaskinetic context, see [A3]. Readers not familiar with non-standard analysis may
benefit from the following informal description of some of the non-standard
concepts used in the present paper. The hyperreals *R is a proper, ordered field
extension of the reals R. They can be imagined as the reals with a monad of
infinitesimals added around each real, and with the inverses of the infinitesimals
adjoined at ± oo. The standard part of be*R is

stb = °b =
c if ί>e*fl, ceR, b-c infinitesimal,

+ 00 if b > n for every neN,
— oo if b < — n for every neN.

The number b is said to be finite or near-standard (ns), if st b is real.
We can think of classical analysis as the study of V(R), where

Vi(R) = R9 Vn+l(R)=Vn(R)U{X;X^Vn(R)}9 V(R)= (J Vn(R).
H<00

Non-standard analysis is the study of the corresponding V(*R), together with a
mapping *: V(R)-+ V(*R), such that i)* r = r for reR; ii) an elementary statement is
true of S x , . . . ,Sn in V(R\ if and only if it is true of *Si9... ,*SΛ in V(*R). From the
transfer principle ii), we can see that non-standard analysis is naturally concerned
about *images of sets in V(R), so-called standard sets, and set-elements of such sets,
so-called internal sets. Non-standard analysis as such has nothing to say about other
subsets of V(*R)9 the so-called external sets. In particular, N c *N is external, and
with it countable unions of internal sets. It follows that the finitely additive
*Lebesgue measure is not countably additive, only *countably so. This necessitates
some "extension of the *Lebesgue measure" to get a classical Lebesgue measure
based on the new denser set *Rn

9 the so-called Loeb measure. The basic construction
in the present paper uses *Lebesgue solutions of truncated equations to obtain Loeb
solutions of the actual Boltzmann equation.

The Boltzmann equation describes the evolution of densities F in phase space,
which in this paper is taken essentially as R3 x R3. The amount of matter in a region
y, is then given by J F(x, υ9 t)dxdv. As is well known, Boltzmann expressed the

material derivative DtF through a balance between the density of molecules entering
a region of collision and of those leaving it, in the absence of exterior forces as

dtF(x9 υl9t) + v,-VxF(x, vl9t) = QF(x9 ΌI , t)/ε (t > 0).



Boltzmann Equation in Unbounded Space far from Equilibrium 207

Here V v is the gradient with respect to the position xe/?3, ε is the mean free path, and
Q is the collision operator,

QF(x9υl)= J (F(x,v\)F(x,vf

2)-F(x,v1)F(x,v2))k(vί,v2,u)dv2du9

R3xB

here sometimes abbreviated to QF(x9υ1) = J(F®F' — F®F)kdv2du. Given two
molecules of initial velocities vί9 v29 and initially separated in space, υ\9 v'2 are the
velocities of the molecules after collision. The parameter set B = {u = (0, φ);
0^ 0^π/2,0:g φ ^2π} describes the details of the collision process. A general
discussion of Q and B can be found in e.g. [C,TM].

For inverse/'1 power intermodular forces, ;>1, k = \v2 — υl\
(J~S}/(S~ί}β(θ)9

where β(θ)~\π/2-θ\-(J+ί)l(J-ί} as θtπ/2. For the convergence of
$k(vί9v29u)du9 we here assume that k(vl9v29u) = k1(\v2 — υ1\)β(θ)9 where β is
B
measurable and bounded, and (for Sect. 3) locally bounded from below by positive
constants on the interior of (0,π/2). We also take 0</c1(w)^C (w~ y +l + wλ) for
w 7*0, with 0 ̂  Λ, < 2,0^y<3, where the condition y < 3 is used to make k(v1 ,v2,u)
locally integrable, and λ < 2 to control F(x9υl)k(Όi9Ό29u) for large t^.

