The Spectrum of a Schrödinger Operator in
$L_p(\mathbb{R}^n)$ is p-Independent

Rainer Hempel and Jürgen Voigt
Mathematisches Institut der Universität München, Theresienstr. 39, D-8000 München 2, Federal Republic of Germany

Abstract. Let $H_p = -\frac{1}{2} \Delta + V$ denote a Schrödinger operator, acting in $L_p(\mathbb{R}^n)$, $1 \leq p \leq \infty$. We show that $\sigma(H_p) = \sigma(H_2)$ for all $p \in [1, \infty]$, for rather general potentials V.

Introduction. In [12, 13], B. Simon conjectured that $\sigma(H_p)$ is p-independent, where $H_p = -\frac{1}{2} \Delta + V$ is a general Schrödinger operator in $L_p(\mathbb{R}^n)$. Partial results on this problem are contained in Simon [12], Sigal [10], Hempel, Voigt [5].

In the notations of Sect. 1, our main result reads as follows.

Theorem. Let $V = V_+ - V_-$, $V_+ \geq 0$, where V_+ is admissible, and $V_- \in \mathcal{K}_c$ with $c_\nu(V_-) < 1$. Then $\sigma(H_p) = \sigma(H_2)$ for $1 \leq p \leq \infty$.

In addition, if λ is an isolated eigenvalue of finite algebraic multiplicity k of H_p, for some $p \in [1, \infty]$, then the same is true for all $p \in [1, \infty]$.

The proof of this result is contained in Propositions 2.1, 3.1, and 2.2.

In Sect. 2 we prove the inclusion $\sigma(H_2) \subseteq \sigma(H_p)$, following ideas of Simon and Davies.

In Sect. 3 we show that the integral kernel of $(H_2 - z)^{-n}$, for $n \in \mathbb{N}$, $n > v/2$, defines an analytic $\mathcal{B}(L_p(\mathbb{R}^n))$-valued function on $\rho(H_2)$, which coincides with $(H_p - z)^{-n}$ for z real and sufficiently negative. This implies $\sigma(H_p) \subset \sigma(H_2)$, by unique continuation.

A different situation, where an integral kernel determines operators with p-dependent spectrum, can be found in Jörgens [6; IV, Aufg. 12.11 (b)]; note that the kernel in Jörgens' example is the resolvent kernel of the differential operator

$$-rac{d}{dx}x^2\frac{d}{dx}$$
on $$(0, \infty), \text{ at } z = -2.$$
(analogously, \(C_c^\infty \equiv C_c^\infty (\mathbb{R}^n) \), etc.). For \(t \in \mathbb{C} \), \(\text{Re } t > 0 \), we define \(k_t \in L_1 \) by
\[
k_t(x) \equiv (2\pi t)^{-n/2} \exp(-|x|^2/2t).
\]
For \(1 \leq p \leq \infty \) we define \(U_{0,p}(t) \in \mathcal{B}(L_p) \) \((t \in \mathbb{C}, \text{Re } t > 0)\) by
\[
U_{0,p}(t)f \equiv k_t * f \quad (f \in L_p),
\]
and further \(U_{0,p}(0) = I \). For \(1 \leq p < \infty \), \(U_{0,p}(-) \) is a holomorphic semigroup of angle \(\pi/2 \); let \(-H_{0,p}\) denote its generator. Further denote \(H_{0,\infty} = H_{0,1} \).

Next we introduce the class of potentials \(V \) to be considered in this paper. Following Voigt [14], we define classes of potentials by
\[
\mathcal{K}_\nu := \{ V \in L_1, \text{loc}; \text{ess sup } \int_{|x-y| \leq 1} |g_\nu(x-y)||V(y)|dy < \infty \},
\]
where \(g_\nu \) is the usual fundamental solution of \(\Delta \). Note that this class is slightly larger than the class \(\mathcal{K}_\nu \) in Aizenman, Simon [1], Simon [13]. For \(V \in \mathcal{K}_\nu \) we define
\[
c_\nu(V) \equiv \lim_{\alpha \to 0} \text{(ess sup)} \int_{|x-y| \leq \alpha} |g_\nu(x-y)||V(y)|dy.
\]
Obviously \(\mathcal{K}_\nu \subset L_1, \text{loc, unif} \) for all \(\nu \in \mathbb{N} \), \(\mathcal{K}_1 \equiv L_1, \text{loc, unif} \), and \(c_\nu(V) = 0 \) for all \(V \in \mathcal{K}_1 \).

