
Communications in
Commun. Math. Phys. 105, 85-98 (1986) Mathematical

Physics
© Springer-Verlag 1986

Global Existence of Time-Dependent
Yang-Mills-Higgs Monopoles

Jϋrgen Burzlaff1 and Niall O'Murchadha2

1 School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road,
Dublin 4, Ireland

2 Physics Department, University College, Cork, Ireland

Abstract. We study the Cauchy problem for non-abelian Yang-Mills-Higgs
theory in (3 + l)-dimensional Minkowski spacetime. With suitable conditions
on the background fields and a suitable choice of a Sobolev space for the
subtracted gauge potentials and the Higgs field, we establish local existence.
We then prove global existence by showing that an appropriate norm of the
solutions cannot blow up in a finite time.

I. Introduction

Irving Segal [1], in 1963, introduced a general existence theory for semi-linear
evolution equations. In 1979 Segal [2] himself showed that classical Yang-Mills
theory could be cast into a suitable form to make use of this general theory and he
showed that the local-in-time Cauchy problem could be solved. This means that if
one is given regular initial data on R 3 at some initial time (call it t = 0), there exists
a unique smooth solution to the field equations compatible with the initial data
over some finite time interval ( — ί0, ί0).

This result was improved on in 1982 by Ginibre and Velo [3] who added a
Higgs field to the Yang-Mills potential and showed that local-in-time existence
still held. The next major step forward was achieved, also in 1982, by Eardley and
Moncrief [4] who independently derived the local existence result for Yang-Mills-
Higgs theory and then extended this to obtain a global existence proof, that is to
show that the time existence interval ( —ί0, t0) can be made unboundedly large.

The major interest in classical solutions to the Yang-Mills-Higgs equations is
due to the existence of magnetic monopole solutions (which demand that the
Yang-Mills potential A falls off like 1/r) and non-trivial topologies in the Higgs
field (which require that the Higgs field remain finite at infinity). However, all the
existence results to date demand that both the Higgs field and the Yang-Mills
potential be square-integrable on R3, which naively demands that everything fall
off faster than r ~3/2, and are incompatible with the magnetic monopoles and with
non-trivial topologies.



86 J. Burzlaffand N. O'Murchadha

In this paper we will give a global existence proof for a class of Yang-Mills-
Higgs solutions which include solutions with magnetic monopoles and non-trivial
topologies. The result we obtain here is not only interesting for its own sake; it is
also immediately useful. For example, there has been some interest recently in
approximation methods to study monopole-monopole scattering (e.g. Manton [5]
and Atiyah and Hitchin [6]). In any approximation method one had better be sure
that the approximate solution is an approximation to some exact solution,
otherwise one may get nonsense (e.g. linearization instabilities in general
relativity). The proof we give here should act as an underpinning to all these
approximation techniques.

The method used in this paper to prove the desired existence theorem is quite
straightforward. We specify, as part of the initial data a static background Yang-
Mills potential A and Higgs field Φ. These are chosen so that their asymptotic
behaviour permits a finite magnetic charge and non-trivial topology. We then
write the total potential A as A + a and Φ as Φ + φ and regard a and φ as the
dynamical fields which are square integrable, and so fall off rapidly at infinity. We
will describe this in detail in Sect. II.

Of the two local-in-time existence techniques the Eardley and Moncrief
method is superior to the Ginibre and Velo method. This is due to the fact that
Eardley and Moncrief have found a way to build the divE = 0 constraint directly
into the dynamical equations whereas Ginibre and Velo, following Segal, ignore it
until the end, and then show that the dynamics are compatible with the constraint.
This allows Eardley and Moncrief to prove existence with weaker conditions on
the initial data than Ginibre and Velo require.

Unfortunately, the background subtraction method turns out to be incompat-
ible with the Eardley-Moncrief local-in-time technique (which Eardley and
Moncrief realised themselves.) Happily, the background subtraction method turns
out to be entirely compatible with the Ginibre and Velo proof, and so our local
existence proof is obtained by a straightforward extension of their technique. Of
course, we have to include extra terms in our field equations which arise from the
background static A, Φ fields, but these are easy to handle. We prove the local-in-
time existence result in Sect. III.

To turn the local existence result into a global existence proof we switch back
to Eardley and Moncrief and copy their technique. The difficulties in the local
proof are not relevant to the global part and so we can follow them. Of course we
still have to worry about the background fields. A further problem is that we have
to make the global part of the proof agree with the local part. This means that we
have to extend the global proof to one degree of differentiability higher than
Eardley and Moncrief require. We manage to deal with both of these problems and
get our global result in Sect. IV.