In the discussion below we also use a truncated version kn of k. With a Λ b —
min (a, b), set

Ίin(vι,v29u) = k(vί9v29u) Λ n for ueB and v\ + v2 ^n2,

^n(vι»t;2,M) = 0 otherwise,

χ(s) = 0 for s ̂  0, χ(s) =1 for s ̂  1, 0 ̂  χ ̂  1, and

and define

The corresponding integrated Boltzmann equation is

ί
F(x + tυί9v1,t) = F0(x9vί) + $QnF(x + svί9vί9s)ds/ε9 (1.1)

o

with

βIIF(x,ι;1)= J «F(x,ι;/

1)F(x,f;'2)>-<F(x,ι?1)F(x,ι;2)»
Λ 3 χ β

fc"(x,ι;1,ι;2,w)ί/ι;2rfM,

and

<F(x, yι)F(x, t;2)> = F(x, Vl)F(x9 v2) if |F(x, i JFίx, υ2)\ g n,

(FίXjϋ^Fίx,^)) = w sign F(x,t;1)F(x,ι;2) otherwise.

Equation (1.1) is easy to solve, since the truncated collision operator Qn is locally
Lipschitz continuous in L°°.

Proposition [A2]. For any initial value F0 in the positive cone ofU°(R6), there exists a
unique, non-negative solution F of (1.1). If

FO, x2F0, v
2F09 FO In FoeίWλ (1.2)
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then the integrals

J F(x, t;, t)dxdv,$F(x, v, t)v2dxdv, J F(x + uί, u, t)x2dxdv

are conserved, and the integral J F(x, v, t) In F(x, f, ήdxdv is non-increasing.

2. Loeb Solutions

By transfer the truncated existence result of the previous section also holds in the
non-standard context for nε*N — N. In the case of bounded entropy and bounded
second moments, the corresponding solution / is S-integrable, thus °/ is Loeb
integrable. A closer analysis leads to the result that in (1.1) </®/> can be
substituted by °/®°/, kn by °fe, and *fl3 by ns*#3, if we use Loeb integration.

Theorem 2.1. Let f be the solution of the non-standard truncated Boltzmann equation
(1.1) with ne*N - N, °ε > 0, and initial condition

/(x, v, 0) = *F0(x, v) Λ n + n ~ 1 exp ( - v2 - x2) =/0(x, t?),

wΛm? F0 satisfies (1.2). Then °(l+υ2 + x2)/(x, v9 ί)eLoeb Ll(ns*R6) for tεns*R + . °f
is a Loeb solution of the integrated Boltzmann equation; for Loeb a.e. (x, v^

Ί"ί ί "/(x-f-si ^z ̂ sf/ίx + si;!,^^)^0^ (vi9v29u)Ldv2duds/s
° Π 5 * / ? 3 X B

r

~ί ί 0/(x + sι;1,ι;1,s)0/(x + sι;1,ι;2,s)/cosί(ί;1,D2,u)Lίίι;2ί/MJs/ε, (2.1)

tens*R+ . The solution conserves mass and first moments in v and (x — vt), has
globally bounded H-function, and satisfies

f °v2of(x,v,t)Ldxdv^ J v2F0(x, v)dxdv,

J °x2o/(x 4- it?, t;, OLdxdt; g f x2F0(x,
s*Λ6 K6

Remark. Corresponding results have been obtained in the space-periodic case [A3],
and for bounded (^-regions with reflection type boundary conditions and exterior
forces [E]. A wider class of non-negative, *Lebesgue-measurable initial data can
also be handled with the same methods. The theorem also holds for radial cut-off in k.

Proof. For t ̂  0, / is S-integrable as a function of x and υ. This is a direct
consequence of "infinitesimal mass from infinite function values,"

f (f(t)-f(t)Λω)*dxdv^(logωΓl ί f(t)\og + f(t)*dxdv*Q (ωe*N-N),
*R6 */?6

and of "infinitesimal mass from infinitesimal function values,"

*R6

f (l+x2 + v
*R6
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Moreover, for Loeb a.e. (x,v1)εns*R6

9

°\ ί <f®fy(x + svί,vί,v2,s)kn(x,vΐ,v2,u)*dv2duds

t
= ί ί °/(x + svι -> vι' 5)°/(χ + svι' v2,s)k°st(vι, v2,u)Ldv2duds, (2.2)

and

°J ί <\f®fy(χ-^s^ι^\^'2,s)kn(x,vl,v2,u)^dv2duds

t
~J I 0f(x + sVi,v'i,s)°f(x + svl,v'2,s)k°st(vl,v2,u)Ldv2duds. (2.3)