A potential \(V \geq 0 \) will be called admissible if \(Q(H_{0,2}) \cap Q(V) \) is dense in \(L_2 \); cf. Voigt [14]. In particular, \(V \geq 0 \) is admissible if \(V \in L_1, \text{loc}(G) \), where \(G = \mathbb{R}^n \setminus \mathbb{R}^n \) is such that \(\mathbb{R}^n \setminus G \) is a (closed) set of Lebesgue measure zero.

Throughout this paper we shall assume
\[
V = V_+ - V_-, \quad V_\pm \geq 0, \quad V_- \in \mathcal{K}_\nu \quad \text{with } c_\nu(V_-) < 1, \quad V_+ \text{ admissible.}
\]
In the following proposition we denote the truncation of \(V \) by
\[
V^{(n)} := (\text{sgn } V)(|V| \wedge n) \quad (n \in \mathbb{N}).
\]

1.1. Proposition. Let \(V \) satisfy (1.1), and let \(1 \leq p < \infty \). Then, for \(t \geq 0 \), the limit
\[
U_p(t) := s - \lim_{n \to \infty} \exp(-t(H_{0,p} + V^{(n)}))
\]
exists, and \((U_p(t); t \geq 0)\) is a \(C_0 \)-semigroup on \(L_p \). The Feynman-Kac formula
\[
U_p(t)f(x) = E_x \left\{ \exp \left(- \int_0^t V(b(s))ds \right) f(b(t)) \right\}
\]
holds for all \(f \in L_p \).

Here, \(E_x \) and \(b(\cdot) \) are as in Simon [13]; cf. Reed, Simon [9], Simon [11]. The proof of this proposition can be found in Voigt [14; Proposition 5.8(a), Proposition 2.8, Remark 5.2(b), Proposition 3.2, Proposition 6.1(c)].

We denote the generator of \((U_p(t); t \geq 0)\) by \(-H_p\), for \(1 \leq p < \infty \), and we shall henceforth write \(U_p(t) = \exp(-tH_p) \). Also, \(H_\infty = H^* \). More detailed information about the operators \(H_p \), in particular for \(p = 1, p = 2 \) can be found in Voigt [14].
Note that \(H_2 \) is the form sum of \(-\frac{1}{2}\Delta\) and \(V\); cf. Voigt [14; Remark 6.2(c)]. (It follows from Devinatz [3; Lemma 4] that \(V_- \) is \(H_{0,2} \)-form small.)

2. \(\sigma(H_2) \subset \sigma(H_p) \)

In this section we show that interpolation, duality, and \(p-q \)-smoothing lead to the following result.

2.1. Proposition. Let \(V \) satisfy (1.1). Then \(\rho(H_p) \subset \rho(H_2) \) for all \(p \in [1, \infty] \), and

\[
(H_p - z)^{-1} \mid_{L_p \cap L_2} = (H_2 - z)^{-1} \mid_{L_p \cap L_2} \quad (z \in \rho(H_p)).
\]

This result was stated in Simon [12, 13]. The argument given there was based on interpolation between the resolvents \((H_p - z)^{-1}\) and \((H_p - z)^{-1}\), for \(z \in \rho(H_p) = \rho(H_p) \). It is not immediate, however, that these resolvents coincide on \(L_p \cap L_q \), as can be seen from Jörgens’ example mentioned in the introduction. This gap in Simon’s argument was closed by E. B. Davies (private communication). Compare also Hempel, Voigt [5; Proposition 3.1].

