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Abstract. Determinants of Laplacians on tensors and spinors of arbitrary
weights on compact hyperbolic Riemann surfaces are computed in terms of
values of Selberg zeta functions at half integer points.

Introduction

In this paper we evaluate explicitly the determinants of Laplacians acting on
arbitrary tensor and spinor fields on compact Riemann surfaces of constant
negative curvature. They are equal to values of Selberg zeta functions at half-
integer points, multiplied by an additional factor depending only on the genus and
the weight of the field. Interest in such results comes from multiloop calculations
for fermionic string theories and random surfaces, where these determinants arise
from quantum fluctuations and Faddeev-Popov gauge fixing, while the extra
factors can be viewed as finite corrections to the coupling constants [1].

Our approach is based on the explicit formulas for heat kernels of Fay [2], the
Maass operators, and Selberg trace formulas. We observe that Selberg trace
formulas have been used in similar contexts by many authors, notably Ray and
Singer [3(a)], Donnelly [3(b)], McKean [4], Hejhal [5], Mandelstam [6], and
Fried [7].

1. Tensors, Spinors, and Automorphic Forms

Let M be a compact Riemann surface with a fixed hermitian metric ds? of constant
curvature — 1, y =2 —2h its Euler characteristic (y <0), and let T" denote the usual
space of tensors { f(z)dz"} for n integer. If we fix a spinor structure among the 22"
possible ones, we may also consider n=(odd integer)/2, and view T'/? as the space
of spinors, and T" as spaces of spinor-tensor fields. Henceforth n will be allowed to
take both integer and half-integer values. The covariant derivative V sends T" into
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T"®(T*®T"!), and can be decomposed accordingly as V =V"®V?, with V": T"
ST'QT ~T"*, VZ:T"->T"®T'~T""'. The spaces T" are Hilbert spaces,
since spinor-tensor fields can be paired at each point of M, and then integrated
over M using ds*>. With this pairing, (V)" = —V}, ¥, is the Dirac operator, and
the natural covariant Laplacians on T" are

Ar ==V,  Ar ==V} (1.1)

z

In local isothermal coordinates z, we can write
dSZ = Zgzidz dZ— ’ Vnzf: gzz-affa

5 . . (1.2)

Vif=(9."0.g")f),  {flg>mm= 1{4 dzdzg.-(97)'f*g.
The uniformization theorem allows us to identify M with H/I', where H is the
upper half plane {z=x+iy, y>0, ds?=y 2dzdz}, I' is a discrete subgroup of
b . ~
SL(2,R)/{ 41}, all of whose elements <j d> are hyperbolic, i.e., la+d|>2. Let I’
be the subgroup of SL(2,R) containing —I which projects to I', and let
V1> V2» - --» V2 DE @ fixed set of generators for I’ . A spin structure v on M corresponds
to a choice of multipliers v(y) € { + 1} on y € I' which is multiplicative and satisfies
v(—I)= —1. Such a choice is determined by the values of v on the generators y,,
and there are 22" of them. Once a multiplier v is fixed, v(§) (cz + d) is well defined for

7eSL(2,R), 7= (j Z), 7 representative of y in SL(2, R)/{+1}. For p, q of the

type (integer)/4, satisfying p+ q=(integer)/2, the fields f(z)(dz)?(dZ)? defined
globally on H and transforming as

fo) =DM ez +d)* (cz+d)*f (z), yel (1.3)
project uniquely to fields of the same weight on H/I'. They carry a natural inner
product

(flgy=| dzdzy=2"Prif*g. (1.4)
H/T

The fields in T" correspond to the case n=p and g=0. The inner product (1.2) on
T" corresponds under these conditions to the inner product (1.4). It will actually be
more convenient to work with the space

S(n)={f satisfying (1.3) with —g=p=n/2},

which is isometric to T" through the correspondence

T"s {15 y2fe S(n).
Under this correspondence, the operators V7, I go over to the Maass operators
L,:S(m)—»S(n—1), K,:S(n)—>S(n+1) according to the diagram

_ Vi vz
Tn 1 n " Tn +1

LT

S(—1) < S(n)—> S(n+1)
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where
- 0 .0
L"=(Z_Z)5§_"’ K,,—(z—z)gz— +n.