Equations (2.2) and (2.3) follow from the corresponding proofs in [A3, E], adapted to
the present situation of unbounded x- variable. That °/is a solution of (2.1) is an
immediate consequence of (2.2) and (2.3). Since f(t) is S-integrable for t > 0 with
bounded second moments, it follows that °f(f)(\ + x2 + i ^eLoebL^ws*/*6). The
conservation of mass and first moments, as well as the bounds on x2- and v2-
moments, are immediate consequences of the truncated results of the previous
section. It remains to prove that the //-function is globally bounded;

j °f(t)\n°f(t)Ldxdυ^ j °f(t) In + °f(t)Ldxdv
ns*R6 ns*R6

^ °l f(t)lnf(t)*dxάv
,R6

/(f) ln-f(t)*dxdv g °\ f0 Inf0*dxdv
*R6

+ ° f exp ( - x2 - v2)*dxdv + °J (x2 + v2)f(x + vt, υ, tfdxdv
*R6 *R6

= f F0lnF0dxdυ+ f exp(-x2-v2)dxdv + J (x2 + υ2)F0dxdv.
R6 R6 R6

Thus the //-function is globally bounded.

In the full-space case of Theorem 2.1 the mass spreads out over ns*R3, ast-+cc.
We have

Theorem 2.2. Suppose nεN, and define

A(x0) = {(x, ι;)e*tf 3 x tf3; \x-x0\^n, vens*R*}.

Then under the conditions of Theorem 2J,

lim sup J °f(x,v,t)Ldxdv = Q.
°t -» oo x0ens*K3 ^4(x0)

The boundedness of energy implies

J °/(x, ι;, ί)Ldxdι; ̂  (1 +j2)" ! j (1 + ι^2)F0(x, υ)dxdv (t > 0).
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This tends to zero when j -> oo , so it is enough to prove

lim sup J °f(x9v,t)Ldxdv = Q (jeN),
°ί-*oo xσens*R3 Aι(x0J)

where
Al(x09fl = {(x9υ)ε*R3xR3ι\x-x0\£n9Όεns*R3

9\Ό\£j}.
But

J 0f(x,v,t)Ldxdv^δ2π2n3l6/9- J 0f(x9υ9t)]n+f(x9Ό9t)LdxdΌ/]nδ9
A2(x0,δ) ns*R6

where

A2(x09δ) = {(x9υ)ε*R3xR3'9\x-x0\£n9\Ό-x0/t\£δ}.

This tends to zero (uniformly in ί), when <5 -» 0.
Finally, set

>43(Xo^) = {feΦ*Λ3x^|x-^|gΛ,3^|ι?-xβ/ί|, |ι?|^}.

Then for tδ > n/δ + n,

f °/(x, υ, tJLdxdυ g ((5/n)2 f °| x - tu |2/(x, υ, t)Ldxc/υ
^3(Xo,δ) A3(Xo,δ)

£(δ/n)2 £x2F0(x,υ)dxdυ9

which tends to zero, when (5->0. This completes the proof of the theorem.

3. The Limit of Vanishing Mean Free Path

Theorem 2.1 was proved for non-infinitesimal mean free paths, whereas for the non-
standard function /defined in that theorem, its standard part °/is Loeb integrable,
also when ε > 0 is infinitesimal, ε « 0. We write /=/ε to stress the dependence of the
solution on the mean free path in this section.