Proof of Proposition 2.1. (i) (due to E. B. Davies) Let \(1 \leq p < q \leq \infty \), \(t > 0 \). Then \(e^{-tH_p} \in \mathcal{B}(L_p, L_q) \); cf. Voigt [14; Proposition 6.3]. This implies

\[
e^{-tH_p}H_p \subset H_qe^{-tH_p}. \tag{2.1}
\]

Assume additionally \(\lambda \in \rho(H_p) \cap \rho(H_q) \). Then (2.1) implies

\[
(H_q - \lambda)^{-1} e^{-tH_p} = e^{-tH_p}(H_p - \lambda)^{-1}.
\]

For \(t \to 0 \) we obtain

\[
(H_p - \lambda)^{-1} \mid_{L_p \cap L_q} = (H_q - \lambda)^{-1} \mid_{L_p \cap L_q}. \tag{2.2}
\]

(This holds also for \(q = \infty \) because \(e^{-tH_q}f \) is \(\sigma(L_{\infty}, L_1) \)-continuous for \(f \in L_p \cap L_\infty \).)

(ii) Let \(1 \leq p \leq 2 \), \(1/p + 1/p' = 1 \), and let \(\lambda \in \rho(H_p) = \rho(H_p) \). Then \((H_p - \lambda)^{-1} \mid_{L_p \cap L_q} = (H_p - \lambda)^{-1} \mid_{L_p \cap L_p'} \), by (2.2). The Riesz–Thorin convexity theorem implies that \((H_p - \lambda)^{-1} \) is continuous as an operator \(R_\lambda \) on \(L_2 \).

For \(f \in L_2 \cap L_p' \), (2.1) implies

\[
(H_2 - \lambda)e^{-tH_q}(H_p - \lambda)^{-1} f = e^{-tH_p}f.
\]

For \(t \to 0 \) we obtain \((H_2 - \lambda) (H_p - \lambda)^{-1} f = f \). This implies \((H_2 - \lambda)R_\lambda = I\), and hence \(\lambda \in \rho(H_2) \).\]

2.2. Proposition. Let \(V \) satisfy (1.1), and let \(1 \leq p \leq \infty \). Assume that \(\lambda \) is an isolated point of \(\sigma(H_p) \). Then \(\lambda \) is an eigenvalue of \(H_p \) with finite algebraic multiplicity if and only if the same is true for \(H_2 \). In this case, \(\lambda \) is real and a pole of first order of the resolvents of \(H_p \) and \(H_2 \), and the multiplicities of \(\lambda \) as an eigenvalue of \(H_p \) and \(H_2 \) coincide.

Proof. Without restriction \(p < \infty \). (Duality for \(p = \infty \).) Note first that the selfadjoint operator \(H_2 \) can only have real eigenvalues which are poles of first order of the resolvent of \(H_2 \). Now the assertions follow from Proposition 2.1 and Auterhoff [2; Theorem 1.5]; see also Hempel, Voigt [5; Theorem 1.3].\]
3. \(\sigma(H_p) \subset \sigma(H_2) \)

In this section we shall derive properties of the integral kernel of \((H_2 - z)^{-n}\), for \(n \in \mathbb{N}, n > v/2\), in order to show the following result.

3.1. Proposition. Let \(V \) satisfy (1.1). Then \(\rho(H_2) \subset \rho(H_p) \), for all \(p \in [1, \infty] \).

The proof relies on the following two auxiliary results which will be proved below.

3.2. Lemma. Let \(X \) be a Banach space, \(T \) a closed operator in \(X \), \(\rho(T) \neq \emptyset \). Then \(\rho(T) \) is the domain of holomorphy of \((T - z)^{-n}\), for \(n = 1, 2, \ldots \).

3.3. Proposition. Let \(V \) satisfy (1.1), and let \(n \in \mathbb{N}, n > v/2 \).

(a) Then \((H_2 - z)^{-n}\) is an integral operator, for \(z \in \rho(H_2) \).