This should not come as any great surprise. For any theory, the only situations
where one would have local but not global existence is where we would have either
some local loss of differentiability through some form of singularity developing or
where nothing bad would happen at any point, but some integral over the whole
space would blow up. In view of the hyperbolic nature of the field equations, the
singularity formation should be a strictly local phenomenon, and should not be
influenced by asymptotic conditions. The problem of the norms blowing up can
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only be avoided by sensible choice of norm. For us, the natural norms are the
energy and the higher derivative pseudo-energies, and so we are not surprised
when they remain finite.

II. Background and Dynamical Fields

We will study classical Yang-Mills-Higgs theory on Minkowski space with a
Yang-Mills potential Aμ(t9 x) and a Higgs scalar Φ(t, x). The field corresponding to

Fμv = SμΛv - dvAμ + [Aμ, Av~\. (2.1)

The Lagrangian we will use is

& = ~ϊ<Fμv, F^) + <DμΦ, D»Φ} - (\Φ\2 -1)2, (2.2)

where D is the covariant derivative with Aμ as connection. This is the natural
Lagrangian to use to get a non-trivial topology in the Higgs field at infinity and a
magnetic monopole, together with finite energy. This is achieved by having Φ non-
constant at infinity but in such a way that \Φ\-• 1 at infinity. In addition we require
DμΦ = dμΦ + AμΦ to fall off rapidly at infinity. This can be achieved because while
we naively expect dμΦ to fall off like (at best) 1/r at infinity, we can assume Aμ ~ 1/r
at infinity, and so AμΦ also falls off like 1/r. The two 1/r terms in dμΦ and AμΦ can
cancel to give a faster fall-off to DμΦ. This is how the standard static monopole
solutions behave.

We will assume the existence of two static background fields Aμ and Φ. These,
at least asymptotically, will behave like static monopole solutions. The actual
potential and scalar fields we will write as

Aμ(t, x) = Aμ(x) + αμ(ί, x), Λo = 0, (2.3a)

) . (2.3b)

We will treat the subtracted fields (aμ, φ) as the dynamical fields and demand that
they fall off rapidly enough to give us finite energy solutions.

We will describe everything in terms of the Sobolev spaces Hk with norm
2 = Σ l l l^ | | |£ 2 <α) (2.4)\\Hk

for various values of fc, except A and Φ. We will assume that A and Φ satisfy the
following conditions

(i) AtjEC\

(ii) Bt = εijk(djAk + AjA

δ.AjeH^^ (\Φ\2-l)eHk,

for some specified k ̂  2. These conditions are compatible with the magnetic charge
associated with A

j 1 (2.5)
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and the topological winding number associated with Φ, i.e. for a triplet

A = g^ I εijkdjΦ(aAΦ(b)εabAc)dχi > ( 2 6 )

being non-zero. Although we are mainly interested in topologically nontrivial
finite-energy configurations (magnetic monopoles), our proof covers topologically
trivial configurations in topologically trivial and nontrivial models with sponta-
neous symmetry breaking as well.

III. Local Existence Proof

Following Segal we will work the local existence proof in the temporal gauge
Ao = 0. We will split Fμv in the standard way,

Et = FOi = doAi9 (3.1)

B^s^djA. + AjA,). (3.2)

We wish to make a further splitting, because we wish to write

4 i(ί,x) = i ί (x) + fli(ί,x), (3.3)

where ^(x) is the static background with slow fall-off (with Ao = 0), at(t, x) is the
time-varying field with fast fall-off. Having defined

B^s^djA. + AjA,), (3.4)

we also define

bt = Bi - Bi = εijk(8jak + aμk + Apk + a^Ak), (3.5)

and of course

e—E—doUi. (3.6)

The natural splitting of the Higgs field follows from writing

Φ(ί,x) = £(x) + φ(ί,x). (3.7)

In general we have for the first derivative of Φ,

π = D0Φ = d0Φ, (3.8)

πi = DiΦ = diΦ + AiΦ. (3.9)

We now define

π, (3.10)

atφ + atΦ + Atφ. (3.11)

The initial data (at a fixed time t = 0) we will specify for the Yang-Mills-Higgs
field will consist of the static background fields (Ab Φ) and a sextuplet of fields

(ai9 ei9 bb φ, ψ, ψt) = u(t9 x ) . (3.12)
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Following Ginibre and Velo [3] [their Eqs. (2.4) and (2.5)], the dynamical
equations now read

dou(ή = Tu(ή + K(u(t)) + K(u(ή), (3.13)

with , v

r- J °
= °

\o

1

0

0

Ra
0

T —

{Ra)t^BiJkdk9 R=-V, (3.15)

= (0, - smίap 6 J - 2 R e < V i , 6>α

Y «/9 + ̂  ?