The case of infinitesimal ε contains the behaviour of classical weak L1 cut-off
limits in the following sense. The Loeb solution °fε(t) defines an L1 -density Tfε(t)
through

J °/ε(x, t?, t)φ°st(x, v)Ldxdv = j Tfe(x9 v9 t)φ(x9 v)dxdv (φeC0(R6)).
MS*/?6 R6

Suppose (f"j)jeN is a weakly convergent sequence of L1 -solutions of (1.1) with (Πj)jeN a
sequence of standard reals increasing to oo, with (£J)J€N a sequence of standard reals
decreasing to 0, and with initial values

By transfer there is ε « 0, ne*N - N9 such that the fε of Theorem 2.1 corresponding
to a truncation at n9 generates the limit density T/ε,

J Γ/ε(x, v9 t)φ(x9 v)dxdv = lim J f ( χ 9 v, t)φ(x9 v)dxdv (φεC0(R6)).
R6 j^ooK*
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Moreover, any fε with ε α 0, is infinitesimally close to a local Maxwellian, as we shall
now prove.

Lemma 3.1. When ε&Q, it holds for Loeb a.e. (x, t)e(ns*R3)x*R + , that

/ε(x, vί , f)/e(x, ι;2, ί) w/e(x, t>Ί , t)fε(x, ι/2, t)

for Loeb a.e. (vί9v29u)εns*R3 x R3 x B.

Proof. By *Gibbs' lemma,

inf { J /e(χ, i?, ί) ln/e(x, v, t)*dxdv; t ̂  0}
*R6

is finite. It follows that for infinitesimal mean free path, ε « 0,

0 ̂  J « /; ®/; > - < /e ®/β »ln(/; ®/ε//ε ®/ε)/c"(x, vl9υ29 u)*dxdv1dv2duds4 - 1

- - εf/e(x, ϋ, ί) ln/e(x, t;, ί)*dx^t; + ε J/0(x, ϋ)ln/0(x, t?)*dxdt; « 0.

So for Loeb a.e. (x,ί)e(ns*K3)x*K + , it holds that

for Loeb a.e. (vί9v29u)εns*R3 x R3 x B.

And so for these (vί9v29u)9

f',®f'Jf,®fe*l or </;®/;>^</ε®/ε>. (3.2)

It follows from the conservation of the finite mass, that for all t

$fε(x,v9t)*dv is finite for Loeb a.e. xε*R3.

Hence for Loeb a.e. xe*K3,

/£(X, V1 , t)fε(x, V2 , ί),/ε(x, V\ , ί)/e(x, t?2 , ί)

are finite for Loeb a.e. (υl9υ29u)εns*R3 x R2 x B. For these (vί9υ29u) the bracket is
redundant in (3.2), and so the lemma follows.

A function which satisfies (3.1) is either Loeb a.e. infinitesimal or Loeb a.e. non-
infinitesimal on ns*jR3. We have

Lemma 3.2. Let gG*L\(R3) be given with

f 0(t?)(l + v2)*dv, $g(v)lng(v)*dv finite,

and with

Θ(vι)g(v2)^d(vrι)g(v2) for Loeb a.e. (vl9υ2,u)ens*R3 x R3 x B.

Then either

g(v)&Q for Loeb a.e. vens*R3

9

or
°g(v) > 0 for Loeb a.e. vens*R3.

Proof. Consider for simplicity a representative from the equivalence class g9 still
(somewhat incorrectly) denoted g. The conditions of the lemma imply that g is S-
integrable. Either g « 0 for Loeb a.e. vens*R3

9 or there is a *measurable set A of
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finite diameter and non-infinitesimal measure in ns*R3, where g is non-
infinitesimal. We can choose this set A so that, moreover, g is finite on A with
C<g < l/C for some CeR + .

If °g > 0 Loeb a.e. on a sphere of non-infinitesimal measure, then the
corresponding construction in [Al] shows that °g > 0 Loeb a.e. on ns*R3. In any
case there is a *finite sequence of disjoint balls Bj9j = 1, . . . J09 such that (with μ the
*Lebesgue measure)

So if one of the Bfs has non-infinitesimal measure, then the lemma holds. Otherwise
j0ε*N — N9 and each Bj has infinitesimal measure. In this case the lemma follows, if
we can construct a ball of non-infinitesimal measure, where °g > 0 Loeb a.e. . The rest
of the proof is devoted to that construction.