(b) Let \(G^{(n)}(x, y; z) \) denote the integral kernel of \((H_2 - z)^{-n}\). Then, for any \(K \subset \subset \rho(H_2)^1 \) there exist constants \(C, \eta > 0 \) such that

\[
|G^{(n)}(x, y; z)| \leq Ce^{-\eta|x-y|} \quad (z \in K, x, y \in \mathbb{R}^n).
\]

Proof of Proposition 3.1. By duality, it is sufficient to consider the case \(1 \leq p \leq 2 \). Fix \(n \in \mathbb{N}, n > v/2 \), and let \(G^{(n)}(x, y; z) \) be as in Proposition 3.3.

First we show that \(G^{(n)}(\cdot, \cdot; z) \) defines an analytic \(\mathcal{B}(L_p) \)-valued function \(G^{(n)}(z) \) on \(\rho(H_2) \). To prove this, we remark that for any \(\phi, \psi \in C_0^\infty \), the mapping

\[
\rho(H_2) \ni z \mapsto \mathcal{F} \int \int G^{(n)}(x, y; z)\phi(y)\psi(x)dx\,dy
\]

is holomorphic. Furthermore, for any \(K \subset \subset \rho(H_2) \), there exists a constant \(C' \) such that

\[
\|G^{(n)}(z)\|_{\mathcal{B}(L_p)} \leq C' \quad (z \in K),
\]

by the estimates in Proposition 3.3(b) and Young's inequality (cf. Reed, Simon [9; p. 32]).

Next, the fact that \(e^{-\mathcal{H}_p} \) coincides with \(e^{-\mathcal{H}_2} \) on \(L_p \cap L_2 \) implies that \(G^{(n)}(z) \) coincides with \((H_p - z)^{-n}\) for \(z \) real and sufficiently negative.

It follows by unique continuation that the domain of holomorphy of \((H_p - z)^{-n}\) contains \(\rho(H_2) \). Hence, \(\rho(H_p) \supset \rho(H_2) \), by Lemma 3.2 above. \(\blacksquare \)

Let us now prove the auxiliary results.

Proof of Lemma 3.2. Clearly, \((T - z)^{-n}\) is holomorphic on \(\rho(T) \). Let \(\text{spr}(A) \) denote the spectral radius of an operator \(A \in \mathcal{B}(X) \). From the well-known facts (cf. Kato [7; p. 27, p. 37])

\[
\text{spr}((T - \zeta)^{-1}) = \inf_{n \in \mathbb{N}} \| (T - \zeta)^{-n} \|^{1/n},
\]

\[
\text{spr}((T - \zeta)^{-1}) \geq \text{dist}(\zeta, \sigma(T))^{-1} \quad (\zeta \in \rho(T)),
\]

it is clear that \(\| (T - \zeta)^{-n} \| \geq \text{dist}(\zeta, \sigma(T))^{-n} \) (\(\zeta \in \rho(T) \)). \(\blacksquare \)

For several reasons, we include a proof of Proposition 3.3 (instead of simply referring to Simon [13; Theorem B.7.1 (c')]): The estimate given in [13; loc. cit.] is

\[K \subset \subset \rho(H_2) \text{ means: } K \text{ compact and } K < \rho(H_2) \]
not uniform for $z \in K \subset \rho(H_2)$ (although one might be willing to believe that it must be true). Also, the proof of the (essential) Lemma B.7.11 in [13] is very sketchy, and it is our aim to give a complete proof of reasonable length. Finally, our proof will show that it is advantageous to consider $(H_p - z)^{-n}, n > \nu/2, n \in \mathbb{N}$, instead of arguing with $(H_p - z)^{-1}$ directly (which would be possible, but involve more estimates, like [13; Theorem B.7.2 (1), (2), (4)]).

Since we shall have to consider e^{-tH_p} as an operator from L_p to L_q, $q \geq p$, we shall frequently drop the subscript p and simply write $H = -\frac{1}{2}\Delta + V$, in the sequel. The proof will involve several steps, following rather closely the outline given in [13; proof of Lemma B.7.11]. For the remainder of this section, the assumptions of Proposition 3.3 are always assumed to hold.