In particular the Laplacians 4 reduce to
A: = '—Ln+1Kn= —'D—n+n(n+ 1)9 An— = _Kn—an= _D—n+n(n— 1)
with

o 0
-2 —2i
D,=y <8x2 + 8y2) 2iny p

2. Traces of Heat Kernels on Spinors-Tensors of Arbitrary Weights

This section is devoted to the computation of Tr(e *4%) for n arbitrary half-
integer. The starting point is the formula for the kernel g(z, z’) of e’ on the
upper half plane obtained by Fay [2, p. 157]
Glz)= T mmentug, )
0sm<|n|—% ’

2614 he b4t
+ fdb
(4nt)*? 4 ]/ coshb —coshd

{3(coshd — 1) "[e” 2" A% + 042"}, 2.1

lz—2z)?

’

where d=Arg cosh(l + ) is the distance between z and z’;

y (=" TQln|—m) 2 Inl =m
"™ 4mnm! T'(2ln|—2m—1)\1+coshd

2
-F<—m,2|n|—m, 2|n|—2m,-1“_|_—com> .

F is the usual hypergeometric function,

e*’sinhd =e"—coshd + ¢"/?)/2(coshb— coshd) ,

A =]/2sinhb/2+]/coshb—coshd .
The integrand on (2.1) can be simplified considerably. If we set
E,(b,d)=2"(coshd—1)""*(e "0 A" +e"A4"),

and note that A, A_=(coshd—1), we see immediately that E,=E_,. Next a
routine calculation shows that E,=1, E, =(coshb/2)/(coshd/2), and that 2E E,
=E,,,+E,_, whichis the defining relation for Chebyshev polynomials. We may

! Traces are always considered over complex functions, and all dimensions considered
throughout are complex dimensions
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thus restrict ourselves to n>0, n half integer, and write
gz, 2)= X enmemmTlig, L (d)
0Osm<n—%

2e—t/4 © be-—bz/4t

+ db
(4n)*? i J/ coshb—coshd

where T, is the (2n)™ Chebyshev polynomial.
The heat kernel K},(z, z’) on the Riemann surface H/T" can now be obtained by
taking the Poincaré series

Kie2)=3 v ()(jjij) (z ”) 6,2.77). .3

T, ((coshb/2)/(coshd/2)), (2.2)

To compute its trace, we apply Selberg trace formula techniques (described in
detail for example in [4, 1d]) and obtain

Tr(eP =

dy gz+ T v)* > ax fdy<z e”Z) 'z, e'"z)

y primitive p=1 —©

EIZ(t)+I”(t). 24

Here the sum over 7y primitive indicates summing over all y’s which are not powers
of another element in I" with exponent > 2 (if y is primitive, 7~ is also counted as
primitive), and for each y the corresponding length of a closed geodesic ! is given by
coshl/2 =|tracey|/2. We have also chosen the representative of y in SL(2,IR) to be
with positive trace.

Computation of I'(t). To compute the integrals in (2.4) we change the variables
from z=x+iy to (x,u=x/y), set a=2"?sinh(pl/2), and note that

z—e"Z  coshpl/2+iusinhpl/2

eP'z—z  coshpl/2—iusinhpl/2’

d=d(z, e'z) = Arg cosh(«*u?* + coshpl),

The expression I"(f) becomes then the sum over y and p of (v(y))*" times

-m@-m-1) § coshpl/2 +iusinh pl/2\"
l 0 <m§<:n -3 ¢ —"foo du <cosh pl/2 —iusinhpl/2 ()

. ,lf et ? du coshpl/2 + iusinh pl/2\"
(4nt)** o \coshpl/2—iusinhpl/2

0 —b2/4t
P ab be T (cosh b/2> ' 2.5

L coshh—coshd " \coshd/2

Next we observe that F(—m,2|n|—m,2Jn|—2m,2(1+coshd)™') is a poly-
nomial of degree <m in (1 +coshd)™*, and that