We first notice, that for some η « 0,

\ g ® g - g ' ® g ' \ ^ η m [ \JBj x \JBΛx*B,
V 1 / V 1 /

except on an internal set of *Lebesgue measure less than η, and

C<g<l/Cm\jBj,
i

except on an internal set of *Lebesgue measure less than η. It follows that there are
balls Bh and BJ2, such that for some ve*N - N, the subset of Bh x BJ2 x *β, where

is contained in a *measurable set of measure less than

2-*μ(BJlxBj2x*B),

and such that the *measurable subsets viBh(BJ2), where C < g < l/C does not hold,
has measure less than

(Below such statements are abbreviated as "outside of a 2~v-fraction of ____ " The
above holds for one and the same pair η, v, and a *finite sequence of pairs of balls in

jo \ /Jo \

(J BJ ) x I y BJ 1. With / its index set, the sequence can be so chosen that
i / \ i /

Jo

U (BjlxBJ2x*B)*μ (JBj x
t/ιJ2)e/ / \ \ 1 /

For each (j1J2)
Gl

-η + C2 <g'®g' < \/C2 + η

for all (υl9υ29u) outside of a 3.2" "-fraction of Bh x Bh x *5.
Since °μ(^) > 0, it is possible to find ϋ± , and at a finite, non-infinitesimal distance
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from vί a line-segment 7\ , containing a set of points 72(^ /i) with non-infinitesimal
*Lebesgue measure, such that

Here v\ , v'2 are given by

where v^ = vl9 v2eI2, and for each v29 u belongs to a subset BV2 c *# of full Loeb
measure. There is a subset /3 £ /2 of non-infinitesimal *Lebesgue-measure, such
that g(υ'2) is finite for

t/2 = t/^tjj , ι;2, M), v2εI39uεBV2,

where for each t;2e/3, 5y2 has full Loeb measure in *£. Evidently g^) is non-
infinitesimal for the same points (vί9v29u). The set

has non-infinitesimal *Lebesgue measure. Each subset

has non-infinitesimal diameter and full Loeb measure in the sphere

{V\(V19V29U)'9U€*B}.

We now use the previous line of argument once more. There is a ball BJ9 and
a set Γy2 as above, at non-infinitesimal distance from each other, such that
\g'®g' — g®9\ <η, except for (vί9v29u) in an infinitesimal fraction of Bj x
Tϋ x *B9 and such that g is non-infinitesimal on Bj and Tϋ except for an infinite-
simal fraction of these sets. It follows that for some £/e#/, g(v\)g(v'2) is non-
infinitesimal, except when v\ , t/2 are given by (vl9 v2, u)e{Vj} x T- x *B9 and (f 2, u)
belongs to an infinitesimal fraction of the set T- x *β.

Since gf(t;2) is finite for Loeb a.e. t;2€*/?3, and T- has full Loeb measure on a
sphere of non-infinitesimal diameter, from here we conclude that g(v\) is non-
infinitesimal Loeb a.e. on a set containing a ball of non-infinitesimal volume. This
completes the proof of the lemma.

It is an easy consequence of (3.1) and Lemma 3.2 that fε is almost a local
Maxwellian.

Theorem 3.3. For ε^O and Loeb a.e. (x,ί)ens(*β3 x #+), there are

a(x9t)9b(x9t)€R + 9 and φc,ί)e#3,

such that

fe(x9 v, i) « φ, ί)g-fc(χ.o«2+c(x,o.w for Loeb a e VEns*Rι, (33)

Proof. It is possible to write

ι/! = !>! + <?!, U2 = i?! + q2,v2 = vl+ql+q2 with ^i q2 = 0
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(see e.g. [Al] p. 22). Set

Then the mapping

(ι?2 , M) -> (g j , ήf 2) = (t/^i?! ,v2,u)-v1, vf

2(v1 ,υ29u)- vλ)

is bijective from K3 x B onto M with smooth non-zero jacobian determinant, after
deleting a set of measure zero from each space. Consider a representative from the
equivalence class /ε, still denoted /ε, and set

It follows from the previous two lemmas, that for Loeb a.e. (x, t)ens*R3 x R + , either