3.4. Lemma. Let $1 \leq p \leq q \leq \infty, \varepsilon_0 > 0$. Then there exist constants $C = C(p, q, \varepsilon_0)$, $A = A(p, q, \varepsilon_0)$, such that for $\varepsilon \in \mathbb{R}^\nu, |\varepsilon| \leq \varepsilon_0, t > 0$, we have

$$\| e^{\varepsilon^t \Delta} e^{-\varepsilon^t} \|_{p, q} \leq Ct^{-\gamma} e^{At},$$

where $\gamma = (\nu/2)(p^{-1} - q^{-1})$.

Proof (compare Simon [13; Lemma B.6.1]). Let $\varepsilon \in \mathbb{R}^\nu, |\varepsilon| \leq \varepsilon_0$. Clearly,

$$K_\varepsilon(x, y; t) := (2\pi t)^{-\nu/2} e^{\varepsilon^t (x - y)} \exp\left(-\frac{|x - y|^2}{2t}\right),$$

is the kernel of $e^{\varepsilon^t \Delta} e^{-\varepsilon^t}$. By Young’s inequality (cf. Reed, Simon [9; p. 32]), it is enough to estimate $\| K_\varepsilon(0, \cdot; t) \|_s$, for $s = (1 + q^{-1} - p^{-1})^{-1}$. Now,

$$\| K_\varepsilon(0, \cdot; t) \|_s \leq ct^{-\gamma(1-s)^{-1}} \left[\int_{\mathbb{R}^\nu} e^{\nu \eta_1^t |\eta|^2} d\eta \right]^{1/s},$$

and the term in square brackets can be estimated by

$$\int_{|\eta| \leq 4\varepsilon_0 \sqrt{t}} e^{\eta_1^t |\eta|^2} d\eta + \int_{|\eta| > 4\varepsilon_0 \sqrt{t}} e^{-(s/4)|\eta|^2} d\eta \leq c't^{-\gamma} e^{At} + c''.$$

3.5. Proposition (compare [13; Eq. (B11)]). For all $1 \leq p \leq q \leq \infty$ there exist constants $C = C(p, q)$, $A = A(p, q)$ such that for all $t > 0$ we have

$$\| e^{-tH} \|_{p, q} \leq Ct^{-\gamma} e^{At},$$

where $\gamma = (\nu/2)(p^{-1} - q^{-1})$.

Proof. This follows from Devinatz [3; Lemma 2] combined with duality and interpolation as described in Voigt [14; proof of Proposition 6.3]. Under the slightly stronger assumption $c_\nu(V) = 0$ a simpler proof can be found in Simon [13; loc. cit.]

3.6. Lemma (compare [13; Lemma B.6.2(b)]). Let $1 < c < c_\nu(V)^{-1}, 1/c + 1/c' = 1$. Then, for any $\varepsilon \in \mathbb{R}^\nu$,

$$\| e^{\varepsilon^t} e^{-tH} e^{-\varepsilon^t} \|_{p, q} \leq \| e^{-(1/2)\Delta + cV} \|_{1/c} \| e^{c' \varepsilon^t} e^{(t/2)\Delta} e^{-\varepsilon^t} \|_{1/c'}.$$

Proof. Let $\varepsilon \in \mathbb{R}^\nu$ and write $w(x) = e^{\varepsilon^t}$. Also, let $h \in C_0^\infty, g := w^{-1} h$. Factorizing
\[|g| = |h|^{1/c} |w^{-\varepsilon}h|^{1/c}, \]
it follows by Hölder’s inequality in function space that
\[|(e^{-t\varepsilon H} g)(x)| \leq \left[(e^{-t\varepsilon (1/2) A + cV}) |h||x|^{1/c} \left[(e^{t\varepsilon (1/2) A} w^{-\varepsilon} h) \right](x) \right]^{1/c}. \]