= (0, - ̂ ( a ^ + [i,, 6J + [α, , Bk~\ + [i7, 4])

- 2 R e « ^ , θ Λ Φ > + <πι,θflφ>

+ <τϊi5 θaΦ})θa, εijk(Ajek + ejAj, (3.17)

These, by themselves, do not constitute the Yang-Mills-Higgs field equations. We
must add three constraints to them

+ aflk + Afik + ajA) = 0, (3.18)

-aiφ-aiΦ-Aiψ^O, (3.19)

These equations are essentially equivalent to those of Ginibre and Velo. The only
difference is that their variables are

(Ab Eb Bb Φ, π, πf) not (ab ei9 bi9 φ, ψ, ψt).

With the change due to subtracting the background, we still have that the linear
operator T is identical to theirs, and our K operator is identical to their non-linear
term. The only change is the extra K term, where we accumulate all terms which
depend on the background.

We wish to apply the Segal existence theorem to (3.13). This theorem will not
deal directly with (3.13), but with the associated integral equation

u(t)=U(t)uo+ \dτU(t-τ)Kίot(u(t))> (3.21)
o

where
K K K (3.22)
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and where U is the transformation generated by the linear operator T [(3.14) and
(3.15)].

The first thing we have to do is to choose a Banach space B in which we want
u(t) to lie. In this case the obvious choice is

Bk = Hk(K3)xHkx ...xHk9 (3.23)

where k is some positive integer. We now show that U is very well behaved on B.
Lemma 2.1 of Ginibre and Velo give us the desired result

Lemma 3.1. For any k, U(t) is a (bounded) strongly continuous one parameter group
in Bk and for any t ε R, uoe Bk, U(t) satisfies the estimate

\\U(t)uo\\ίμ(t)\\uo\\,

We next have to look at X tot and show that X tot maps B into itself. To do this we
choose fe^2. This allows us to use the fact that i/fc(IR3) is a Banach algebra for
fc^2. There are no derivatives in X, only terms like a{ey Since ajeHk and
βj eHk => fyej ε Hk, obviously K maps B-+B. In K there are two derivative terms
δβ and dμ. We put as part of the initial conditions that B,πeHk + 1. The other
terms are of the kind λ{e^ If we demand λ{ e Ck, then βj e Hk => A^j e Hk. The
only other term that needs special treatment is Φ2 — 1 ε Hk. It then follows that the
operator X tot maps B into itself.

The second property that we need for Ktot is that it satisfy a Lipschitz condition

l l ^ o t ( w i ) - ^ , o t ( " 2 ) I I ^ C ( | | U l | | , | | M 2 | | ) | | M l - W 2 | | , (3.24)

where C is an increasing finite real function, and || || is the (Hk)
6 norm. This again

follows from the Banach Algebra property of Hk for k ̂  2. All the terms in K are of
the form ab except for the φ3 term. The ab term leads to

a1b1-a2b2 = a1(b1-b2)-b2(a1-a2)

\\a1φί-b2)\\

The φ 3 term gives

and

The terms in K are of the form Ab which gives A(b1 — b2) and

together with Φφ2 which gives Φ(φ\ — φl) and satisfies

||Φ(cp? —cp|)| | j F ϊ k^C2[|Φ|| c : k(| |cp1 | | + II cp2 II) II Φx —

All these together combine to prove (3.24).
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The Lipshitz condition on Ktot and the fact that U(t) is a (semi)group is all that
we need to apply the Segal existence theory. This immediately gives us that there
exists a unique solution to (3.21) for some finite time interval [ — T,T~\ and that u(t)
for any t e [- T, Γ] belongs to Hk.

To go from the integral Eq. (3.21) to the differential equation (3.13), we have to
show that Ktot is a C1 map. This is quite straightforward. Since Ktoi is a third order
polynomial in u (the φ 3 term), the Frechet derivative of Ktot is quadratic in u. We
now just repeat our proof of the Lipschitz condition for this simpler case.
Analogously, we can prove that Ktot is a C00 map since all derivatives higher than
third order vanish.