/e(x,tf,t)«0 for Loeb a.e. uens*R3,

or for Loeb a.e. υlεns*R3

0 < °fe(X, Vl9t)< 00, °/ε(x, Ih , f)2(/β(x, l/i , t)fe(x, 1/2, ί)Γ ' < CX)

for Loeb a.e. (ι;2,w)ens*R3 x B, together with

\ji(q) finite for Loeb a.e. qens*R3, \j/(q1 -f <?2)
 Λ ̂ i) + ̂ 2)

for Loeb a.e. (qί,q2)ens*M. So for Loeb a.e. v^ens^R3,

^i + ̂ 2) = ̂ i) + ̂ 2) + g(q^q2\

where ^^0 for Loeb a.e. (ql9q2)ens*M. It follows that we can choose an
orthonormal triple el9 e2, e3 in *Λ3, so that

Φ(y\e\ H- ^2^2 + ̂ 3^3) = ̂ (y^i) + ̂ 2^2) + ̂ 3*3) + θ(y^ι + ̂ 2^2 +
Here

and

^(yiei+J^ + ys^-Ofor Loeb a.e. (yi,y2,

With

we have

So there are 5e*K and ce*R3, such that

= 5ι;2 + c i? for a.e. t;e*R3

(see e.g. [Al] p. 26 and transfer). Here 5 and c are finite, since $ is finite and
infinitesimal Loeb a.e. on ns*R3. So with b= — °5, and c = °c, we have
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Hence

fε(x,v,+υ,t)κfε(x,v^t)e-bv2+c vκae-bv2+c'v

for Loeb a.e. vεns*R3, and with a = °fε(x, vl9t). Together with a change of variables,
O—+VI + v, this completes the proof of the theorem.

Remark. For φε*Cl

0(R3 x tf +),

t
ί f β*/ε(* + svί9vl9 s)φ(x + st>! , s)*ds*dxdυί = 0.

*K*0

If the *Co-norm of φ is finite, then the function fε of Theorem 2.1 satisfies (also for
infinitesimal ε > 0)

J 0fε(x9υί9t)°φ(x9t)Ldxdvί= J Fo'sffot JVfoOJLdxA?!
ns*R6 ns*R6

+ ί m^.sX^x^ + VV^x^Ldx^s. (3.4)
ns*R6 x [0,t]

Inserting (3.3) into (3.4), we obtain the first of the five compressible Euler
equations. If S-integrability were known for the second and third t -moments of/ε,
then the other four Euler equations would also follow. In particular this is the case,
when the y4-moment of fε(t) is bounded for t > 0.
ii) Essentially as a consequence of Theorem 3.3, for ε^O, and Loeb a.e.

J °/f(x, v9 t)Ldv = J a(x9 1) exp ( - b(x9 t)v2 + c(x, ί) v)dυ = ° J /ε(x, ϋ, ί)*Λ,
ns*Λ3 Λ 3 *K3

f °vf(x9v,t)Ldv= f ϋα(x,ί)exp(-b(x,ί)ϋ2 + c(x,ί) ι;)dι?= °f vfe(x9v9t)*dv9
πs*/?3 Λ 3 *K3

f °ί;2 /"e(x, ι;, ί)LJί; = f v2a(x, t) exp ( - b(x9 t)v2 + c(x, t) - v)dv.
ns*R* ' R3

i i i) The result of Theorem 3.3 also holds in the space-periodic case of [A3].

4. The Space-Homogeneous Standard Boltzmann Equation

This section discusses the space-homogeneous standard Boltzmann equation under
the additional (cf. Sect. 1) restriction on kl9

0 ̂  MW) ̂  C(l + W Λ ) with 0 ̂  λ < 2.

This includes inverse /Λ power intermolecular forces with angular cut-off and) > 5.
Using the technique of Sect. 3, we shall obtain strong L1 -convergence to the relevant
Maxwellian, when f-> oo. For large data and j > 5, previously employed methods
only imply weak L1 -convergence.