Now, multiplying by \(|w(x)|\), taking \(q\)th powers and integrating, we obtain
\[
\int |w e^{-t\varepsilon H} w^{-1} h|^q dx \leq \int \left| \left(e^{-t\varepsilon (1/2) A + cV} |h||x|^{1/c} \left[(e^{t\varepsilon (1/2) A} w^{-\varepsilon} h) \right] \right|^q dx \leq \left\{ \left[(e^{-t\varepsilon (1/2) A + cV} |h||x|^{1/c} \left[(w e^{t\varepsilon (1/2) A} w^{-\varepsilon} h) |h| \right]^q dx \right] \right\}^{1/c},
\]
which implies
\[\| w e^{-t\varepsilon H} w^{-1} h \|_q \leq \| e^{-t\varepsilon (1/2) A + cV} \|^{1/c} \| h \|^{1/c} \| w e^{t\varepsilon (1/2) A} w^{-\varepsilon} h \|^{1/c}. \]

3.7. Proposition (compare [13; Theorem B.6.3]). Let \(1 \leq p \leq q \leq \infty, \alpha > \gamma = (v/2)(p^{-1} - q^{-1})\), and \(\varepsilon_0 > 0\). Then, for \(z\) real and sufficiently negative, there exists a constant \(C\) such that
\[\left\| e^{-t\varepsilon} (H - z)^{-\alpha} e^{-\varepsilon x} \right\|_{p,q} \leq C \quad (\varepsilon \in \mathbb{R}, |\varepsilon| \leq \varepsilon_0). \]

Proof. For \(\phi \in C_c^\infty\), we have (with \(w := e^{-\varepsilon x}\))
\[(H - z)^{-\alpha} (w^{-1} \phi) = c_2 \int_0^\infty e^{tz} t^{\alpha - 1} e^{-tH(w^{-1} \phi)} dt, \]
and hence
\[\| w(H - z)^{-\alpha} w^{-1} \phi \|_q \leq c_2 \int_0^\infty \| w e^{-tH} w^{-1} \|_{p,q} e^{tz} t^{\alpha - 1} dt \cdot \| \phi \|_p \]
\[\leq c_2 \int_0^\infty \| e^{-t\varepsilon (1/2) A + cV} \|^{1/c} \| w e^{t\varepsilon (1/2) A} w^{-\varepsilon} h \|^{1/c} \| e^{tz} t^{\alpha - 1} dt \cdot \| \phi \|_p \]
(by Lemma 3.6)
\[\leq c_3 \int_0^\infty \| C_1 t^{-\gamma} e^{At} \|^{1/c} \| C_2 t^{-\gamma} e^{At} \|^{1/c} e^{tz} t^{\alpha - 1} dt \cdot \| \phi \|_p \]
(by Proposition 3.5 and Lemma 3.4)
\[\leq C_3 \int_0^\infty t^{-\gamma + \alpha - 1} e^{At + tz} dt \cdot \| \phi \|_p \leq C_4 \cdot \| \phi \|_p, \]
provided \(A + z < 0\).

3.8. Proposition. For any \(K \subset \subset \rho(H_2)\), there exist \(\varepsilon_0 = \varepsilon_0(K) > 0\) and a constant \(C = C(K, \varepsilon_0)\) such that \(K \subset \subset \rho(e^{t\varepsilon X} H_2 e^{-t\varepsilon X})\) for \(|\varepsilon| \leq \varepsilon_0\), and
\[\| e^{t\varepsilon X} (H_2 - z)^{-1} e^{-t\varepsilon X} \| = \| (e^{t\varepsilon X} H_2 e^{-t\varepsilon X} - z)^{-1} \| \leq C \quad (|\varepsilon| \leq \varepsilon_0, z \in K). \]

Proof. As \(W_{1/2}^1\) contains the form domain of \(H_2\), the operators \(A_j\) are \(|H_2|^{1/2}\)-bounded and hence \(H_2\)-bounded with relative bound zero \((j = 1, \ldots, v)\). This implies
\[e^{t\varepsilon X} H_2 e^{-t\varepsilon X} = H_2 + \varepsilon \cdot \nabla - \frac{1}{2} \varepsilon^2, \]
for all \(\varepsilon \in \mathbb{R}\). Now the identity
\[(H_2 + \varepsilon \cdot \nabla - \frac{1}{2} \varepsilon^2 - z) = (I + (\varepsilon \cdot \nabla - \frac{1}{2} \varepsilon^2)(H_2 - z)^{-1}) (H_2 - z) \]
implies the desired conclusion.