As we remarked earlier, the differential Eq. (3.13) is not equivalent to the Yang-
Mills-Higgs equations. We need to also satisfy the constraints (3.18), (3.19), (3.20).
This is quite straightforward. We choose the initial data at t = 0 so as to satisfy the
constraints. The dynamical Eq. (3.13) is consistent with the constraints and
automatically propagates them (see Proposition 2.3 of Ginibre and Velo). Thus we
have our desired local existence proof.

IV. A Priori Bounds

To expand the local proof to a global existence proof we will switch over to imitate
the global existence proof of Eardley and Moncrief [4]. The key idea in their
analysis is to obtain an a priori bound on Fμv and DμΦ.

We start off with regular initial data and use the local existence proof to
demonstrate the existence of a classical solution on a patch of spacetime. (To
guarantee the smoothness Eardley and Moncrief want for working in Cronstrόm
gauge we impose the necessary smoothness conditions on the initial value data.)
To extend this to a global solution we have to show that nothing goes bad at the
boundary. This requires showing that the H2 norms of (αi5 eb bb φ, ψ, ψt) do not
blow up. This means that we extend beyond the boundary and so continue.

Just as with the local Ginibre and Velo proof [3], we need only make minor
modifications to the global Eardley and Moncrief proof to accommodate the extra
A and Φ terms. The first point of importance is that we still have a finite conserved

energy Eo = J εd3x, where
R3

ε=^(£ 2 + β2) + π π + DiΦ DίΦ + ( | Φ | 2 - l ) 2 > 0 . (4.1)

This conserved energy can be derived from an energy-momentum tensor Tμv given
by

Tμv = T r { F ^ F l - ^ F ^ F ^ } + 2DμΦ DVΦ-ημvDaΦ DaΦ-ημv(\Φ\2- I ) 2 ,
(4.2)

which satisfies <5vΓ
μv = 0.

Let us choose a point p in the domain of local existence and shift coordinates so
that p becomes the origin of coordinates. The initial slice now is labeled t= —t0.
Consider the back light cone Kp from p to the original surface. Call the solid sphere
where the light-cone intersects the original surface Bp. Now consider the
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conservation of energy on the set which is the interior of Kp (call it Kp)

0= J dvTJd*x= f TJ n+ J TJ n (4.3)
K.p Kp Bp

(on using the Gauss theorem). This, when written out, is of the form

J r2dr dΩ{\ Tr [f(/ F mf + (/ F • eA)
2

κp

(4.4)

where

i dr, m = d/δt + d/dr,

The integral along the light-cone is a set of quadratic (positive) terms.
Therefore we have that each one individually is bounded by the finite total energy
Eθ9 i.e.

j
Kp (4.5)

j r2drdΩ(\Φ\2-\)2<E0,

and so on.
The next stage is to realise that the Yang-Mills equations can be manipulated

to give us wave equations for F and DΦ:

ημvdμdvFaβ = - 2dylA\ Faβ] + [_dyA\ Faβ]

- IΛ\ lAy9 F J ] + 2[FJ, Fγβ] + 2((FaβΦ) θaΦ)θa (4.6)

+ 2((DβΦ) θa(DaΦ) - 2(DαΦ) θa(DβΦ))θa =:ρaβ,

η^dμdv(DaΦ) = - 2dμ(A"DΛΦ) + {dμA^DΛΦ - AμA»DaΦ

+ 2((DαΦ) θaΦ)θaΦ-2F»DμΦ + 4Da{Φ{\Φ\2 -1)} = : ρα.

The right hand side of each of these equations can be regarded as a source term
for a wave equation. This allows us to write Faβ at p as the average value of Faβ on
the boundary of Bp plus a term arising from the integral of the source along Kp. In
other words

FΛβ(P) = i ί dΩ{τ^dμFaβ + Faβ) -^-\rdr dΩQaβ, (4.8)

where S 2 is the sphere of radius r = r0 = —10 on the original slice. Equivalently we
have

DμΦ(p) = ^ - ί dΩ(rom%DμΦ + DμΦ) --^ i rdr dΩQfl. (4.9)
T ϋ S 2 7t K
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There is no difficulty in handling the two-sphere integral and showing that it is
finite. The real problem arises from the light-cone integral, and there we need to use
the bounds obtained from the energy conservation equation. One useful bound
that can be obtained is

f ( |Φ| 2-l) 2<£ 0 => J

(where Ctl is the volume of the cone) and also

J \Φ

(4.10)

(4.11)

The only real problem we have in going from Eardley-Moncrief to our spaces is the
fact that for us such functions as

ί \Φ\2d3x
R3

are not finite.
However, in deriving the a priori bounds on F and DΦ we need never integrate

over R 3 only over Kp, where the relevant integrals are finite and so the proof goes
through unchanged. Thus we also have that ||F||Loo and ||DμΦ||L°° remain finite.