(14 coshd) =[coshpl/2 + iusinh pl/2] [cosh pl/2 — iu sinh pl/2] .
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It follows that the first integral in (2.5) can be treated by a contour integration and
shown to vanish for all n half-integers. To compute the remaining integrals we first
interchange the u and b integrations and then introduce a parameter A and the
generating function for Chebyshev polynomials. With new integration variable 0

given by u=wsinf/n, (w? =coshb—coshlp) B= ]/5 cosh(pl/2)/w, the result is
0 wla ; 3 n/2
S j[ i <coshpl/2 +iu smhpl/Z) T (coshb/2>

n=0 -oj \coshpl/2—iusinhpl/2 "\ coshd/2
integer
o 2 B+isin9 1z B?+1
10 - B—isind J/B*+sin*0
. f (B—isinf)— A*(B+isin6)
=2 ) 0 B iisn0)—2iB+ )P+ 2B+ isind) T

This integral can be viewed as a contour integral around the unit circle of a
meromorphic function with a single pole inside, whose residue can be computed
explicitly. A straightforward calculation then yields the value n(1 —4)~', which
implies that

wJZ“ i cosh pl/2 + iusinh pl/2) "T coshb/2\
coshpl/2—iusinhpl/2 ] “*"\coshd/2)

—wfa

for all n half integers. From this the value of I,,(t) follows

ry= X pRLC) L. e P, 2.7)

yprim. p=1 smhpl/2 4WV

Computation of I'(t). For I(t) we need only deal with the case d(z, z) =0, in which
the expression E, (b, d) reduces to T,,(coshb/2) =coshbn, by the defining property
of Chebyshev polynomials. The difference g;(z, z) —gy—ps(2,2) only involves
elementary integrals, and works out to be
2n—2m—1
2.2 —Ghmzz)=2 % errmeem IS g
O<m<n—1% 4n
As a consequence
I')=—=2yM) Y (2n—2m—1)er mm-m=1r
0sm<n—3%
“t/4 o ppbYAt

—dmy(M)—

Gy | D Gapy Osh (= [nDb. (29)

Adding (2.7) and (2.9) gives the complete formula for the trace of heat kernels on
spinors-tensors of arbitrary weights.

We observe that more general formulas for traces of functions of the
Laplacians can be found in Hejhal [5].

Zero Modes of the Laplacians. It will be necessary to determine the number N of
zero modes of the Laplacians 4. Except for N, and N*, ,, they are classically
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known and can be read off from the formula NZ=Ilim Tr(e *4%)
t— 00

= lim e ™"*DTre*P» Byidently NX=NT,, so we restrict ourselves to n=0.

t— + ©

The asymptotic behavior of the traces as t— + o0 can then be obtained from (2.7)
and (2.9):

Tr(e %)~ I%(0), (2.10)

Tr(e~ ") ~ e (IV2(1) + o(e %)) , @.11)

Tr(e ™ "172) ~ e~ 34(IV2(£) 4 o(e " 11%)), (2.12)

Tr(e ") ~e "eEDM I — 2n—Dy(M)e" "™, nx1, n half integg .13)

Now Ag is the usual Laplacian on functions, which has exactly one zero mode, so
that I°(t)—1 as t—oco. From (2.11) and the fact that Tr(e *4"/2) must remain
bounded for ¢ large, we deduce that |I'/%(t)| < Ce ™ "*. Tt follows then from (2.12) and
(2.13) that

NE=1,
N} =0 for all n=4, n half integer,
2.14)

N, =—=Q@2n—1)x(M) for n=3/2, n half integer.

Finally we note that Ny, =N¥, corresponds to the number of zero modes of
the Dirac operator. It is known (see Hitchin [8]) that these depend on the spin
structure on M for h <2, while for h > 3 they even depend on the conformal class of
the metric. No simple formula such as (2.14) can therefore exist.