We can now finally proceed to the proof of Proposition 3.3.

Proof of Proposition 3.3. Fix $n \in \mathbb{N}$, $n > n/2$, and choose w real and so negative that, by Proposition 3.7,

$$\| e^{εx}(H - w)^{-n/2} e^{-εx} \|_{1, 2} + \| e^{εx}(H - w)^{-n/2} e^{-εx} \|_{2, \infty} \leq C$$

(3.1)

for all $|ε| \leq 1$, with some constant C.

Now let $K \subset \rho(H^2)$ and $z \in K$. Taking n^{th} powers of the resolvent equation

$$(H^2 - z)^{-1} = (H^2 - w)^{-1} + (z - w)(H^2 - w)^{-1}(H^2 - z)^{-1},$$

we obtain

$$(H^2 - z)^{-n} = (H^2 - w)^{-n} \sum_{j=0}^{n} \binom{n}{j} (z - w)^j (H^2 - z)^{-j}.$$

(3.2)

To prove Proposition 3.3, it is clearly enough to show that, for any $0 \leq j \leq n$, the operator

$$(H^2 - w)^{-n}(H^2 - z)^{-j} = (H^2 - w)^{-n/2}(H^2 - z)^{-j/2}(H^2 - w)^{-n/2}$$

(3.3)

is an integral operator with kernel $G_{nj}(x, y; z)$ satisfying

$$|G_{nj}(x, y; z)| \leq C_n e^{-ζ_{nj}<x-y>^2} (z \in K, x, y \in \mathbb{R}^∗),$$

(3.4)

with some positive constants C_n, $ζ_{nj}$.

So let $0 \leq j \leq n$. By Proposition 3.8, there exists $ε_0 > 0$ such that

$$\| e^{εx}(H^2 - z)^{-j} e^{-εx} \| \leq C' (|ε| \leq ε_0, z \in K).$$

(3.5)

By (3.3) we have

$$e^{εx}(H^2 - w)^{-n}(H^2 - z)^{-j} e^{-εx} = (e^{εx}(H^2 - w)^{-n/2} e^{-εx})(e^{εx}(H^2 - z)^{-j/2}) e^{-εx},$$

and hence it follows from (3.1), (3.5), that

$$\| e^{εx}(H^2 - w)^{-n}(H^2 - z)^{-j} e^{-εx} \|_{1, \infty} \leq C'' (|ε| \leq ε_0, z \in K).$$

Now it follows from a classical theorem of Dunford and Pettis ([4; Theorem 2.2.5, p. 348]; see also Simon [13; Cor. A.1.2]), that the operator $e^{εx}(H^2 - w)^{-n}(H^2 - z)^{-j} e^{-εx}$ is an integral operator, and its kernel $G_{nj,ε}(x, y; z)$ satisfies the estimate

$$\| G_{nj,ε}(\cdot, \cdot, z) \|_{1, \infty} \leq C'' (|ε| \leq ε_0, z \in K).$$

(3.6)

In particular, the above statements apply to $ε = 0$, and we see that $(H^2 - w)^{-n} \times (H^2 - z)^{-j}$ is an integral operator with $L_∞$-kernel $G_{nj}(\cdot, \cdot, z)$; clearly,

$$e^{ε(x - y)} G_{nj}(x, y, z) = G_{nj,ε}(x, y, z).$$

Therefore (3.6) implies

$$e^{ζ_0 (x - y)}|G_{nj}(x, y, z)| \leq C'' (z \in K).$$

\blacksquare
Acknowledgement. One of the authors (R. H.) would like to thank P. Deift (Courant Institute, New York) for several useful discussions.

References

Communicated by B. Simon

Received July 22, 1985; in revised form September 26, 1985