V. Bounds on Everything Else

Given that ||F||Loo and ||£μΦ||L«> remain finite in the local range of existence of a
solution, we now need to show that the H2 norms of (ai9 eh bh φ, ψ, ψt) also remain
finite. We begin by showing that the L 2 norms remain finite. Let us begin with

d_

dt

which implies

and so | | φ | | L 2 remains finite. Next

γΛ\\aί\\L2)
2 = 2 j

ψ
1/2 (5.1)

(5.2)

(5.3)

The L 2 norms of ei9 ψ, B^bi + Bi and DiΦ = ψi + πi do not blow up from energy
conservation. Because Bt and πf are constant and belong to L2 ? the L 2 norms of b(

and ψt cannot blow up.
The next stage is to integrate the equations

δ

Jtι

d

dt'

to give

(5.4)

(5.5a)
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and

||φ||Lco^||φ(0)||Lco+}ώ||φ(s)||L"o. (5.5b)
o

The final inequality follows from the fact that et(s) is part of Faβ and ψ(s) is part of
DΦ, both of which were shown to remain finite in Sect. IV.

We have that

bi = Bt- Bt = sijk(djak + a}ak + Aμk + ajAk), (5.6a)

and

atφ + atΦ 4- Atφ. (5.6b)

We know ah bb ψi9 φeL2, and ||flf||L«», MilL^ a n d \\Φ\\L°°
 a r e finite. Therefore,

dtq)GL2 and zi}kdμkeh2 hold. Further ||i^||Loo, ||%>||LOo, Ib^, and ||ε0 fc37 flk||Loo
are all finite. Finally the third constraint

SA = ~ fa, *J - 2 Re<φ, θ f lφ>θα- [_λi9 e j - 2 Re<φ, θβ^>θβ (5.7)

also gives us dieieL2, and ||^i||Loo finite.
The next stage is to show that (αf,βί? bί? φ,tp,ψt)eHί. This means

dfip d{e p dibp 3fφ, δfi/;, δ ^ e L2 .

Let us start with dta^ and consider

^o= - i T r J [β Γ e ί + ( δ Λ ) ( ^ j ) ] ^ (5.8)
R3

Now ,
~ £Q = - Tr J [βfcifrdφi - εijk[ap bζ\

- 2 Re < V i , θflφ>0α + εijk(dkBj - [Ap bj

- [α7, Bk-\ - tAj, Bk-] - 2 Re«φ ί ? θaφ)

+ <πf, θαφ> + <π,, ΘΛΦ»ΘΛ} + dflfifi^x. (5.9)

All the terms in the expression above involving background fields are clearly finite
and the two terms ^^[αy,bk~\ and eiRQ{xpi,θaφ}θa are finite because ||ef||Loo,

This leaves only

ί Tr {efiijAbi + 5^.5^.} = j Tr {e^d^ - dtak + [αfc, αJ

+ [A, *J + [Λ*, Aj) + δ ^ β , . } . (5.10)

The first and last terms combine to form dk(e{dka^ and so integrate to zero. The
second term can be written as
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Now

ίdfiAaaild^hJd^h^q/Fo, (5.11)

since ||5jβι | |L 2 is finite. The total divergence can again be ignored. The three
commutator terms fall in line, the worst being

^ (5.12)

Hence we have

^ o = C 2 + C 3 l / ^ , (5.13)
at v

which implies that So remains finite and hence dtak e L2.
To show that ei9 bb ψ, and ψt belong to H1 we have to show that

Λ = ί J Wfid (djed + (djbd (djbd + (diΨ) (diΨ) + (diΨj) (diΨj)}d3x (5.14)

remains finite. To show this we calculate

— Sγ =

- 2 Re iψb θaφ)θa - εina(djn + [αm? B J

+ lAm, b J + [im, ί J) -

+ βjmnU™, ^ J ] + (ψ/ψi - terms)}. (5.15)