3. Calculation of Determinants

We shall evaluate determinants by the zeta function method. Recall that

det’AF :exp<—% C,:—'(s)> (3.1)
s=0

where

(E(s)=Tr(4%) T et [Tr(e %)= N*] (3.2)

T ( )0
and ’ denotes deletion of zero modes whenever they. exist. Since det’ 4%, =det’4,’,
we consider only the case n=>0. As indicated by (2.14), we discuss separately the
cases of A}, n=%, 4, forn=3, and 47 . Substituting (2.7), (2.9), and (2.14) into (3.2)
yields

+ _ n 1 pl S—%. 1
HO=LO+ g T F 00 lf<2"+1> Kq-s((n+1pD
(3.3)
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with
-+ 1,~tn(n+1)yn
Tos)= —f dttte I(t).
I'(s)o
All integrals and series converge. It follows that
1
logdetd, = —{; (0)— X 2 v(y)z”———————np, e (Pl
yprim. p=1 p(l—e™7)
We introduce the two Selberg zeta functions
Z ()= 11 H (I1=v(p)*"e”®*) for n=0,37. (3.4)
yprim. p=

The analytic continuation of (;(s) to s=0 is obtained by performing the
t-integration first, and by using the small b asymptotic expansion of the integrand
to isolate the pieces which are not manifestly convergent but have simple analytic
continuations. The result is

{o 0)=c,x(M)
with
= Y  (@2n—2m—1Dlog(2n—m)—(n+%)>+2(n—[n])

0Osm<n-—-1%
“(n+3+n+3)log2n+2((-1), (3.5)
where {(s) is the Riemann zeta function. The final formula for det4," is then
detd, =Z,_ (n+1)e 0 (3.6)

for all n=%, n half-integer.

We turn next to the case of 4, for n>3. In this case there are zero modes, and
we subtract them from the contribution e "~ *I%(¢) of the identity element to the
heat kernel, obtaining

- 1 pl % N
(n (S) Cn e(s)+ F( ) yp%:m pzl ())) Slnhpl/2 V (2’1— 1> Ks—-%((n—;)pl)a
(3.7)

with

Cn,e(8)= [ d =1 [e™ ™= D(0) + 220 — Dy(M)].

F()

This time analytic continuation for {, , yields {, /0)=c,_,x(M) with c, given by
(3.5). Thus the formula for det’4, is

det’'d, =Z,_y(me ™y (M) (3.8)

for all n=3, n half-integer.
As for the cases of 435 and 4, there is one zero mode, to be subtracted from
I°(t). We have to apply then the regularization process of [1(d), Sect. 6]. The
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conclusion is
l 1
yp%:m. pgl smhpl/2 m

1 2 _
e pl/4t_5 s ,

4/t
L

e (I) dres= %), (3.9)

(5. d0)=cox(M),

(5(9)=L5,(s)+ lim <
607"

0
R j‘ dt ts-le—at
0

(5ols)=

0

logdet' 4f = —co)((M)«&lirgl+ < > e*‘”"+log5>

y prim. p=1 P(elp— 1)
Zy(1+0)
5 b

det’ AT =Z{(1)ecox®) (3.11)
This formula also appears in [1(d)] and [7]. Similarly
det’ A7 =Zy(1)e ™ 0x™) (3.12)

The only remaining case is det’ 4, =det’4 ¥, ,. Although the trace of the heat
kernel is available here as in other cases, it is difficult to perform the analytic
continuation of {j,(s) explicitly. The main difficulty comes from the fact that the
integrals over ¢ near oo and sums over y primitive are far from converging
absolutely. In addition, the link between N, and the spin structure as given by the
multiplier v(y) is rather subtle. We expect det’'4;,, to be related to Z,,(3) or
(d/ds)NLZ2(3), depending on whether there are zero modes.

Finally we observe that in view of the formulas of Polyakov and Alvarez for the
conformal anomaly (e.g., [1(c), formula (4.27)]), determinants of Laplacians for
general metrics can be obtained from the ones for constant curvature metrics, up to
a factor involving the volume of the space of quadratic differentials.

= —co(M) + lim log (3.10)
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