We begin by recalling some well-known results about the space-homogeneous,
standard Boltzmann equation. The technique of [Al] p. 15 implies the following
proposition.
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Proposition 4.1. Assume that

F0\nF0eLl(R*\(\ + \v\*)F0eL\(R*)for some s > 2.

Then there exists a solution

F-.R+^L^R3)

of

d,F = QF (ί>0)withn= 0 = F0, (4.1)

such that

j g(v)F(v, t)dv = $g(v)F0(v)dv (t > 0)

for g = 1, v, v2. Moreover, for any t1>0

J(l + \v\*)F(v,t)dv£ Ctl J(l + \v\*)F0(v)dv (0£ f £ ίj

vvϊί/i C f l 0w/y depending on

$(l + v2)F0(v)dv, inlands.

The solution is for t > 0 ί/ze weαfc L1 -limit of the (unique) solutions of

StFv = QVFV (t > 0) with Fv|ί=0 = F0.

Here the kernel of Qv uses k± Λ nv instead o//c1 ? and (nv)veN is a certain increasing
sequence of natural numbers.

The following inequality is due to Elmroth.

Proposition 4.2. [£] For s > 2, there are Ks > 0, and Cs > 0, such that

This estimate can be used to obtain global bounds of higher moments for solutions of
the present Boltzmann equation.

Lemma 4.3. The solutions Fv of Proposition 4.1 have globally bounded moments of
order 5, and

supsupj( l +\υ\s)Fv(υ,t)dv<ao.
v ί>0

Proof. Using Proposition 4.2 we get

^Ks J (\vlΓ
ί\v2\cosθ^nθ F v ( υ l , t ) F v ( υ 2 , t )

6 χ β

J (\v,\s + I

•Fv(v2,t)k(υ{ , v2,u)dv{dv2du. (4.2)
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Set

K' = 4KS J cos θ sin Θβ(θ)du/Cs$ cos2 θ sin2 θβ(θ)du,

and assume that K' ^ 4. The integrals in the right member of (4.2) over the set
{ (vl , v2 9 u); I Ό! I > K'\ v2 \ } can be estimated from above by

ίK |s + 1 1;2 I
s) cos2 θ sin2 ΘFv(v1,t)Fv(v2,t)k(vί,v2,u)dvίdv2du,

where the integration is over the same set. The integrals in the right member of (4.2)
over the set

can be estimated from above by

where the integration is over the same set. The integrals in the right member of (4.2)
over the remaining part of R6 x B can be estimated by

K2($(\+v2)F0(υ)dv)2,
R3

if 5 ̂  4 - λ, and otherwise by

And so by elementary computations, for s rg 4 — λ,

θ,(J \v\'FJ(v9 t)dv) ί K3($(l + ι>2)

-iCjcos2 θ sin2 0jS(θ)dMj|ι;|βF(ι;, ί)A; jFβ(t;)A;.

Here X 3>0 is independent of v and t. For s>4 — λ (J(l +v2)F0(v)dv)2 is substituted
by (J(l + \υ\(s+λ)l2)Fv(v,t)dυ)2. From here we obtain the desired global bound

sup sup J I v \sFv(v, t)dv < oo
veJV ί

by induction in the usual way (see e.g. [Al]).

By transfer the above also holds in the non-standard context. There, in
particular, Fv of Proposition 4.1 satisfies Lemma 4.3 for ve*N-N, and also

Fv(v, t)*g(υ)*dv = J F(v, t)g(v)dv

Notice that the case ε = 1 transforms into the case of general ε > 0 after the
substitution

Here the arguments of Sect. 3 imply, that for ε % 0 there are for Loeb a.e. f e*K+ a(t\
b(t)εR + , and c(t)εR2, such that the solution Fvε satisfies

Fve(t;, ί) % a(t) exp ( - b(t)v2 + c(t) v)
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for Loeb a.e. vens*R3. But since Fvε has globally bounded moments of the order
s(> 2) also for ε « 0, it follows that υ2Fvε(v, t) is S-integrable for ίe*K+ as a function
of v, and that the functions a(t\ b(f) and c(t) are independent of ί and ε, α(ί) = α,
b(ί) = b, c(ί) = c. The constants α, beR, and ce#3 are uniquely determined by

J F0(v)dv = \a exp ( — ί?f2 -f c

J vF0(v)dv = §va exp ( — in;2 + c ι;)dι;,

J v2F0(u)dι; = j υ2α exp ( — bv2 4- c υ)dυ.