The two leading terms form a total divergence dn{djeiεimndjbm} and so can be
ignored. The next terms to be considered are

M / j ^ ^ q (5.16)

and

[ajdfifip^ WaJ^WSftWaSpnWL^CS,. (5.17)

The terms df^ ψiψ and xpfiffi^φ can be handled in the same way.
All the terms involving the background fields are quite straightforward. We

only need to use

d^m9djAmsL2; Am,6meL«>

to get terms proportional to γΐ\ and to $v We finally get

^ y (5.18)

which shows that $>

ί remains finite, and hence

,, llδAlli... \\SM\L2, \\dιψj\\L2
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remain finite. These can now be inserted into the constraints to force εijkdjak, d{φ,
and d^i to belong to Hί.

The next step is to show that dμk itself belongs to Hl9 or equivalently that d{dμk

belongs to L 2. This is the same as showing that

«'x = i ί {(djed (djed + (δfijoj (5,3/1*)} (5.19)

remains finite. To do this we calculate

j/Ί=i {(djed (djdoed + (dfiflύ (<W> . (5.20)

Substituting for doet we get a total derivative plus

djid^djd^ - (dje^djdXa^ α j + ....

On using dieieHί we can bound the first of these terms by Cy~$[.
The second term requires some care. One part will be of the form

ia^αjL^c^. (5.21)

The other parts, however, are of the form

or

The trick is to remember that HF^JLOO is finite which implies ||fc/||Loo finite which
implies \\dfii~dμ^W^ finite, and so we can replace δ7 af with dflj to give

d^dfijd^ = dldje^jd^ - ajdnandj dfr - apf^nan. (5.22)

The divergence is fine, the first term is finite because diei e Hί and the second term

is proportional to γs[. Everything else is well behaved, so we finally get

(ai9 φ)eH2, (ei9 bi9 ψ9 ψt)

The last stage of the proof is to show that the H2 x H2 norm remains finite. The
obvious thing to do is to write down the equivalent of Su i.e.

djbd + (dkdjΨ) (dkdjΨ)

+ (dkdjΨi)(dkdjΨi)}d3x (5.23)

and show dSJdt ^ (polynomial with constant coefficients in S2\ Now

•fa <$2 = ί ^iβfiASjlβinaβnK ~ ̂ ίmnί^m^ Kli

- 2 Re < V i , θaφ}θa - εimn(djn + [αm, B J + [ i m , fc J + [ i m , B J )

- 2 R e « φ , θflΦ> + <πt, θaφ> + <π, 0αΦ»θ J

+ dkdjbidjdklείmndmen + ε ι m n [α m , e J + είmn[Am, ej]

+ (ψ/ψi~ terms). (5.24)
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Again, the leading terms form total divergences

) fcm] and δi[dkdjψdkdjψi~],

and so can be ignored. However when we look at the next term we run into
difficulties. This is of the form

The two terms

ί s^bAdjeA^m ^ II bn II LOO II dkdfii\\L2 II dkdjam \\L2s
(5.25)

and

ί &imnamdkdfAdpn^ II a mIIL-IId k dfr\\ L 2 \\d k dp n | | L 2 S CS2

(5.26)

offer no difficulty, but the third term ί simA^jei^jam^kK ^ a s t 0 be dealt with
carefully. We know that it is bounded by

We also know from the Sobolev multiplication theorem that Hί x H1 is uniformly
embedded in L2. Hence

II^^ΛIlL^Coll^αJI^JI^AIlH,- (5-27)

But of course | |δ J α m | | H l is finite and ||5fci>π||iϊl is bounded by a finite number times

]/Y2. Hence

ί s^AdjβidjaΛK ^ CγγI2 + CJ2. (5.28)

All the other terms are well behaved. To deal with the terms which include the
background terms we need slightly sharper conditions, on these, i.e.

BeH3, 7tieH3, djdkAeL2, (5.29)

and we finally get

— <ί2 ̂  CΊ + C2]/S2 + C3&2. (5.30)
at

This guarantees that S2 remains finite and hence that each of (eb bb ψ, ψt) remain in
H2 if originally there. We already know at remains in H2, and of course since
ψ. = diψ + aiψ + atΦ + Aw, we know that φ belongs to H3. Hence we have that the
norms we needed to prove the local existence theorem do not blow up, and this is
sufficient to prove global existence.
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