Below we write the corresponding Maxwellian as M(v) = αexp( — &υ2 -f c ϋ). This
proves

Theorem 4.4. For ε % 0, ve*ΛΓ — AT, and Loeb a.e.

Fvε(ι;, t) % M(ϋ) for Loeb a.e.

Theorem 4.4 can be used to study the asymptotic behaviour of the solution F of
the space-homogeneous Boltzmann equation (4.1), given in Proposition 4.1.

Theorem 4.5. Assume that

F0\κF0εLl(R3\(\ + |D|s)F0eiΛ(R3) for some s > 2.

Then the solution F of (4.1) given by Proposition 4.1 satisfies

lim f \F(υ,t)-M(υ)\dυ = Q.

Proof. If the theorem does not hold, then for some ηεR + , there is a sequence (ίj)jeιv
of reals increasing to infinity, such that

^\F(Ό,tj)-M(v)\dv>η.

With

χj = sign (F(ι;, tj) - M(v))eL»(R*)9

this can be written

ί(F(υ9tj)-M(v))χjυ)dΌ>η.
R3

It follows that for ve*ΛΓ - N

J3 \Fv(v, tj) - *M(v)\*dv ^ f (FJίv, tj) - *M(v))*χj(υ)*dυ > η.

By the uniform 5-continuity of Fv: *Λ+ ^*L1

+(R3), there is δeR + , such that

J \Fv(v,t)-*M(v)\*dv>η/2 (4.3)
*Λ3

for ie*[ij — < 5 , f y + <5], 7'eΛ/". Moreover the sequence (tj)jeN can be extended to an
increasing internal sequence (t$= l9j'e*N-N for which (4.3) holds. But 2j'δ = τ is
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not finite. It follows that for ε = 1/τ « 0, and 7 = ̂ +1,

{ίe[0, Γε]; Fvε(v, t) - *M(v)\*dxdv > η/2}

has *Lebesgue measure not smaller than one.
This gives a contradiction, since by Theorem 4.4, for Loeb a.e. ίE*# + ,

°$\Fvε(v9t)-*M(v)\*dxdv = J \°Fvε(v,t)-0*M(υ)\Ldxdυ = Q.
*K3 ns*R3

Hence the theorem holds.

The |y|s-moment of F is globally bounded in time, which gives the following
corollary to Theorem 4.5.

Corollary 4.6. lim f | υ \s' \ F(v, t) - M(v) \dv = OforO<sf<s.

References

[AFHL] Albeverio, S., Fenstad, J. E., H0egh-Krohn, R., Lindstr0m, T.: Nonstandard methods in
stochastic analysis and mathematical physics. New York: Academic Press 1986

[Al] Arkeryd, L.: On the Boltzmann equation. Arch. Ration. Mech. Anal. 45, 1-34 (1972)
[A2] Arkeryd, L.: An existence theorem for a modified space-inhomogeneous, non-linear

Boltzmann equation. Bull. Am. Math. Soc. 78, 610-614 (1972)
[A3] Arkeryd, L.: Loeb solutions of the Boltzmann equation. Arch. Ration. Mech. Anal. 86, 85-97

(1984)
[C] Cercignani, C.: Theory and application of the Boltzmann equation. New York: Academic

Press 1975
[E] Elmroth, T.: The Boltzmann equation; on existence and qualitative properties. Dissertation,

Chalmers University of Technology 1984
[L] Loeb, P. A.: Conversion from non-standard measure spaces and applications in probability

theory. Trans. Am. Math. Soc. 211, 113-122 (1975)
[TM] Truesdell, C., Muncaster, R. G.: Fundamentals of Maxwell's kinetic theory of a simple

monatomic gas. New York: Academic Press 1980

Communicated by J. L. Lebowitz

Received August 2, 1985






